Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (664)

Search Parameters:
Keywords = chromosome 4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 550 KiB  
Article
New Insights into the Telomere Structure in Hemiptera (Insecta) Inferred from Chromosome-Level and Scaffold-Level Genome Assemblies
by Desislava Stoianova, Snejana Grozeva, Nadezhda Todorova, Miroslav Rangelov, Vladimir A. Lukhtanov and Valentina G. Kuznetsova
Diversity 2025, 17(8), 552; https://doi.org/10.3390/d17080552 - 4 Aug 2025
Viewed by 40
Abstract
Telomeres are terminal regions of chromosomes that protect and stabilize chromosome structures. Telomeres are usually composed of specific DNA repeats (motifs) that are maintained by telomerase and a complex of specific proteins. Telomeric DNA sequences are generally highly conserved throughout the evolution of [...] Read more.
Telomeres are terminal regions of chromosomes that protect and stabilize chromosome structures. Telomeres are usually composed of specific DNA repeats (motifs) that are maintained by telomerase and a complex of specific proteins. Telomeric DNA sequences are generally highly conserved throughout the evolution of different groups of eukaryotes. The most common motif in insects is TTAGG, but it is not universal, including in the large order Hemiptera. In particular, several derived telomeric motifs were identified in this order by analyzing chromosome-level genome assemblies or by FISH screening the chromosomes of target species. Here, we analyzed chromosome-level genome assemblies of 16 species from three hemipteran suborders, including Sternorrhyncha (Coccoidea: Planococcus citri, Acanthococcus lagerstroemiae, and Trionymus diminutus; Aphidoidea: Tuberolachnus salignus, Metopolophium dirhodum, Rhopalosiphum padi, and Schizaphis graminum), Auhenorrhyncha (Cicadomorpha: Allygus modestus, Arthaldeus pascuellus, Aphrophora alni, Cicadella viridis, Empoasca decipiens, and Ribautiana ulmi), and Heteroptera (Gerromorpha: Gerris lacustris; Pentatomomorpha: Aradus depressus and A. truncatus). In addition, scaffold-level genome assemblies of three more species of Heteroptera (Gerromorpha: Gerris buenoi, Microvelia longipes, and Hermatobates lingyangjiaoensis) were examined. The presumably ancestral insect motif TTAGG was found at the ends of chromosomes of all species studied using chromosome-level genome assembly analysis, with four exceptions. In Aphrophora alni, we detected sequences of 4 bp repeats of TGAC, which were tentatively identified as a telomeric motif. In Gerris lacustris, from the basal true bug infraorder Gerromorpha, we found a 10 bp motif TTAGAGGTGG, previously unknown not only in Heteroptera or Hemiptera but also in Arthropoda in general. Blast screening of the scaffold-level assemblies showed that TTAGAGGTGG is also likely to be a telomeric motif in G. buenoi and Microvelia. longipes, while the results obtained for H. lingyangjiaoensis were inconclusive. In A. depressus and A. truncatus from the basal for Pentatomomorpha family Aradidae, we found a 10 bp motif TTAGGGATGG. While the available data allowed us to present two alternative hypotheses about the evolution of telomeric motifs in Heteroptera, further data are needed to verify them, especially for the yet unstudied basal infraorders Enicocephalomorpha, Dipsocoromorpha, and Leptopodomorpha. Full article
Show Figures

