Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = charge transfer phase transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2502 KB  
Review
Recent Advances in Transition Metal Dichalcogenide-Based Electrodes for Asymmetric Supercapacitors
by Tianyi Gao, Yue Li, Chin Wei Lai, Ping Xiang, Irfan Anjum Badruddin, Pooja Dhiman and Amit Kumar
Catalysts 2025, 15(10), 945; https://doi.org/10.3390/catal15100945 - 1 Oct 2025
Viewed by 727
Abstract
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge [...] Read more.
The global transition toward renewable energy sources has intensified in response to escalating environmental challenges. Nevertheless, the inherent intermittency and instability of renewable energy necessitate the development of reliable energy storage technologies. Supercapacitors are particularly notable for their high specific capacitance, rapid charge and discharge capability, and exceptional cycling stability. Concurrently, the increasing demand for efficient and sustainable energy storage systems has stimulated interest in multifunctional electrode materials that integrate electrocatalytic activity with electrochemical energy storage. Two-dimensional transition metal dichalcogenides (TMDs), owing to their distinctive layered structures, large surface areas, phase state, energy band structure, and intrinsic electrocatalytic properties, have emerged as promising candidates to achieve dual functionality in electrocatalysis and electrochemical energy storage for asymmetric supercapacitors (ASCs). Specifically, their unique electronic properties and catalytic characteristics promote reversible Faradaic reactions and accelerate charge transfer kinetics, thus markedly enhancing charge storage efficiency and energy density. This review highlights recent advances in TMD-based multifunctional electrodes. It elucidates mechanistic correlations between intrinsic electronic properties and electrocatalytic reactions that influence charge storage processes, guiding the rational design of high-performance ASC systems. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

20 pages, 9171 KB  
Article
New Insights into Chromogenic Mechanism and the Genesis of Blue Jadeite from Guatemala
by Yining Liu, Bo Xu, Siyi Zhao, Mengxi Zhao, Zitong Li and Wenxin Hao
Minerals 2025, 15(9), 963; https://doi.org/10.3390/min15090963 - 11 Sep 2025
Viewed by 578
Abstract
While existing studies on Guatemalan jadeite have predominantly focused on green varieties, the coloration mechanisms and origin of its blue counterparts remain poorly understood. Therefore, the present study provides the first comprehensive investigation of the Guatemalan blue jadeite using an integrated analytical approach, [...] Read more.
While existing studies on Guatemalan jadeite have predominantly focused on green varieties, the coloration mechanisms and origin of its blue counterparts remain poorly understood. Therefore, the present study provides the first comprehensive investigation of the Guatemalan blue jadeite using an integrated analytical approach, which combines Raman spectroscopy, micro X-ray fluorescence (µ-XRF), electron microprobe analysis (EMPA), X-ray diffraction (XRD), UV-Vis spectroscopy, and Cathodoluminescence (CL) imaging on seven representative samples. The results demonstrate that these jadeites consist of two distinct phases: a primary jadeite phase (NaAlSi2O6) and a secondary omphacite that form by metasomatic alteration by Mg-Ca-Fe-rich fluids. Spectroscopic analysis reveals that the blue coloration is primarily controlled by Fe3+ electronic transitions (with characteristic absorption at 381 nm and 437 nm) coupled with Fe2+-Ti4+ intervalence charge transfer, supported by μ-XRF mapping showing strong Fe-Ti spatial correlation with color intensity. CL imaging documents a multi-stage formation history involving initial high-pressure crystallization (Jd-I) followed by fluid-assisted recrystallization forming Jd-II and omphacite. The detection of CH4, CO and H2O in the fluid inclusions by Raman spectroscopy indicates formation in a serpentinization-related reducing environment, while distinct CL zoning patterns confirm a fluid-directed crystallization (P-type) origin. These findings not only clarify the chromogenic processes and petrogenesis of Guatemalan blue jadeite but also establish key diagnostic criteria for its identification, advancing our understanding of fluid-derived jadeite formation in subduction zone environments. Full article
Show Figures

