Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (821)

Search Parameters:
Keywords = charging price

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3400 KiB  
Article
Value-Added Service Pricing Strategies Considering Customer Stickiness: A Freemium Perspective
by Xuwang Liu, Biying Zhou, Wei Qi, Zhiwu Li and Junwei Wang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 201; https://doi.org/10.3390/jtaer20030201 - 6 Aug 2025
Abstract
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and [...] Read more.
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and service price are important factors affecting customer choice behavior in such a model. Based on consumption stickiness, we consider a monopoly that provides value-added services by incorporating a multinomial logit model into a two-stage dynamic pricing model. First, we analyze the optimal pricing of value-added services under a normal sales scenario. We then consider optimal pricing during the marketing period under two strategies—level improvement for value-added services and quality reduction for a basic product—and analyze the applicability of each. The results show that increasing the value-added service level has a positive effect on the optimal price of value-added services, whereas reducing the basic product quality has no effect on the optimal price. Furthermore, the numerical simulation shows that when the depth of consumer stickiness is low, the optimal marketing strategy reduces the quality of the basic product, the price of value-added services should be higher than that in the normal sales period but lower than the price under the level-improvement strategy for value-added services; otherwise, improving the level of the value-added services becomes the optimal approach. This study provides a theoretical basis and decision support for product quality design and service pricing that applies to freemium platforms. Full article
(This article belongs to the Topic Digital Marketing Dynamics: From Browsing to Buying)
Show Figures

Figure 1

21 pages, 1952 KiB  
Article
Research on Consumer Purchase Intention for New Energy Vehicles Based on Text Mining and Bivariate Logit Model: Empirical Evidence from Urumqi, China
by Zhenxiang Hao, Jianping Hu, Jin Ran, Qiong Lu, Yuhang Zheng and Xuetao Zhang
World Electr. Veh. J. 2025, 16(8), 440; https://doi.org/10.3390/wevj16080440 - 5 Aug 2025
Abstract
This study combines text mining and binary logit model to analyze the main influencing factors of consumers’ purchase intention for new energy vehicles (NEVs) in Urumqi. Through the analysis of 34,561 consumer reviews and 400 valid questionnaire data, the study found that battery [...] Read more.
This study combines text mining and binary logit model to analyze the main influencing factors of consumers’ purchase intention for new energy vehicles (NEVs) in Urumqi. Through the analysis of 34,561 consumer reviews and 400 valid questionnaire data, the study found that battery technology, sales price, and policy support have a significant impact on purchase intention. Based on the differences in consumers’ price sensitivity, technology preference, and policy support, this paper segments consumers into six groups. Based on these findings, we propose policy recommendations to optimize subsidy policies, promote battery technology upgrades, and improve charging infrastructure, in order to drive the development of the NEV market. Full article
Show Figures

Figure 1

50 pages, 1100 KiB  
Article
The Impact of Renewable Generation Variability on Volatility and Negative Electricity Prices: Implications for the Grid Integration of EVs
by Marek Pavlík, Martin Vojtek and Kamil Ševc
World Electr. Veh. J. 2025, 16(8), 438; https://doi.org/10.3390/wevj16080438 - 4 Aug 2025
Abstract
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot [...] Read more.
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot prices, and electric vehicle (EV) charging strategies. Based on empirical data from Germany, France, and the Czech Republic for the period 2015–2025, four research hypotheses are tested using correlation and regression analysis, cost simulations, and classification algorithms. The results confirm a negative correlation between the RES share and electricity prices, as well as the effectiveness of smart charging in reducing costs. At the same time, it is shown that the occurrence of negative prices is significantly affected by a high RES share. The correlation analysis further suggests that higher production from RESs increases the potential for price optimisation through smart charging. The findings have implications for policymaking aimed at flexible consumption and efficient RES integration. Full article
Show Figures

Graphical abstract

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 - 1 Aug 2025
Viewed by 206
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 258
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 - 1 Aug 2025
Viewed by 185
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