Figure 1

12 pages, 1010 KiB  
Article
The Effect of cdk1 Gene Knockout on Heat Shock-Induced Polyploidization in Loach (Misgurnus anguillicaudatus)
by Hanjun Jiang, Qi Lei, Wenhao Ma, Junru Wang, Jing Gong, Xusheng Guo and Xiaojuan Cao
Life 2025, 15(8), 1223; https://doi.org/10.3390/life15081223 - 2 Aug 2025
Viewed by 161
Abstract
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) [...] Read more.
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) Methods: In this study, tetraploidization in diploid loach was induced by heat shock treatment, and, for the first time, the role of the key cell cycle gene cdk1 (cyclin-dependent kinase 1) in chromosome doubling was investigated; (3) Results: The experimental results show that when eggs are fertilized for 20 min and then subjected to a 4 min heat shock treatment at 39–40 °C, this represents the optimal induction condition, resulting in a tetraploid rate of 44%. Meanwhile, the results of the cdk1 knockout model (2n cdk1−/−) constructed using CRISPR/Cas9 showed that the absence of cdk1 significantly increased the chromosome doubling efficiency of the loach. The qPCR analysis revealed that knockout of cdk1 significantly upregulated cyclin genes (ccnb3,ccnc, and ccne1), while inhibiting expression of the separase gene espl1 (p < 0.05); (4) Conclusions: During chromosome doubling in diploid loaches induced by heat shock, knocking out the cdk1 gene can increase the tetraploid induction rate. This effect may occur through downregulation of the espl1 gene. This study offers novel insights into optimizing the induced breeding technology of polyploid fish and deciphering its molecular mechanism, while highlighting the potential application of integrating gene editing with physical induction. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

18 pages, 1711 KiB  
Article
Genome-Wide Association Analysis of Fresh Maize
by Suying Guo, Rengui Zhao and Jinhao Lan
Int. J. Mol. Sci. 2025, 26(15), 7431; https://doi.org/10.3390/ijms26157431 - 1 Aug 2025
Viewed by 104
Abstract
This study measured eight key phenotypic traits across 259 fresh maize inbred lines, including plant height and spike length. A total of 82 single nucleotide polymorphisms (SNPs) significantly associated with these phenotypes were identified by applying a mixed linear model to calculate the [...] Read more.
This study measured eight key phenotypic traits across 259 fresh maize inbred lines, including plant height and spike length. A total of 82 single nucleotide polymorphisms (SNPs) significantly associated with these phenotypes were identified by applying a mixed linear model to calculate the best linear unbiased prediction (BLUP) values and integrating genome-wide genotypic data through genome-wide association analysis (GWAS). A further analysis of significant SNPs contributed to the identification of 63 candidate genes with functional annotations. Notably, 11 major candidate genes were identified from multi-trait association loci, all of which exhibited highly significant P-values (<0.0001) and explained between 7.21% and 12.78% of phenotypic variation. These 11 genes, located on chromosomes 1, 3, 4, 5, 6, and 9, were functionally involved in signaling, metabolic regulation, structural maintenance, and stress response, and are likely to play crucial roles in the growth and physiological processes of fresh maize inbred lines. The functional genes identified in this study have significant implications for the development of molecular markers, the optimization of breeding strategies, and the enhancement of quality in fresh maize. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 5322 KiB  
Article
Regulation of Tetraspanin CD63 in Chronic Myeloid Leukemia (CML): Single-Cell Analysis of Asymmetric Hematopoietic Stem Cell Division Genes
by Christophe Desterke, Annelise Bennaceur-Griscelli and Ali G. Turhan
Bioengineering 2025, 12(8), 830; https://doi.org/10.3390/bioengineering12080830 - 31 Jul 2025
Viewed by 261
Abstract
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity [...] Read more.
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity via asymmetric cell divisions, sustaining the stem cell pool. Quiescent LSCs are known to be resistant to tyrosine kinase inhibitors (TKIs), potentially through BCR::ABL-independent signaling pathways. We hypothesize that dysregulation of genes governing asymmetric division in LSCs contributes to disease progression, and that their expression pattern may serve as a prognostic marker during the chronic phase of CML. (2) Methods: Genes related to asymmetric cell division in the context of hematopoietic stem cells were extracted from the PubMed database with the keyword “asymmetric hematopoietic stem cell”. The collected relative gene set was tested on two independent bulk transcriptome cohorts and the results were confirmed by single-cell RNA sequencing. (3) Results: The expression of genes involved in asymmetric hematopoietic stem cell division was found to discriminate disease phases during CML progression in the two independent transcriptome cohorts. Concordance between cohorts was observed on asymmetric molecules downregulated during blast crisis (BC) as compared to the chronic phase (CP). This downregulation during the BC phase was confirmed at single-cell level for SELL, CD63, NUMB, HK2, and LAMP2 genes. Single-cell analysis during the CP found that CD63 is associated with a poor prognosis phenotype, with the opposite prediction revealed by HK2 and NUMB expression. The single-cell trajectory reconstitution analysis in CP samples showed CD63 regulation highlighting a trajectory cluster implicating HSPB1, PIM2, ANXA5, LAMTOR1, CFL1, CD52, RAD52, MEIS1, and PDIA3, known to be implicated in hematopoietic malignancies. (4) Conclusion: Regulation of CD63, a tetraspanin involved in the asymmetric division of hematopoietic stem cells, was found to be associated with poor prognosis during CML progression and could be a potential new therapeutic target. Full article
(This article belongs to the Special Issue Micro- and Nano-Technologies for Cell Analysis)
Show Figures

