Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = chromosome segments substitution lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2566 KB  
Article
Zinc Finger Protein 30 Is a Novel Candidate Gene for Kernel Row Number in Maize
by Yanwei Xiu, Zhaofeng Li, Bin Hou, Yue Zhu, Jiakuan Yan, Feng Teng, Samat Xamxinur, Zhaohong Liu, Naeem Huzaifa, Tudi Anmureguli, Haitao Jia and Zhenyuan Pan
Plants 2025, 14(21), 3361; https://doi.org/10.3390/plants14213361 - 3 Nov 2025
Viewed by 290
Abstract
Kernel row number (KRN) is a pivotal determinant for yield in maize breeding programs. However, the genetic basis underlying KRN remains largely elusive. To identify candidate genes regulating KRN, a population of 318 BC4F4 chromosomal segment substitution lines (CSSLs) was [...] Read more.
Kernel row number (KRN) is a pivotal determinant for yield in maize breeding programs. However, the genetic basis underlying KRN remains largely elusive. To identify candidate genes regulating KRN, a population of 318 BC4F4 chromosomal segment substitution lines (CSSLs) was developed via backcrossing, with Baimaya (BMY) as the donor parent and B73 as the recurrent parent. Furthermore, a high-density genetic linkage map containing 2859 high-quality single-nucleotide polymorphism (SNP) markers was constructed for quantitative trait locus (QTL) mapping of KRN. Notably, 19 QTLs controlling KRN were detected across three environments and in the Best Linear Unbiased Prediction (BLUP) values; among these, a major-effect QTL (qKRN4.09-1) was consistently identified across all three environments and BLUP. Then, the integration of linkage mapping and transcriptome analysis of 5 mm immature ears from near-isogenic lines (NILs) uncovered a candidate gene, Zm00001eb205550. This gene exhibited significant downregulation in qKRN4.09-1BMY, and two missense variants were detected between qKRN4.09-1BMY and qKRN4.09-1B73. Zm00001eb205550 exhibited preferential expression in developing ears. Moreover, the pyramiding of favorable alleles from the five stable QTLs significantly increased KRN in maize. These findings advance our genetic understanding of maize ear development and provide valuable genetic targets for improving KRN in maize breeding. Full article
(This article belongs to the Special Issue Crop Germplasm Resources, Genomics, and Molecular Breeding)
Show Figures