Figure 1

14 pages, 2657 KB  
Article
The Effect of Heat Treatment on Yellow-Green Beryl Color and Its Enhancement Mechanism
by Binru Hao, Shuxin Zhao and Qingfeng Guo
Crystals 2025, 15(8), 746; https://doi.org/10.3390/cryst15080746 - 21 Aug 2025
Viewed by 795
Abstract
Beryl is classified as a cyclosilicate mineral, and its color is primarily determined by the type and oxidation state of trace elements. In this study, natural yellow-green beryl was used as the research subject, and heat treatment experiments were performed at various temperatures [...] Read more.
Beryl is classified as a cyclosilicate mineral, and its color is primarily determined by the type and oxidation state of trace elements. In this study, natural yellow-green beryl was used as the research subject, and heat treatment experiments were performed at various temperatures under both oxidizing and reducing atmospheres. A combination of analytical techniques, including electron probe microanalysis (EPMA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet-visible spectroscopy (UV-Vis), were employed to systematically investigate the composition, structure, and chromogenic mechanisms of beryl before and after heat treatment. The experimental results indicate that heat treatment under both atmospheres can lead to the transformation of yellow-green beryl into blue, with 500–600 °C under a reducing atmosphere identified as the optimal treatment condition. With increasing temperature, beryl gradually dehydrates, resulting in a faded blue color and reduced transparency. Even after treatment at 700 °C, no significant changes in unit cell parameters were observed, and both type I and type II water were retained, indicating that the color change is not attributed to crystal structure transformation or phase transitions. The study reveals that the essential mechanism of color modification through heat treatment lies in the valence change between Fe2+ and Fe3+ occupying channel and octahedral sites. The observed color variation is attributed to changes in absorption band intensity resulting from charge transfers of O2− → Fe3+ and Fe2+ → Fe3+. This study provides theoretical insights and technical references for the color enhancement of beryl through heat treatment. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

15 pages, 8311 KB  
Article
Enhanced Heat Transfer of 1-Octadecanol Phase-Change Materials Using Carbon Nanotubes
by Xiuli Wang, Qingmeng Wang, Xiaomin Cheng, Yi Yang, Xiaolan Chen and Qianju Cheng
Molecules 2025, 30(15), 3075; https://doi.org/10.3390/molecules30153075 - 23 Jul 2025
Viewed by 522
Abstract
Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid–liquid [...] Read more.
Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid–liquid phase transitions, low thermal conductivity, and poor energy conversion function. The heat transfer properties of PCMs can be improved by compounding with carbon materials. Carbon nanotubes (CNTs) are widely used in PCMs for heat storage because of their high thermal conductivity, strong electrical conductivity, and high chemical stability. This study investigates the thermal properties of 1-octadecanol (OD) modified with different diameters and amounts of CNTs using the melt blending method and the ultrasonic dispersion method. The aim is to enhance thermal conductivity while minimizing latent heat loss. The physical phase, microstructure, phase-change temperature, phase-transition enthalpy, thermal stability, and thermal conductivity of the OD/CNTs CPCMs were systematically studied using XRD, FTIR, SEM, DSC, and Hot Disk. Moreover, the heat charging and releasing performance of the OD/CNTs CPCMs was investigated through heat charging and releasing experiments, and the relationship among the composition–structure–performance of the CPCMs was established. Full article
(This article belongs to the Special Issue Energy Storage Materials: Synthesis and Application)
Show Figures

Figure 1

21 pages, 2610 KB  
Article
Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction
by Pietro Altimari, Silvia Iacobelli, Pier Giorgio Schiavi, Gianluca Zanellato, Francesco Amato, Andrea Giacomo Marrani, Olga Russina, Alessia Sanna and Francesca Pagnanelli
Nanomaterials 2025, 15(13), 1025; https://doi.org/10.3390/nano15131025 - 2 Jul 2025
Viewed by 663
Abstract
The galvanostatic electrodeposition of zinc on carbon paper from mildly acidic solutions (ZnCl2: 0.05–0.1 M; H3BO3: 0.05 M) was investigated. The deposits’ growth mechanisms were analyzed through the study of the electrodeposition potential transients and the physical [...] Read more.
The galvanostatic electrodeposition of zinc on carbon paper from mildly acidic solutions (ZnCl2: 0.05–0.1 M; H3BO3: 0.05 M) was investigated. The deposits’ growth mechanisms were analyzed through the study of the electrodeposition potential transients and the physical characterization of the electrodes synthesized by varying the current density, transferred charge, and zinc precursor concentration. The analysis reveals that the transition from crystalline to amorphous mossy deposits takes place via the electrodeposition of metallic zinc followed by the formation of oxidized zinc structures. The time required for this transition can be controlled by varying the zinc precursor concentration and electrodeposition current density, allowing for the synthesis of composite zinc/oxidized zinc electrodes with varying ratios of the oxidized to underlying metallic phases. The impact of this ratio on the electrode activity for CO2 electroreduction is analyzed, highlighting that composite zinc/oxidized zinc electrodes can achieve a faradaic efficiency to CO equal to 82% at −1.8 V vs. Ag/AgCl. The mechanisms behind the variations in the catalytic activity with varying morphologies and structures are discussed, providing guidelines for the synthesis of composite zinc/oxidized zinc electrodes for CO2 electroreduction. Full article
Show Figures