Figure 1

16 pages, 2138 KiB  
Article
Precise Identification of Higher-Order Repeats (HORs) in T2T-CHM13 Assembly of Human Chromosome 21—Novel 52mer HOR and Failures of Hg38 Assembly
by Matko Glunčić, Ines Vlahović, Marija Rosandić and Vladimir Paar
Genes 2025, 16(8), 885; https://doi.org/10.3390/genes16080885 - 27 Jul 2025
Viewed by 273
Abstract
Background: Centromeric alpha satellite DNA is organized into higher-order repeats (HORs), whose precise structure is often difficult to resolve in standard genome assemblies. The recent telomere-to-telomere (T2T) assembly of the human genome enables complete analysis of centromeric regions, including the full structure of [...] Read more.
Background: Centromeric alpha satellite DNA is organized into higher-order repeats (HORs), whose precise structure is often difficult to resolve in standard genome assemblies. The recent telomere-to-telomere (T2T) assembly of the human genome enables complete analysis of centromeric regions, including the full structure of HOR arrays. Methods: We applied the novel high-precision GRMhor algorithm to the complete T2T-CHM13 assembly of human chromosome 21. GRMhor integrates global repeat map (GRM) and monomer distance (MD) diagrams to accurately identify, classify, and visualize HORs and their subfragments. Results: The analysis revealed a novel Cascading 11mer HOR array, in which each canonical HOR copy comprises 11 monomers belonging to 10 different monomer types. Subfragments with periodicities of 4, 7, 9, and 20 were identified within the array. A second, complex 23/25mer HOR array of mixed Willard’s/Cascading type was also detected. In contrast to the hg38 assembly, where a dominant 8mer and 33mer HOR were previously annotated, these structures were absent in the T2T-CHM13 assembly, highlighting the limitations of hg38. Notably, we discovered a novel 52mer HOR—the longest alpha satellite HOR unit reported in the human genome to date. Several subfragment repeats correspond to alphoid subfamilies previously identified using restriction enzyme digestion, but are here resolved with higher structural precision. Conclusions: Our findings demonstrate the power of GRMhor in resolving complex and previously undetected alpha satellite architectures, including the longest canonical HOR unit identified in the human genome. The precise delineation of superHORs, Cascading structures, and HOR subfragments provides unprecedented insight into the fine-scale organization of the centromeric region of chromosome 21. These results highlight both the inadequacy of earlier assemblies, such as hg38, and the critical importance of complete telomere-to-telomere assemblies for accurately characterizing centromeric DNA. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

16 pages, 3903 KiB  
Article
Identification of Salt Tolerance-Related NAC Genes in Wheat Roots Based on RNA-Seq and Association Analysis
by Lei Zhang, Aili Wei, Weiwei Wang, Xueqi Zhang, Zhiyong Zhao and Linyi Qiao
Plants 2025, 14(15), 2318; https://doi.org/10.3390/plants14152318 - 27 Jul 2025
Viewed by 335
Abstract
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated [...] Read more.
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated from the whole genome of common wheat and classified into 118 members based on subgenome homology, named TaNAC1 to TaNAC118. Transcriptome analysis of salt-tolerant wheat breeding line CH7034 roots revealed that 144 of the 446 TaNAC genes showed significant changes in expression levels at least two time points after NaCl treatment. These differentially expressed TaNACs were divided into four groups, and Group 4, containing the largest number of 78 genes, exhibited a successive upregulation trend after salt treatment. Single nucleotide polymorphisms (SNPs) of the TaNAC gene family in 114 wheat germplasms were retrieved from the public database and were subjected to further association analysis with the relative salt-injury rates (RSIRs) of six root phenotypes, and then 20 SNPs distributed on chromosomes 1B, 2B, 2D, 3B, 3D, 5B, 5D, and 7A were correlated with phenotypes involving salt tolerance (p < 0.0001). Combining the results of RT-qPCR and association analysis, we further selected three NAC genes from Group 4 as candidate genes that related to salt tolerance, including TaNAC26-D3.2, TaNAC33-B, and TaNAC40-B. Compared with the wild type, the roots of the tanac26-d3.2 mutant showed shorter length, less volume, and reduced biomass after being subjected to salt stress. Four SNPs of TaNAC26-D3.2 formed two haplotypes, Hap1 and Hap2, and germplasms with Hap2 exhibited better salt tolerance. Snp3, in exon 3 of TaNAC26-D3.2, causing a synonymous mutation, was developed into a Kompetitive Allele-Specific PCR marker, K3, to distinguish the two haplotypes, which can be further used for wheat germplasm screening or marker-assisted breeding. This study provides new genes and molecular markers for improvement of salt tolerance in wheat. Full article
Show Figures