Figure 1

17 pages, 4457 KB  
Article
The Genetic Loci Associated with Fiber Development in Upland Cotton (Gossypium hirsutum L.) Were Mapped by the BSA-Seq Technique
by Yanlong Yang, Fenglei Sun, Xin Wei, Zhengzheng Wang, Jun Ma, Dawei Zhang, Chunping Li, Chengxia Lai, Guoyong Fu and Youzhong Li
Plants 2025, 14(17), 2804; https://doi.org/10.3390/plants14172804 - 7 Sep 2025
Cited by 1 | Viewed by 767
Abstract
Cotton fiber quality improvement remains a fundamental challenge in breeding programs due to the complex genetic architecture underlying fiber development. The narrow genetic base of upland cotton (Gossypium hirsutum L.) and the quantitative nature of fiber quality traits necessitate innovative approaches for [...] Read more.
Cotton fiber quality improvement remains a fundamental challenge in breeding programs due to the complex genetic architecture underlying fiber development. The narrow genetic base of upland cotton (Gossypium hirsutum L.) and the quantitative nature of fiber quality traits necessitate innovative approaches for identifying and incorporating superior alleles from related species. We developed a BC6F2 population by introgressing chromosome segments from the sea island cotton variety Xinhai 36 (G. barbadense) into the upland cotton variety Xinluzhong 60 (G. hirsutum). Based on fiber strength phenotyping, we constructed two DNA bulks representing extreme phenotypes (20 superior and 12 inferior individuals) for bulked segregant analysis sequencing (BSA-Seq). High-throughput sequencing generated 225.13 Gb of raw data with average depths of 20× for parents and 30× for bulks. SNP calling and annotation were performed using GATK and ANNOVAR against the upland cotton reference genome (TM-1). BSA-Seq analysis identified 13 QTLs primarily clustered within a 1.6 Mb region (20.6–22.2 Mb) on chromosome A10. Within this region, we detected nonsynonymous mutation genes involving a total of six genes. GO and KEGG enrichment analyses revealed significant enrichment for carbohydrate metabolic processes, protein modification, and secondary metabolite biosynthesis pathways. Integration with transcriptome data prioritized GH_A10G1043, encoding a β-amylase family protein, as the key candidate gene. Functional validation through overexpression and RNAi knockdown in Arabidopsis thaliana demonstrated that GH_A10G1043 significantly regulates starch content and β-amylase activity, though without visible morphological alterations. This study successfully identified potential genomic regions and candidate genes associated with cotton fiber strength using chromosome segment substitution lines combined with BSA-Seq. The key candidate gene GH_A10G1043 provides a valuable target for marker-assisted selection in cotton breeding programs. Our findings establish a foundation for understanding the molecular mechanisms of fiber quality formation and offer genetic resources for developing superior cotton varieties with enhanced fiber strength. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 5250 KB  
Article
Identification of Key Waterlogging-Tolerance Genes in Cultivated and Wild Soybeans via Integrated QTL–Transcriptome Analysis
by Yiran Sun, Lin Chen, Yuxin Jin, Shukun Wang, Shengnan Ma, Lin Yu, Chunshuang Tang, Yuying Ye, Mingxuan Li, Wenhui Zhou, Enshuang Chen, Xinru Kong, Jinbo Fu, Jinhui Wang, Qingshan Chen and Mingliang Yang
Agronomy 2025, 15(8), 1916; https://doi.org/10.3390/agronomy15081916 - 8 Aug 2025
Viewed by 791
Abstract
Soybean (Glycine max), as an important crop for both oil and grains, is a major source of high-quality plant proteins for humans. Among various natural disasters affecting soybean production, waterlogging is one of the key factors leading to yield reduction. It [...] Read more.
Soybean (Glycine max), as an important crop for both oil and grains, is a major source of high-quality plant proteins for humans. Among various natural disasters affecting soybean production, waterlogging is one of the key factors leading to yield reduction. It can cause root rot and seedling death, and in severe cases, even total crop failure. Given the significant differences in responses to waterlogging stress among different soybean varieties, traditional single-trait indicators are insufficient to comprehensively evaluate flood tolerance. In this study, relative seedling length (RSL) was used as a comprehensive evaluation index for flood tolerance. Using a chromosome segment substitution line (CSSL) population derived from SN14 and ZYD00006, we successfully identified seven quantitative trait loci (QTLs) associated with seed waterlogging tolerance. By integrating RNA-Seq transcriptome sequencing and phenotypic data, the functions of candidate genes were systematically verified. Phenotypic analysis indicated that Suinong14 had significantly better flood tolerance than ZYD00006. Further research revealed that the Glyma.05G160800 gene showed a significantly up-regulated expression pattern in Suinong14; qPCR analysis revealed that this gene exhibits higher expression levels in submergence-tolerant varieties. Haplotype analysis demonstrated a significant correlation between different haplotypes and phenotypic traits. The QTLs identified in this study can provide a theoretical basis for future molecular-assisted breeding of flood-tolerant varieties. Additionally, the functional study of Glyma.05G161800 in regulating seed flood tolerance can offer new insights into the molecular mechanism of seed flood tolerance. These findings could accelerate the development of submergence-tolerant rice varieties, enhancing crop productivity and stability in flood-prone regions. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