14 pages, 765 KiB  
Article
Reverse-Demand-Response-Based Power Stabilization in Isolated Microgrid
by Seungchan Jeon, Jangkyum Kim and Seong Gon Choi
Energies 2025, 18(15), 4081; https://doi.org/10.3390/en18154081 - 1 Aug 2025
Viewed by 129
Abstract
This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy [...] Read more.
This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy production, while electric vehicles seek to charge energy at a lower price. In our system model, the operator determines the incentive to encourage more charging facilities and electric vehicles to participate in the reverse demand response program. Charging facilities, acting as brokers, use a portion of these incentives to further encourage electric vehicle engagement. Electric vehicles follow the decisions made by the broker and system operator to determine their charging strategy within the system. Consequently, charging energy and incentives are allocated to the electric vehicles in proportion to their decisions. The paper investigates the economic benefits of individual participants and the contribution of power stabilization by implementing a hierarchical decision-making heterogeneous multi-leaders multi-followers Stackelberg game. By demonstrating the existence of a unique Nash Equilibrium, we show the effectiveness of the proposed model in an isolated microgrid environment. Full article
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Viewed by 155
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

17 pages, 706 KiB  
Article
Empirical Energy Consumption Estimation and Battery Operation Analysis from Long-Term Monitoring of an Urban Electric Bus Fleet
by Tom Klaproth, Erik Berendes, Thomas Lehmann, Richard Kratzing and Martin Ufert
World Electr. Veh. J. 2025, 16(8), 419; https://doi.org/10.3390/wevj16080419 - 25 Jul 2025
Viewed by 355
Abstract
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational [...] Read more.
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational data, how energy consumption and charging behavior affect battery aging and how operational strategies can be optimized to extend battery life under realistic conditions. This article presents an energy consumption analysis with respect to ambient temperatures and average vehicle speed based exclusively on real-world data of an urban bus fleet, providing a data foundation for range forecasting and infrastructure planning optimized for public transport needs. Additionally, the State of Charge (SOC) window during operation and vehicle idle time as well as the charging power were analyzed in this case study to formulate recommendations towards a more battery-friendly treatment. The central research question is whether battery-friendly operational strategies—such as reduced charging power and lower SOC windows—can realistically be implemented in daily public transport operations. The impact of the recommendations on battery lifetime is estimated using a battery aging model on drive cycles. Finally, the reduction in CO2 emissions compared to diesel buses is estimated. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

27 pages, 4008 KiB  
Article
Evolutionary Dynamics and Policy Coordination in the Vehicle–Grid Interaction Market: A Tripartite Evolutionary Game Analysis
by Qin Shao, Ying Lyu and Jian Cao
Mathematics 2025, 13(15), 2356; https://doi.org/10.3390/math13152356 - 23 Jul 2025
Viewed by 201
Abstract
This study introduces a novel tripartite evolutionary game model to analyze the strategic interactions among electric vehicle (EV) aggregators, local governments, and EV users in vehicle–grid interaction (VGI) markets. The core novelty lies in capturing bounded rationality and dynamic decision-making across the three [...] Read more.
This study introduces a novel tripartite evolutionary game model to analyze the strategic interactions among electric vehicle (EV) aggregators, local governments, and EV users in vehicle–grid interaction (VGI) markets. The core novelty lies in capturing bounded rationality and dynamic decision-making across the three stakeholders, revealing how policy incentives and market mechanisms drive the transition from disordered charging to bidirectional VGI. Key findings include the following: (1) The system exhibits five stable equilibrium points, corresponding to three distinct developmental phases of the VGI market: disordered charging (V0G), unidirectional VGI (V1G), and bidirectional VGI (V2G). (2) Peak–valley price differences are the primary driver for transitioning from V0G to V1G. (3) EV aggregators’ willingness to adopt V2G is influenced by upgrade costs, while local governments’ subsidy strategies depend on peak-shaving benefits and regulatory costs. (4) Increasing the subsidy differential between V1G and V2G accelerates market evolution toward V2G. The framework offers actionable policy insights for sustainable VGI development, while advancing evolutionary game theory applications in energy systems. Full article
Show Figures