Figure 1

11 pages, 1442 KiB  
Article
The Prognostic Value of Amplification of the MYCC and MYCN Oncogenes in Russian Patients with Medulloblastoma
by Alexander Chernov, Ekaterina Batotsyrenova, Sergey Zheregelya, Sarng Pyurveev, Vadim Kashuro, Dmitry Ivanov and Elvira Galimova
Diseases 2025, 13(8), 238; https://doi.org/10.3390/diseases13080238 - 27 Jul 2025
Viewed by 284
Abstract
Background. Medulloblastoma (MB) prognosis and response to therapy depend largely on genetic changes in tumor cells. Many genes and chromosomal abnormalities have been identified as prognostic factors, including amplification of MYC oncogenes, gains in 1q and 17q, deletions in 10q and 21p, or [...] Read more.
Background. Medulloblastoma (MB) prognosis and response to therapy depend largely on genetic changes in tumor cells. Many genes and chromosomal abnormalities have been identified as prognostic factors, including amplification of MYC oncogenes, gains in 1q and 17q, deletions in 10q and 21p, or isochromosomes 17 (i(17)(q10)). The frequency of these abnormalities varies greatly between ethnic populations, but the frequency of specific abnormalities, such as MYCC and MYCN amplification, 17q gain, and deletions, in the Russian population is unknown. Objective: The aim is to study the frequency of MYCC and MYCN amplifications, 17q gain, and 17p deletion and determine their prognostic value in Russian patients with MB. Methods. This study was performed on MB cells obtained from 18 patients (12 boys and 6 girls, aged between 3 months and 17 years, with a median age of 6.5 years). Determination of cytogenetic aberrations was carried out using FISH assays with MYCC-SO, MYCN-SO, and MYCN-SG/cen2 probes, as well as cen7/p53 dual color probes and PML/RARα dual color probes (Abbott Molecular, USA). One-way ANOVA and Fisher’s F-test were used to compare the two groups. The differences were considered significant when p < 0.05. Results. In 77.7% of patients (14/18), the classical type of MB was present; in 16.7% (3/18), desmoplastic type; and in 5.6% (1/18), nodular desmoplasic types of neoplasms. Amplification of MYC genes was detected in 22.2% of Russian patients (n = 4 out of 18). Patients with MYC amplification had the worst overall survival (OS: 0% vs. 68%, p = 0.0004). Changes on the 17th chromosome were found in 58.3% of patients. Deletion of 17p occurred in 23.1%, and gain of 17q occurred in 46.2%. There were no significant differences in OS, clinical signs, or the presence of additional 17q material or 17p deletion among patients with MB. Conclusions: Amplification of the MYC gene is a predictor of poor overall survival to therapy and a high risk of metastatic relapse. This allows us to more accurately stratify patients into risk groups in order to determine the intensity and duration of therapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Graphical abstract