22 pages, 4603 KB  
Article
Root Transcriptome Analysis Identifies Salt-Tolerance Genes in Sweet Corn Chromosome Segment Substitution Lines (CSSLs)
by Zili Zhang, Xuxuan Duan, Pengfei Liu, Qingchun Chen, Wei Sun, Xiaorong Wan, Yixiong Zheng, Jianting Lin, Feng Jiang and Faqiang Feng
Plants 2025, 14(11), 1687; https://doi.org/10.3390/plants14111687 - 31 May 2025
Viewed by 1001
Abstract
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling [...] Read more.
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling of seedlings under salinity treatment, and transcriptome analysis was carried out by sampling root tissues at 0 h, 4 h, 12 h, and 72 h post-treatment. The results indicated that D55 exhibited enhanced seedling height, root length, fresh weight, relative chlorophyll content, and antioxidant enzyme activities, while showing reduced malondialdehyde accumulation in comparison to D96. Pairwise comparisons across time points (0 h, 4 h, 12 h, 72 h) identified 6317 and 6828 differentially expressed genes (DEGs) in D55 and D96. A total of 49 shared DEGs across four time points were identified in D55 and D96, which were enriched in 12 significant Gene Ontology (GO) terms. Only eight DEGs were shared between genotypes across all comparisons. Transcriptomic analysis revealed 1281, 1946, and 1717 DEGs in genotypes D55 and D96 at 4 h, 12 h, and 72 h post-salt treatment, respectively. Genes associated with reactive oxygen species (ROS) homeostasis, phenylpropanoid metabolism, cutin, suberin and wax biosynthesis, and benzoxazinoid synthesis exhibit enhanced sensitivity in the salt-tolerant genotype D55. This leads to an enhanced ROS scavenging capacity and the establishment of a multi-layered defense mechanism. Additionally, brassinosteroid (BR), gibberellin (GA), and abscisic acid (ABA) and auxin-related genes exhibited different responses to salt stress in sweet corn. A hypothetical model, which established a multi-layered salt adaptation strategy, by integrating ROS detoxification, osmotic balance, and phytohormone signaling, was put forward. By integrating transcriptome and differential chromosomal fragment data, our findings identify 14 candidate genes for salt tolerance, providing potential ideal target genes in breeding to improve salt tolerance in sweet corn. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 10492 KB  
Article
A Bread Wheat Line with the Substituted Wild Emmer Chromosome 4A Results in Fragment Deletions of Chromosome 4B and Weak Plants
by Yu Qiu, Fei Lu, Bohao Yang, Xin Hu, Yanhao Zhao, Mingquan Ding, Lei Yang and Junkang Rong
Plants 2025, 14(7), 1134; https://doi.org/10.3390/plants14071134 - 5 Apr 2025
Viewed by 975
Abstract
In response to the growing genetic uniformity within wheat populations, developing efficient wheat–alien translocation strategies has become critically important. We observed that several offspring of the common wheat (Triticum aestivum L.)–wild emmer (Triticum turgidum L. var. dicoccoides) chromosome arm substitution [...] Read more.
In response to the growing genetic uniformity within wheat populations, developing efficient wheat–alien translocation strategies has become critically important. We observed that several offspring of the common wheat (Triticum aestivum L.)–wild emmer (Triticum turgidum L. var. dicoccoides) chromosome arm substitution line (CASL4AL) exhibited stunted growth, including significantly reduced plant height, spike length, spikelet number, and stem width compared to normal plants. Integrative transcriptomic analyses (RNA-Seq and BSR-Seq) revealed a statistically significant depletion (p < 0.01) of single nucleotide polymorphisms (SNPs) on chromosome 4B in compromised plants. Chromosome association analysis of differentially expressed genes (DEGs, up- or downregulated) revealed that downregulated genes were predominantly located on chromosome 4B. The 1244 downregulated DEGs on Chr4B were employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and RNA metabolic processes, DNA repair, and transport systems were significantly enriched by GO analysis; however, only the mRNA surveillance pathway was enriched by KEGG enrichment. Molecular marker profiling showed a complete absence of target amplification in the critical 0–155 Mb region of chromosome 4B in all weak plants. Pearson’s correlation coefficients confirmed significant associations (p < 0.01) between 4B-specific amplification and weak phenotypes. These results demonstrate that 4B segmental deletions drive weak phenotypes in CASL4AL progeny, and provide experimental evidence for chromosome deletions induced in wild emmer chromosome substitution lines. This study highlights the potential of wild emmer as a valuable tool for generating chromosomal variations in wheat breeding programs. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