Figure 1

20 pages, 13715 KiB  
Article
Dynamic Reconfiguration for Energy Management in EV and RES-Based Grids Using IWOA
by Hossein Lotfi, Mohammad Hassan Nikkhah and Mohammad Ebrahim Hajiabadi
World Electr. Veh. J. 2025, 16(8), 412; https://doi.org/10.3390/wevj16080412 - 23 Jul 2025
Viewed by 204
Abstract
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations [...] Read more.
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations (EVCSs), RESs, and capacitors. The goal is to minimize both Energy Not Supplied (ENS) and operational costs, particularly under varying demand conditions caused by EV charging in grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. To improve optimization accuracy and avoid local optima, an improved Whale Optimization Algorithm (IWOA) is employed, featuring a mutation mechanism based on Lévy flight. The model also incorporates uncertainties in electricity prices and consumer demand, as well as a demand response (DR) program, to enhance practical applicability. Simulation studies on a 95-bus test system show that the proposed approach reduces ENS by 16% and 20% in the absence and presence of distributed generation (DG) and EVCSs, respectively. Additionally, the operational cost is significantly reduced compared to existing methods. Overall, the proposed framework offers a scalable and intelligent solution for smart grid integration and distribution network modernization. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

26 pages, 1579 KiB  
Article
Forecasting Infrastructure Needs, Environmental Impacts, and Dynamic Pricing for Electric Vehicle Charging
by Osama Jabr, Ferheen Ayaz, Maziar Nekovee and Nagham Saeed
World Electr. Veh. J. 2025, 16(8), 410; https://doi.org/10.3390/wevj16080410 - 22 Jul 2025
Viewed by 279
Abstract
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on [...] Read more.
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on oil-based fuels. The continued use of diesel and petrol raises concerns related to oil costs, supply security, GHG emissions, and the release of air pollutants and volatile organic compounds. This study explored electric vehicle (EV) charging networks by assessing environmental impacts through GHG and petroleum savings, developing dynamic pricing strategies, and forecasting infrastructure needs. A substantial dataset of over 259,000 EV charging records from Palo Alto, California, was statistically analysed. Machine learning models were applied to generate insights that support sustainable and economically viable electric transport planning for policymakers, urban planners, and other stakeholders. Findings indicate that GHG and gasoline savings are directly proportional to energy consumed, with conversion rates of 0.42 kg CO2 and 0.125 gallons per kilowatt-hour (kWh), respectively. Additionally, dynamic pricing strategies such as a 20% discount on underutilised days and a 15% surcharge during peak hours are proposed to optimise charging behaviour and improve station efficiency. Full article
Show Figures

Figure 1

15 pages, 1224 KiB  
Article
Degradation-Aware Bi-Level Optimization of Second-Life Battery Energy Storage System Considering Demand Charge Reduction
by Ali Hassan, Guilherme Vieira Hollweg, Wencong Su, Xuan Zhou and Mengqi Wang
Energies 2025, 18(15), 3894; https://doi.org/10.3390/en18153894 - 22 Jul 2025
Viewed by 283
Abstract
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to [...] Read more.
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to address the increasing demand for battery energy storage systems (BESSs) for the electric grid, which will also create a robust circular economy for EV batteries. This article proposes a two-layered energy management algorithm (monthly layer and daily layer) for demand charge reduction for an industrial consumer using photovoltaic (PV) panels and BESSs made of retired EV batteries. In the proposed algorithm, the monthly layer (ML) calculates the optimal dispatch for the whole month and feeds the output to the daily layer (DL), which optimizes the BESS dispatch, BESSs’ degradation, and energy imported/exported from/to the grid. The effectiveness of the proposed algorithm is tested as a case study of an industrial load using a real-world demand charge and Real-Time Pricing (RTP) tariff. Compared with energy management with no consideration of degradation or demand charge reduction, this algorithm results in 71% less degradation of BESS and 57.3% demand charge reduction for the industrial consumer. Full article
Show Figures