Figure 1

17 pages, 5093 KB  
Article
Enhancing Solar Thermal Energy Storage via Torsionally Modified TPMS Structures Embedded in Sodium Acetate Trihydrate
by Martin Beer and Radim Rybár
Energies 2025, 18(13), 3234; https://doi.org/10.3390/en18133234 - 20 Jun 2025
Viewed by 573
Abstract
This study focuses on the numerical analysis of the impact of geometric modifications of sheet-gyroid structures on heat transfer in thermal energy storage systems utilizing sodium acetate trihydrate as a phase change material. The aim was to enhance the thermal conductivity of SAT, [...] Read more.
This study focuses on the numerical analysis of the impact of geometric modifications of sheet-gyroid structures on heat transfer in thermal energy storage systems utilizing sodium acetate trihydrate as a phase change material. The aim was to enhance the thermal conductivity of SAT, which is inherently low in the solid phase, by embedding a thermally conductive metallic structure made of aluminum alloy 6061. The simulations compared four gyroid configurations with different degrees of torsional deformation (0°, 90°, 180°, and 360°) alongside a reference model without any structure. Using numerical analysis, the study evaluated the time required to heat the entire volume of SAT above its phase transition temperature (58 °C) as well as the spatial distribution of the temperature field. The results demonstrate that all gyroid configurations significantly reduced the charging time compared with the reference case, with the highest efficiency achieved by the 360° twisted structure. Temperature maps revealed a more uniform thermal distribution within the phase change material and a higher heat flux into the volume. These findings highlight the strong potential of TPMS-based structures for improving the performance of latent heat thermal energy storage systems. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

17 pages, 4894 KB  
Article
Investigation of Mechanochromic and Solvatochromic Luminescence of Cyclometalated Heteroleptic Platinum(II) Complexes with Benzoylthiourea Derivatives
by Monica Iliş, Marilena Ferbinteanu, Cristina Tablet and Viorel Cîrcu
Molecules 2025, 30(11), 2415; https://doi.org/10.3390/molecules30112415 - 31 May 2025
Viewed by 873
Abstract
Two novel cyclometalated platinum(II) complexes based on 2-phenylpyridine (ppy) and 2,4-difluorophenylpyridine (dfppy) ligands in combination with a benzoylthiourea (4-(decyloxy)-N-((4-(decyloxy)phenyl)carbamothioyl)benzamide, BTU) functionalized with decyloxy alkyl chains as auxiliary ligands were synthesized and characterized for their mechanochromic and photophysical properties. Structural characterization was achieved through [...] Read more.
Two novel cyclometalated platinum(II) complexes based on 2-phenylpyridine (ppy) and 2,4-difluorophenylpyridine (dfppy) ligands in combination with a benzoylthiourea (4-(decyloxy)-N-((4-(decyloxy)phenyl)carbamothioyl)benzamide, BTU) functionalized with decyloxy alkyl chains as auxiliary ligands were synthesized and characterized for their mechanochromic and photophysical properties. Structural characterization was achieved through IR and NMR spectroscopy, single-crystal X-ray diffraction, and TD-DFT calculations. Both complexes exhibit significant photoluminescence with quantum yields up to 28.3% in a 1% PMMA film. The transitions in solution-phase spectra were assigned to mixed metal-to-ligand (MLCT) and intraligand (ILCT) charge–transfer characteristics. Temperature-dependent studies and thermal analyses confirm reversible phase transitions without mesomorphic behavior despite the presence of the two long alkyl chains. Both complexes displayed reversible mechanochromic and solvatochromic luminescence, with a change in emission color from green to red-orange emissions upon grinding and solvent treatment or heating at 80 °C. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Figure 1