17 pages, 5777 KB  
Article
Identification and Expression Analysis of CCCH Zinc Finger Family Genes in Oryza sativa
by Zhihan Wang, Shunyuan Li, Hongkai Wu, Linzhou Huang, Liangbo Fu, Chengfang Zhan, Xueli Lu, Long Yang, Liping Dai and Dali Zeng
Genes 2025, 16(4), 429; https://doi.org/10.3390/genes16040429 - 3 Apr 2025
Cited by 1 | Viewed by 1148
Abstract
Background: CCCH zinc finger proteins (OsC3Hs) are a class of transcriptional regulators that play important roles in plant development and stress responses. Although their functional significance has been widely studied in model species, comprehensive genome-wide characterization of CCCH proteins in rice (Oryza [...] Read more.
Background: CCCH zinc finger proteins (OsC3Hs) are a class of transcriptional regulators that play important roles in plant development and stress responses. Although their functional significance has been widely studied in model species, comprehensive genome-wide characterization of CCCH proteins in rice (Oryza sativa) remains limited. Methods: Using Arabidopsis CCCH proteins as references, we identified the CCCH gene family in rice and analyzed the physicochemical properties, subcellular localization, conserved structures, phylogeny, cis-regulatory elements, synteny analysis, spatiotemporal expression patterns, and expression patterns under drought, ABA, and MeJA treatments for the identified CCCH family members. Results: The results showed that the rice CCCH family comprises 73 members, which are unevenly distributed across the 12 chromosomes. Phylogenetic analysis classified them into 11 subfamilies. Subcellular localization indicated that most members are localized in the nucleus. The upstream regions of CCCH promoters contain a large number of cis-regulatory elements related to plant hormones and biotic stress responses. Most genes respond to drought, abscisic acid (ABA), and methyl jasmonate (MeJA) treatments. OsC3H36 was highly expressed under drought, ABA, and MeJA treatments. Haplotype analysis of this gene revealed two major allelic variants (H1 and H2), with H1 predominantly found in japonica rice and associated with increased grain width and 1000-grain weight. Functional validation using a chromosome segment substitution line (CSSL1) confirmed these findings. Conclusions: CCCH genes play important roles in rice growth, development, and stress responses. Additionally, we validated that OsC3H36 is associated with rice grain width and 1000-grain weight. Full article
(This article belongs to the Special Issue Genetics and Breeding of Rice)
Show Figures