17 pages, 3256 KiB  
Article
Copy Number Variants of Uncertain Significance by Chromosome Microarray Analysis from Consecutive Pediatric Patients: Reevaluation Following Current Guidelines and Reanalysis by Genome Sequencing
by Wenjiao Li, Xiaolei Xie, Hongyan Chai, Autumn DiAdamo, Emily Bistline, Peining Li, Yuan Dai, James Knight, Abraham Joseph Avni-Singer, Joanne Burger, Laura Ment, Michele Spencer-Manzon, Hui Zhang and Jiadi Wen
Genes 2025, 16(8), 874; https://doi.org/10.3390/genes16080874 - 24 Jul 2025
Viewed by 385
Abstract
Background: Copy number variants of uncertain significance (CNVus) from chromosome microarray analysis (CMA) presents unresolved challenges for clinical geneticists, genetic counselors, and patients. We performed a systematic reevaluation of reported CNVus and reanalysis of selected CNVus by whole genome sequencing (WGS) to assess [...] Read more.
Background: Copy number variants of uncertain significance (CNVus) from chromosome microarray analysis (CMA) presents unresolved challenges for clinical geneticists, genetic counselors, and patients. We performed a systematic reevaluation of reported CNVus and reanalysis of selected CNVus by whole genome sequencing (WGS) to assess the diagnostic value and clinical impact on CNVus reclassification. Methods: We retrospectively reviewed 5277 consecutive pediatric cases by CMA from the Yale Clinical Cytogenetics Laboratory over a 13-year period. Reevaluation was performed on all reported CNVus following current ACMG/ClinGen guidelines. Reanalysis by WGS was applied to selected cases for reclassification of CNVus. Results: A total of 567 CNVus from 480 cases were reported, which accounted for 9.1% of pediatric cases. A total of 4 CNVus in 4 cases (0.8%, 4/480) were reclassified to pathogenic/likely pathogenic CNVs (pCNVs/lpCNVs); while 23 CNVus in 23 cases (4.8%, 23/480) were reclassified to benign/likely benign CNVs (bCNVs/lbCNVs). The overall rate of reclassification was 5.6%. WGS performed on selected cases further defined breakpoints and ruled out additional causative genetic variants. Conclusions: The results from this study demonstrated the diagnostic value of periodic reevaluation of CNVus and reanalysis by WGS in an interval of 3–5 years and provided evidence to support standardized laboratory reevaluation and reanalysis. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 1015 KiB  
Article
Optimization of Chromosome Preparation and Karyotype Analysis of Winter Turnip Rape (Brassica rape L.)
by Tingting Fan, Xiucun Zeng, Yaozhao Xu, Fei Zhang, Li Ma, Yuanyuan Pu, Lijun Liu, Wangtian Wang, Junyan Wu, Wancang Sun and Gang Yang
Int. J. Mol. Sci. 2025, 26(15), 7127; https://doi.org/10.3390/ijms26157127 - 24 Jul 2025
Viewed by 307
Abstract
To explore the dyeing technique and karyotype analysis of winter turnip rape (Brassica rape L.), the root tip of winter turnip rape Longyou 7 was used as the experimental material. Chromosome preparation technology was optimized, and karyotype analysis was carried out by [...] Read more.
To explore the dyeing technique and karyotype analysis of winter turnip rape (Brassica rape L.), the root tip of winter turnip rape Longyou 7 was used as the experimental material. Chromosome preparation technology was optimized, and karyotype analysis was carried out by changing the conditions of material collection time, pretreatment, fixation, and dissociation. The results showed that the optimal conditions for the preparation of dyeing winter turnip rape were as follows: the sampling time was 8:00–10:00, the ice–water mixture was pretreated at 4 °C for 20 h, the Carnot’s fixative solution I and 4 °C were fixed for 12 h, and the 1 mol/L HCl solution was bathed in a water bath at 60 °C for 10~15 min. Karyotype analysis showed that the number of chromosomes in winter turnip rape cells was 2n = 20, and the karyotype analysis formula was 2n = 2x = 20 = 16m + 4sm. The karyotype asymmetry coefficient was 58.85%, and the karyotype type belonged to type 2A, which may belong to the primitive type in terms of evolution. The results of this study provide a theoretical basis for further in-depth study of the phylogenetic evolution and genetic trend of Brassica rapa. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3311 KiB  
Article
Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome
by Zixuan E, Han Wen, Yingshi Tang, Mingqing Zhang, Yaorong Wang, Shujia Liao, Kejun Chen, Danqi Lu, Haoran Lin, Wen Huang, Xiaoying Chen, Yong Zhang and Shuisheng Li
Animals 2025, 15(15), 2165; https://doi.org/10.3390/ani15152165 - 22 Jul 2025
Viewed by 295
Abstract
Grass carp is an economically important cultured species in China. Triploid embryo production is widely applied in aquaculture to achieve reproductive sterility, improve somatic growth, and reduce ecological risks associated with uncontrolled breeding. In this study, a simple cold shock method for inducing [...] Read more.
Grass carp is an economically important cultured species in China. Triploid embryo production is widely applied in aquaculture to achieve reproductive sterility, improve somatic growth, and reduce ecological risks associated with uncontrolled breeding. In this study, a simple cold shock method for inducing triploid grass carp was developed. The triploid induction rate of 71.73 ± 5.00% was achieved by applying a cold treatment at 4 °C for 12 min, starting 2 min after artificial fertilization. Flow cytometry and karyotype analysis revealed that triploid individuals exhibited a 1.5-fold increase in DNA content compared to diploid counterparts, with a chromosomal composition of 3n = 72 (33m + 36sm + 3st). Additionally, embryonic transcriptome analysis demonstrated that, in the cold shock-induced embryos, genes associated with abnormal mesoderm and dorsal–ventral axis formation, zygotic genome activation (ZGA), and anti-apoptosis were downregulated, whereas pro-apoptotic genes were upregulated, which may contribute to the higher abnormal mortality observed during embryonic development. Overall, this study demonstrates optimized conditions for inducing triploidy in grass carp via cold shock and provides insights into the transcriptomic changes that take place in cold shock-induced embryos, which could inform future grass carp genetic breeding programs. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