Figure 1

25 pages, 5872 KiB  
Article
Application of Twisting Controller and Modified Pufferfish Optimization Algorithm for Power Management in a Solar PV System with Electric-Vehicle and Load-Demand Integration
by Arunesh Kumar Singh, Rohit Kumar, D. K. Chaturvedi, Ibraheem, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(14), 3785; https://doi.org/10.3390/en18143785 - 17 Jul 2025
Viewed by 252
Abstract
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and [...] Read more.
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and pollution. Active and reactive powers are controlled by a proportional–integral controller, whereas energy storage batteries improve the quality of energy by storing both current and voltage, which have an impact on steady-state error. Since traditional controllers are unable to maximize the energy output of solar systems, artificial intelligence (AI) is essential for enhancing the energy generation of PV systems under a variety of climatic conditions. Nevertheless, variations in the weather can have an impact on how well photovoltaic systems function. This paper presents an intelligent power management controller (IPMC) for obtaining power management with load and electric-vehicle applications. The architecture combines the solar PV, battery with electric-vehicle load, and grid system. Initially, the PV architecture is utilized to generate power from the irradiance. The generated power is utilized to compensate for the required load demand on the grid side. The remaining PV power generated is utilized to charge the batteries of electric vehicles. The power management of the PV is obtained by considering the proposed control strategy. The power management controller is a combination of the twisting sliding-mode controller (TSMC) and Modified Pufferfish Optimization Algorithm (MPOA). The proposed method is implemented, and the application results are matched with the Mountain Gazelle Optimizer (MSO) and Beluga Whale Optimization (BWO) Algorithm by evaluating the PV power output, EV power, battery-power and battery-energy utilization, grid power, and grid price to show the merits of the proposed work. Full article
(This article belongs to the Special Issue Power Quality and Disturbances in Modern Distribution Networks)
Show Figures

Figure 1

19 pages, 2636 KiB  
Article
Electric Vehicle Sales Forecast for the UK: Integrating Machine Learning, Time Series Models, and Global Trends
by Shima Veysi, Mohammad Moshfeghi, Amir Sadrfaridpour and Peiman Emamy
Algorithms 2025, 18(7), 430; https://doi.org/10.3390/a18070430 - 14 Jul 2025
Viewed by 360
Abstract
This study presents a comprehensive forecasting approach to evaluate the future of electric vehicle (EV) adoption in the United Kingdom through 2035. Using three complementary models—SARIMAX, Prophet with regressors, and XGBoost—the analysis balances statistical robustness, policy sensitivity, and interpretability. Historical data from 2015 [...] Read more.
This study presents a comprehensive forecasting approach to evaluate the future of electric vehicle (EV) adoption in the United Kingdom through 2035. Using three complementary models—SARIMAX, Prophet with regressors, and XGBoost—the analysis balances statistical robustness, policy sensitivity, and interpretability. Historical data from 2015 to 2024 was used to train the models, incorporating key drivers such as battery prices, GDP growth, public charging infrastructure, and government policy targets. XGBoost demonstrated the highest historical accuracy, making it a strong explanatory tool, particularly for assessing variable importance. However, due to its limitations in extrapolation, it was not used for long-term forecasting. Instead, Prophet and SARIMAX were employed to project EV sales under baseline, optimistic, and pessimistic policy scenarios. The results suggest that the UK could achieve between 2,964,000 and 3,188,000 EV sales by 2035 under baseline assumptions. Scenario analysis revealed high sensitivity to infrastructure growth and policy enforcement, with potential shortfalls of up to 500,000 vehicles in pessimistic scenarios. These findings highlight the importance of sustained government commitment and investment in EV infrastructure and supply chains. By combining machine learning diagnostics with transparent forecasting models, the study offers actionable insights for policymakers, investors, and stakeholders navigating the UK’s zero-emission transition. Full article
(This article belongs to the Collection Feature Papers in Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

Back to TopTop