Figure 1

14 pages, 3749 KB  
Article
Genetic Analysis of the Awn Length Gene in the Rice Chromosome Segment Substitution Line CSSL29
by Zhengjie Wang, Jun Yang, Tao Huang, Zhihao Chen, Mvuyeni Nyasulu, Qi Zhong, Haohua He and Jianmin Bian
Int. J. Mol. Sci. 2025, 26(4), 1436; https://doi.org/10.3390/ijms26041436 - 8 Feb 2025
Cited by 1 | Viewed by 1196
Abstract
Awn length is a significant agronomic trait in rice. To analyze the genetic mechanism of awn length in the chromosome segment substitution line 29 (CSSL29) derived from 9311 (recipient) into Nipponbare (NIP, donor), an F2 segregated population was constructed from 9311 (indica) [...] Read more.
Awn length is a significant agronomic trait in rice. To analyze the genetic mechanism of awn length in the chromosome segment substitution line 29 (CSSL29) derived from 9311 (recipient) into Nipponbare (NIP, donor), an F2 segregated population was constructed from 9311 (indica) and CSSL29. The population and candidate genes were analyzed using quantitative trait loci sequencing (QTL-seq), yeast two-hybrid assays, and 3 k and 10 k rice population databases. The results indicated that the awn length in the F2 segregating population followed a normal distribution, and the long-awn phenotype in CSSL29 was controlled by multiple genes. Through BSA sequencing data, a major QTL qAWN4 associated with rice awn length was identified on chromosome 4, containing the cloned gene An-2. Further investigation of the CSSL29 long-awn substitution segment revealed the presence of the awn length gene An-1, with both genes exhibiting an additive effect on the regulation of the long-awn phenotype. Yeast two-hybrid experiments confirmed no interaction between An-2 and An-1, suggesting that additive effect awn length regulation is not mediated through simple protein-to-protein binding. Population genetic analysis indicated that the An-2 allele was artificially selected during domestication but did not significantly differ between indica and japonica subspecies. These findings enhance our understanding of the genetic regulation of rice awn length and the domestication of long-awn rice, laying the groundwork for future research in this area. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 6834 KB  
Article
Development of Genome-Wide Unique Indel Markers for a Heat-Sensitive Genotype in Wheat (Triticum aestivum L.)
by Huijie Zhai, Kunpeng Xu, Meng Wang, Zhenchuang Wang, Ziyang Cai, Ao Li, Anxin He, Xiaoming Xie, Lingling Chai, Mingjiu Liu, Xingqi Ou and Zhongfu Ni
Agronomy 2025, 15(1), 169; https://doi.org/10.3390/agronomy15010169 - 11 Jan 2025
Cited by 1 | Viewed by 1740
Abstract
A chromosome segment substituted line (CSSL) represents an ideal resource for studying quantitative traits like thermotolerance. To develop wheat inter-varietal CSSLs with E6015-3S (a heat-sensitive genotype) being the recipient parent, genome-wide unique DNA markers are urgently needed for marker-assisted selection. In this study, [...] Read more.
A chromosome segment substituted line (CSSL) represents an ideal resource for studying quantitative traits like thermotolerance. To develop wheat inter-varietal CSSLs with E6015-3S (a heat-sensitive genotype) being the recipient parent, genome-wide unique DNA markers are urgently needed for marker-assisted selection. In this study, 11,016 primer pairs targeting 5036 indel sites were successfully designed for E6015-3S, with an average density of 0.36 indels per Mbp. These primer pairs are believed to be unique and polymorphic in the wheat genome; as gathered from the evidence, (i) 76.18 to 99.34% of the 11,016 primer pairs yielded a single hit during sequence alignment with 18 sequenced genomes, (ii) 83.59 to 90.98% of 1042 synthesized primer pairs amplified a single band in 16 wheat accessions, and (iii) 59.69 to 99.81% of the tested 1042 primer pairs were polymorphic between E6015-3S and 15 individual wheat accessions. These primer pairs are also anticipated with excellent resolvability on agarose or polyacrylamide gels, since most of them have indel sizes from 15 to 46 bp, amplicon sizes from 141 to 250 bp, and polymorphism ratios from 6.0 to 25.0%. Collectively, these primer pairs are ideal DNA markers for inter-varietal CSSL development and more broad applications, like germplasm classification, seed purity testing, genetic linkage mapping, and marker-assisted breeding in wheat, owing to their uniqueness, polymorphism, and easy-to-use characteristics. Full article
(This article belongs to the Collection Crop Breeding for Stress Tolerance)
Show Figures

Figure 1

13 pages, 3258 KB  
Article
Characterization of a Major Quantitative Trait Locus for the Whiteness of Rice Grain Using Chromosome Segment Substitution Lines
by Lulu Chen, Yujia Leng, Caiyun Zhang, Xixu Li, Zhihui Ye, Yan Lu, Lichun Huang, Qing Liu, Jiping Gao, Changquan Zhang and Qiaoquan Liu
Plants 2024, 13(24), 3588; https://doi.org/10.3390/plants13243588 - 23 Dec 2024
Cited by 1 | Viewed by 975
Abstract
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation [...] Read more.
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation between the whiteness of polished rice, cooked rice, and rice flour, finding that the whiteness of rice flour significantly correlated with both polished and cooked rice. Thus, the whiteness of rice flour was chosen as the indicator of WRG in our QTL analysis. Using a set of chromosome segment substitution lines (CSSL) with japonica rice Koshihikari as the recipient and indica rice Nona Bokra as the donor, we analyzed QTLs for WRG across two growth environments and identified six WRG QTLs. Notably, qWRG9 on chromosome 9 displayed stable genetic effects in both environments. Through chromosomal segment overlapping mapping, qWRG9 was narrowed to a 1.2 Mb region. Additionally, a BC4F2 segregating population confirmed that low WRG was a dominant trait governed by the major QTL qWRG9, with a segregation ratio of low to high WRG approximating 3:1, consistent with Mendelian inheritance. Further grain quality analysis on the BC4F2 population revealed that rice grains carrying the Indica-type qWRG9 allele not only exhibited lower WRG but also had significantly higher protein content. These findings support the fine mapping of the candidate gene and provide an important QTL for improving rice grain quality through genetic improvement. Full article
(This article belongs to the Special Issue Crop Genetic Mechanisms and Breeding Improvement)
Show Figures