28 pages, 1688 KiB  
Review
Centriole Duplication at the Crossroads of Cell Cycle Control and Oncogenesis
by Claude Prigent
Cells 2025, 14(14), 1094; https://doi.org/10.3390/cells14141094 - 17 Jul 2025
Viewed by 495
Abstract
Centriole duplication is a vital process for cellular organisation and function, underpinning essential activities such as cell division, microtubule organisation and ciliogenesis. This review summarises the latest research on the mechanisms and regulatory pathways that control this process, focusing on important proteins such [...] Read more.
Centriole duplication is a vital process for cellular organisation and function, underpinning essential activities such as cell division, microtubule organisation and ciliogenesis. This review summarises the latest research on the mechanisms and regulatory pathways that control this process, focusing on important proteins such as polo-like kinase 4 (PLK4), SCL/TAL1 interrupting locus (STIL) and spindle assembly abnormal protein 6 (SAS-6). This study examines the complex steps involved in semi-conservative duplication, from initiation in the G1–S phase to the maturation of centrioles during the cell cycle. Additionally, we will explore the consequences of dysregulated centriole duplication. Dysregulation of this process can lead to centrosome amplification and subsequent chromosomal instability. These factors are implicated in several cancers and developmental disorders. By integrating recent study findings, this review emphasises the importance of centriole duplication in maintaining cellular homeostasis and its potential as a therapeutic target in disease contexts. The presented findings aim to provide a fundamental understanding that may inform future research directions and clinical interventions related to centriole biology. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Graphical abstract