Figure 1

14 pages, 9892 KB  
Article
QTL Mapping of Fiber- and Seed-Related Traits in Chromosome Segment Substitution Lines Derived from Gossypium hirsutum × Gossypium darwinii
by Wenwen Wang, Yan Li, Mingmei Le, Lixia Tian, Xujing Sun, Rui Liu, Xin Guo, Yan Wu, Yibing Li, Jiaoyun Zhao, Dajun Liu and Zhengsheng Zhang
Int. J. Mol. Sci. 2024, 25(17), 9639; https://doi.org/10.3390/ijms25179639 - 5 Sep 2024
Cited by 3 | Viewed by 1362
Abstract
A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established [...] Read more.
A narrow genetic basis limits further the improvement of modern Gossypium hirsutum cultivar. The abundant genetic diversity of wild species provides available resources to solve this dilemma. In the present study, a chromosome segment substitution line (CSSL) population including 553 individuals was established using G. darwinii accession 5-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. After constructing a high-density genetic map with the BC1 population, the genotype and phenotype of the CSSL population were investigated. A total of 235 QTLs, including 104 QTLs for fiber-related traits and 132 QTLs for seed-related traits, were identified from four environments. Among these QTLs, twenty-seven QTLs were identified in two or more environments, and twenty-five QTL clusters consisted of 114 QTLs. Moreover, we identified three candidate genes for three stable QTLs, including GH_A01G1096 (ARF5) and GH_A10G0141 (PDF2) for lint percentage, and GH_D01G0047 (KCS4) for seed index or oil content. These results pave way for understanding the molecular regulatory mechanism of fiber and seed development and would provide valuable information for marker-assisted genetic improvement in cotton. Full article
(This article belongs to the Special Issue Functional and Structural Genomics Studies for Plant Breeding)
Show Figures

Figure 1

24 pages, 25513 KB  
Article
Co-Expression Network Analysis and Introgressive Gene Identification for Fiber Length and Strength Reveal Transcriptional Differences in 15 Cotton Chromosome Substitution Segment Lines and Their Upland and Sea Island Parents
by Pengtao Li, Yu Chen, Rui Yang, Zhihao Sun, Qun Ge, Xianghui Xiao, Shuhan Yang, Yanfang Li, Qiankun Liu, Aiming Zhang, Baoguang Xing, Bei Wu, Xue Du, Xiaoyan Liu, Baomeng Tang, Juwu Gong, Quanwei Lu, Yuzhen Shi, Youlu Yuan, Renhai Peng and Haihong Shangadd Show full author list remove Hide full author list
Plants 2024, 13(16), 2308; https://doi.org/10.3390/plants13162308 - 19 Aug 2024
Cited by 2 | Viewed by 1672
Abstract
Fiber length (FL) and strength (FS) are the core indicators for evaluating cotton fiber quality. The corresponding stages of fiber elongation and secondary wall thickening are of great significance in determining FL and FS formation, respectively. QTL mapping and high-throughput sequencing technology have [...] Read more.
Fiber length (FL) and strength (FS) are the core indicators for evaluating cotton fiber quality. The corresponding stages of fiber elongation and secondary wall thickening are of great significance in determining FL and FS formation, respectively. QTL mapping and high-throughput sequencing technology have been applied to dissect the molecular mechanism of fiber development. In this study, 15 cotton chromosome segment substitution lines (CSSLs) with significant differences in FL and FS, together with their recurrent parental Gossypium hirsutum line CCRI45 and donor parent G. barbadense line Hai1, were chosen to conduct RNA-seq on developing fiber samples at 10 days post anthesis (DPA) and 20 DPA. Differentially expressed genes (DEGs) were obtained via pairwise comparisons among all 24 samples (each one with three biological repeats). A total of 969 DEGs related to FL-high, 1285 DEGs to FS-high, and 997 DEGs to FQ-high were identified. The functional enrichment analyses of them indicated that the GO terms of cell wall structure and ROS, carbohydrate, and phenylpropanoid metabolism were significantly enriched, while the GO terms of glucose and polysaccharide biosynthesis, and brassinosteroid and glycosylphosphatidylinositol metabolism could make great contributions to FL and FS formation, respectively. Weighted gene co-expressed network analyses (WGCNA) were separately conducted for analyzing FL and FS traits, and their corresponding hub DEGs were screened in significantly correlated expression modules, such as EXPA8, XTH, and HMA in the fiber elongation and WRKY, TDT, and RAC-like 2 during secondary wall thickening. An integrated analysis of these hub DEGs with previous QTL identification results successfully identified a total of 33 candidate introgressive DEGs with non-synonymous mutations between the Gh and Gb species. A common DEG encoding receptor-like protein kinase 1 was reported to likely participate in fiber secondary cell thickening regulation by brassionsteroid signaling. Such valuable information was conducive to enlightening the developing mechanism of cotton fiber and also provided an abundant gene pool for further molecular breeding. Full article
(This article belongs to the Special Issue Molecular Insights into Cotton Fiber Gene Regulation)
Show Figures

Figure 1

12 pages, 1484 KB  
Article
Identification and Fine Mapping of Quantitative Trait Loci for Tiller Angle Using Chromosome Segment Substitution Lines in Rice (Oryza Sativa L.)
by Yujia Leng, Tao Tao, Shuai Lu, Ran Liu, Qingqing Yang, Mingqiu Zhang, Lianmin Hong, Qianqian Guo, Xinzhe Ren, Zhidi Yang, Xiuling Cai, Sukui Jin and Jiping Gao
Agriculture 2024, 14(7), 1002; https://doi.org/10.3390/agriculture14071002 - 26 Jun 2024
Viewed by 1897
Abstract
The tiller angle, which is an important agronomic trait, determines plant architecture and greatly influences the grain yield of rice. In this study, a population of chromosome segment substitution lines derived from a cross between a japonica variety with a compact plant architecture—Koshihikari—and [...] Read more.
The tiller angle, which is an important agronomic trait, determines plant architecture and greatly influences the grain yield of rice. In this study, a population of chromosome segment substitution lines derived from a cross between a japonica variety with a compact plant architecture—Koshihikari—and an indica variety with a spread-out plant architecture—Nona Bokra—was used to investigate the genetic basis of the tiller angle. Five quantitative trait loci (qTA1, qTA5, qTA9-1, qTA9-2, and qTA11) for the tiller angle were detected on chromosomes 1, 5, 9, 9, and 11 in two different environments. The phenotypic variation in these QTLs ranged from 3.78% to 8.22%. Two pairs of digenic epistatic QTLs were detected in Lingshui. The epistatic interaction explained 15.19% and 13.60% of the phenotypic variance, respectively. Among the five QTLs, qTA9-2 was detected in both environments. An F2 mapping population containing the qTA9-2 QTL was established. The location of qTA9-2 was narrowed down to a 187 kb region between InDel markers M9 and M10 on chromosome 9. Thirty open reading frames (ORFs), including TAC1, a gene known to regulate the tiller angle, were identified in this region. The gene sequencing results suggested that a base substitution from G to A at position 1557 in the 3′-untranslated region led to a difference in the expression of qTA9-2 in Koshihikari and Nona Bokra. These findings provide a potential gene resource for the improvement of rice plant architecture. Full article
(This article belongs to the Special Issue Innovations and Advances in Rice Molecular Breeding)
Show Figures