16 pages, 1534 KiB  
Article
Clinician-Based Functional Scoring and Genomic Insights for Prognostic Stratification in Wolf–Hirschhorn Syndrome
by Julián Nevado, Raquel Blanco-Lago, Cristina Bel-Fenellós, Adolfo Hernández, María A. Mori-Álvarez, Chantal Biencinto-López, Ignacio Málaga, Harry Pachajoa, Elena Mansilla, Fe A. García-Santiago, Pilar Barrúz, Jair A. Tenorio-Castaño, Yolanda Muñoz-GªPorrero, Isabel Vallcorba and Pablo Lapunzina
Genes 2025, 16(7), 820; https://doi.org/10.3390/genes16070820 - 12 Jul 2025
Viewed by 425
Abstract
Background/Objectives: Wolf–Hirschhorn syndrome (WHS; OMIM #194190) is a rare neurodevelopmental disorder, caused by deletions in the distal short arm of chromosome 4. It is characterized by developmental delay, epilepsy, intellectual disability, and distinctive facial dysmorphism. Clinical presentation varies widely, complicating prognosis and [...] Read more.
Background/Objectives: Wolf–Hirschhorn syndrome (WHS; OMIM #194190) is a rare neurodevelopmental disorder, caused by deletions in the distal short arm of chromosome 4. It is characterized by developmental delay, epilepsy, intellectual disability, and distinctive facial dysmorphism. Clinical presentation varies widely, complicating prognosis and individualized care. Methods: We assembled a cohort of 140 individuals with genetically confirmed WHS from Spain and Latin-America, and developed and validated a multidimensional, Clinician-Reported Outcome Assessment (ClinRO) based on the Global Functional Assessment of the Patient (GFAP), derived from standardized clinical questionnaires and weighted by HPO (Human Phenotype Ontology) term frequencies. The GFAP score quantitatively captures key functional domains in WHS, including neurodevelopment, epilepsy, comorbidities, and age-corrected developmental milestones (selected based on clinical experience and disease burden). Results: Higher GFAP scores are associated with worse clinical outcomes. GFAP showed strong correlations with deletion size, presence of additional genomic rearrangements, sex, and epilepsy severity. Ward’s clustering and discriminant analyses confirmed GFAP’s discriminative power, classifying over 90% of patients into clinically meaningful groups with different prognoses. Conclusions: Our findings support GFAP as a robust, WHS-specific ClinRO that may aid in stratification, prognosis, and clinical management. This tool may also serve future interventional studies as a standardized outcome measure. Beyond its clinical utility, GFAP also revealed substantial social implications. This underscores the broader socioeconomic burden of WHS and the potential value of GFAP in identifying high-support families that may benefit from targeted resources and services. Full article
(This article belongs to the Special Issue Molecular Basis of Rare Genetic Diseases)
Show Figures

Figure 1

16 pages, 1983 KiB  
Article
Genome-Wide Identification of Wheat Gene Resources Conferring Resistance to Stripe Rust
by Qiaoyun Ma, Dong Yan, Binshuang Pang, Jianfang Bai, Weibing Yang, Jiangang Gao, Xianchao Chen, Qiling Hou, Honghong Zhang, Li Tian, Yahui Li, Jizeng Jia, Lei Zhang, Zhaobo Chen, Lifeng Gao and Xiangzheng Liao
Plants 2025, 14(12), 1883; https://doi.org/10.3390/plants14121883 - 19 Jun 2025
Viewed by 421
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at the seedling stage and with mixed Pst races at the adult-plant stage. Seven stable resistance varieties with infection type (IT) ≤ 2 and disease severity (DS) ≤ 20% were found, including five Chinese accessions (Zhengpinmai8, Zhengmai1860, Zhoumai36, Lantian36, and Chuanmai32), one USA accession (GA081628-13E16), and one Pakistani accession (Pa12). The genotyping applied a 55K wheat single-nucleotide polymorphism (SNP) array. A genome-wide association study (GWAS) identified 14 QTL using a significance threshold of p ≤ 0.001, which distributed on chromosomes 1B (4), 1D (2), 2B (4), 6B, 6D, 7B, and 7D (4 for CYR33, 7 for CYR34, 3 for mixed Pst races), explaining 6.04% to 18.32% of the phenotypic variance. Nine of these QTL were potentially novel, as they did not overlap with the previously reported Yr or QTL loci within a ±5.0 Mb interval (consistent with genome-wide LD decay). The haplotypes and resistance effects were evaluated to identify the favorable haplotype for each QTL. Candidate genes within the QTL regions were inferred based on their transcription levels following the stripe rust inoculation. These resistant varieties, QTL haplotypes, and favorable alleles will aid in wheat breeding for stripe rust resistance. Full article
(This article belongs to the Special Issue Improvement of Agronomic Traits and Nutritional Quality of Wheat)
Show Figures