Figure 1

14 pages, 1785 KB  
Article
The Waxy Gene Has Pleiotropic Effects on Hot Water-Soluble and -Insoluble Amylose Contents in Rice (Oryza sativa) Grains
by Hongkai Wu, Siyuan Wang and Min Wu
Int. J. Mol. Sci. 2024, 25(12), 6561; https://doi.org/10.3390/ijms25126561 - 14 Jun 2024
Cited by 3 | Viewed by 1338
Abstract
Rice (Oryza sativa) is a cereal crop with a starchy endosperm. Starch is composed of amylose and amylopectin. Amylose content (AC) is the principal determinant of rice quality, but varieties with similar ACs can still vary substantially in their quality. In [...] Read more.
Rice (Oryza sativa) is a cereal crop with a starchy endosperm. Starch is composed of amylose and amylopectin. Amylose content (AC) is the principal determinant of rice quality, but varieties with similar ACs can still vary substantially in their quality. In this study, we analyzed the total AC (TAC) and its constituent fractions, the hot water-soluble amylose content (SAC) and hot water-insoluble amylose content (IAC), in two sets of related chromosome segment substitution lines of rice with a common genetic background grown in two years. We searched for quantitative trait loci (QTLs) associated with SAC, IAC, and TAC and identified one common QTL (qSAC–6, qIAC–6, and qTAC–6) on chromosome 6. Map-based cloning revealed that the gene underlying the trait associated with this common QTL is Waxy (Wx). An analysis of the colors of soluble and insoluble starch–iodine complexes and their λmax values (wavelengths at the positions of their peak absorbance values) as well as gel permeation chromatography revealed that Wx is responsible for the biosynthesis of amylose, comprising a large proportion of the soluble fractions of the SAC. Wx is also involved in the biosynthesis of long chains of amylopectin, comprising the hot water-insoluble fractions of the IAC. These findings highlight the pleiotropic effects of Wx on the SAC and IAC. This pleiotropy indicates that these traits have a positive genetic correlation. Therefore, further studies of rice quality should use rice varieties with the same Wx genotype to eliminate the pleiotropic effects of this gene, allowing the independent relationship between the SAC or IAC and rice quality to be elucidated through a multiple correlation analysis. These findings are applicable to other valuable cereal crops as well. Full article
(This article belongs to the Special Issue Gene Mining and Germplasm Innovation for the Important Traits in Rice)
Show Figures

Figure 1

12 pages, 3380 KB  
Article
Identification and Characterization of HS4-Mediated Hybrid Seed Shattering in Rice
by Daiqi Wang, Wantong Xie, Hong Chen, Tifeng Yang, Ziqiang Liu, Ying Ruan and Chunlin Liu
Agronomy 2024, 14(6), 1218; https://doi.org/10.3390/agronomy14061218 - 5 Jun 2024
Viewed by 1357
Abstract
Seed shattering is an adaptive feature of seed dispersal in wild rice, and it is also an important agronomic trait affecting yield. Reduced seed shattering was a significant progress during rice domestication. However, the evolutionary pathway and molecular mechanism of hybrid seed shattering [...] Read more.
Seed shattering is an adaptive feature of seed dispersal in wild rice, and it is also an important agronomic trait affecting yield. Reduced seed shattering was a significant progress during rice domestication. However, the evolutionary pathway and molecular mechanism of hybrid seed shattering remain largely unknown. In order to gain a deeper understanding of the regulation of hybrid seed shattering, HS4, a locus conferring hybrid seed shattering between Oryza sativa and Oryza glaberrima, was identified and fine mapped to a 13.5-kb genomic region containing two putative genes during the development of chromosomal segment substitution lines (CSSLs). Expression analysis indicated that the hybrid seed shattering was not related to the expression of HS4. Preliminary research on the molecular mechanism of HS4-mediated hybrid seed shattering indicated that HS4HJX74 and HS4HP61 may form a multimer in heterozygotes, achieving the original function of a trihelix transcription factor through protein interaction. The identification and characterization of HS4 in this study not only provides new insights into the molecular mechanisms underlying hybrid seed shattering, but also provides a potential target for genome editing to reduce the difficulty of hybridization between the two species, facilitating hybrid breeding and increasing yield in rice. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

19 pages, 5733 KB  
Article
Multi-Omics Analysis of a Chromosome Segment Substitution Line Reveals a New Regulation Network for Soybean Seed Storage Profile
by Cholnam Jong, Zhenhai Yu, Yu Zhang, Kyongho Choe, Songrok Uh, Kibong Kim, Chol Jong, Jinmyong Cha, Myongguk Kim, Yunchol Kim, Xue Han, Mingliang Yang, Chang Xu, Limin Hu, Qingshan Chen, Chunyan Liu and Zhaoming Qi
Int. J. Mol. Sci. 2024, 25(11), 5614; https://doi.org/10.3390/ijms25115614 - 21 May 2024
Cited by 4 | Viewed by 2238
Abstract
Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation [...] Read more.
Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

Back to TopTop