Figure 1

21 pages, 2566 KiB  
Article
Gene Localization and Functional Validation of GmPDH1 in Soybean Against Cyst Nematode Race 4
by Yuehua Dai, Yue Zhang, Chuhui Li, Kun Wan, Yan Chen, Mengen Nie and Haiping Zhang
Plants 2025, 14(12), 1877; https://doi.org/10.3390/plants14121877 - 19 Jun 2025
Viewed by 477
Abstract
To identify the key genes conferring resistance to soybean cyst nematode race 4 (SCN4, Heterodera glycines), this study utilized 280 recombinant inbred lines (RILs) derived from the resistant cultivar Huipizhiheidou (HPD) and the susceptible cultivar Jindou23 (JD23). Through phenotypic characterization and a [...] Read more.
To identify the key genes conferring resistance to soybean cyst nematode race 4 (SCN4, Heterodera glycines), this study utilized 280 recombinant inbred lines (RILs) derived from the resistant cultivar Huipizhiheidou (HPD) and the susceptible cultivar Jindou23 (JD23). Through phenotypic characterization and a genome-wide association study (GWAS), a genomic region (Gm18:1,223,546–1,782,241) on chromosome 18 was mapped, yielding 14 candidate genes. GmPDH1 was validated as a critical resistance gene using reverse transcription quantitative PCR (RT-qPCR) and Kompetitive Allele Specific PCR (KASP) marker M0526. RT-qPCR revealed that GmPDH1 expression in HPD roots was upregulated 9 days post-inoculation with SCN4 compared to uninoculated controls. KASP genotyping showed that marker M0526 efficiently distinguished between resistant and susceptible plants in natural populations: 71.05% of the resistant accessions exhibited resistant or moderately resistant genotypes, whereas 81.03% of the susceptible accessions showed susceptible or highly susceptible genotypes. Functional validation demonstrated that overexpression of GmPDH1 significantly enhanced SCN4 resistance in the susceptible cultivars JD23 and Jack, whereas CRISPR/Cas9-mediated knockout of GmPDH1 in HPD attenuated its resistance. This study confirmed GmPDH1 as a key gene governing SCN4 resistance and developed an efficient molecular marker, M0526, providing theoretical insights and technical tools for dissecting nematode resistance mechanisms and advancing soybean disease-resistant breeding. Full article
Show Figures

Figure 1

19 pages, 5589 KiB  
Article
Identification and Morphophysiological Characterization of Oryzalin-Induced Polyploids and Variants in Lysimachia xiangxiensis
by Yuanshan Zhang, Guanqun Chen, Ruixue Shen, Qiujing Li and Xiaohui Shen
Horticulturae 2025, 11(6), 654; https://doi.org/10.3390/horticulturae11060654 - 9 Jun 2025
Viewed by 356
Abstract
This study investigated the effects of oryzalin treatments on the induction of polyploids and variants, as well as their subsequent morphological and physiological characteristics, in Lysimachia xiangxiensis, a perennial herbaceous plant belonging to the Primulaceae family that is known for its ornamental value. [...] Read more.
This study investigated the effects of oryzalin treatments on the induction of polyploids and variants, as well as their subsequent morphological and physiological characteristics, in Lysimachia xiangxiensis, a perennial herbaceous plant belonging to the Primulaceae family that is known for its ornamental value. A total of 52 of the 162 treated stem segments survived after treatments and further developed into plantlets, and significant morphological changes in leaf color and growth status were observed. Using flow cytometry and chromosome counting, plants are categorized into the three variant types (VT1, VT2, and VT3), that is, VT1 and VT2 were diploid aneuploids, while VT3 was triploid. The optimized polyploid induction scheme involved treatment with 0.001% oryzalin for 4 days, resulting in an induction rate of up to 100%. Higher concentrations and longer exposure durations resulted in lower survival and polyploid induction rates of all stem segments during the above-mentioned processing. Observation of morphological features indicated that triploid VT3 vines were longer, with larger and thicker leaves and more guard cells, but lower stomatal density, compared with diploid aneuploids or the wild type. Polyploids outperformed other types in terms of chlorophyll content, net photosynthesis rate, stomatal conductance, and intercellular CO2 concentration, but had a lower flavonoid content. The results demonstrate that oryzalin can effectively induce polyploidy and variants in L. xiangxiensis, resulting in beneficial changes in morphology and physiological characteristics; this should provide valuable insight into the improvement of excellent varieties in plants. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

Back to TopTop