10 pages, 6353 KB  
Article
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on 3×3-Sn Reconstructed Si(111) Surface
by Zhujuan Li, Qichao Tian, Kaili Wang, Yuyang Mu, Zhenjie Fan, Xiaodong Qiu, Qinghao Meng, Can Wang and Yi Zhang
Appl. Sci. 2025, 15(11), 6150; https://doi.org/10.3390/app15116150 - 29 May 2025
Viewed by 746
Abstract
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth [...] Read more.
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth of SnSe2 films on a 3×3-Sn reconstructed Si(111) surface. The analysis of reflection high-energy electron diffraction reveals the in-plane lattice orientation as SnSe2[110]//3-Sn [112]//Si [110]. In addition, the flat morphology of SnSe2 film was identified by scanning tunneling microscopy (STM), implying the relatively strong adsorption effect of 3-Sn/Si(111) substrate to the SnSe2 adsorbates. Subsequently, the interfacial charge transfer was observed by X-ray photoemission spectroscopy. Afterwards, the direct characterization of electronic structures was obtained via angle-resolved photoemission spectroscopy. In addition to proving the presence of interfacial charge transfer again, a new relatively flat in-gap band was found in monolayer and few-layer SnSe2, which disappeared in multi-layer SnSe2. The interface strain-induced partial structural phase transition of thin SnSe2 films is presumed to be the reason. Our results provide important information on the characterization and effective modulation of electronic structures of SnSe2 grown on 3-Sn/Si(111), paving the way for the further study and application of SnSe2 in 2D electronic devices. Full article
Show Figures

Figure 1

53 pages, 13476 KB  
Review
Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects
by Shengchen Huang, Lin Liu, Chenchen Han, Chao Tian, Yongjian Wang, Tianlin Li, Danyang Zhao and Yanwei Sui
Nanomaterials 2025, 15(11), 820; https://doi.org/10.3390/nano15110820 - 29 May 2025
Viewed by 1761
Abstract
The performance degradation of sodium-ion batteries (SIBs) in extremely low-temperature conditions has faced significant challenges for energy storage applications in extreme environments. This review systematically establishes failure mechanisms that govern the performance of low-temperature SIBs, including significantly increased electrolyte viscosity, lattice distortion and [...] Read more.
The performance degradation of sodium-ion batteries (SIBs) in extremely low-temperature conditions has faced significant challenges for energy storage applications in extreme environments. This review systematically establishes failure mechanisms that govern the performance of low-temperature SIBs, including significantly increased electrolyte viscosity, lattice distortion and adverse phase transitions in electrodes, and sluggish desolvation kinetics at the solid electrolyte interface. Herein, we specifically summarize a series of multi-scale optimization strategies to address these low-temperature challenges: (1) optimizing low-freezing-point solvent components and regulating solvation structures to increase ionic diffusion conductivity; (2) enhancing the hierarchical structure of electrodes and optimizing electron distribution density to improve structural stability and capacity retention at low temperatures; and (3) constructing an inorganic-rich solid electrolyte interphase to induce uniform ion deposition, reduce the desolvation barrier, and inhibit side reactions. This review provides a comprehensive overview of low-temperature SIB applications coupled with advanced characterization and first-principles simulations. Furthermore, we highlight solvation-shell dynamics, charge transfer kinetics, and metastable-phase evolution at the atomic scale, along with the critical pathways for overcoming low-temperature limitations. This review aims to establish fundamental principles and technological guidelines for deploying advanced SIBs in extreme low-temperature environments. Full article
Show Figures

Figure 1

14 pages, 1677 KB  
Article
Development of Cortisol Sensors with Interdigitated Electrode Platforms Based on Barium Titanate Nanoparticles
by Marylene S. G. Roma and Juliano A. Chaker
Sensors 2025, 25(11), 3346; https://doi.org/10.3390/s25113346 - 26 May 2025
Viewed by 1092
Abstract
Cortisol is a key biomarker for stress detection, and its levels can be monitored using point-of-care devices with sensors such as nanoparticles and interdigitated array electrodes (IDEs). This study developed an IDE platform using barium titanate (BaTiO3) particles synthesized via colloidal [...] Read more.
Cortisol is a key biomarker for stress detection, and its levels can be monitored using point-of-care devices with sensors such as nanoparticles and interdigitated array electrodes (IDEs). This study developed an IDE platform using barium titanate (BaTiO3) particles synthesized via colloidal precipitation with titanium tetraisopropoxide, barium chloride, and Pluronic® P123. The calcination temperatures varied between 160 °C and 340 °C, with optimal results observed at 160 °C. Scanning electron microscopy revealed particles with an average size of 26 nm, and Fourier transform infrared spectroscopy confirmed the molecular composition after the removal of P123. X-ray diffraction analysis revealed anatase and brookite phases. Brunauer-Emmett-Teller analysis indicated changes in pore morphology, with samples treated at 160 °C exhibiting a type IV(a) mesoporous structure, a surface area of 163 m2/g, and an average pore diameter of 5.24 nm. Higher temperatures led to transitions to type IV(b) at 260 °C and type V at 340 °C, with reduced pore size. Electrochemical impedance spectroscopy was employed to evaluate the performance of the IDE sensor integrated with BaTiO3 nanoparticles and albumin across cortisol concentrations ranging from 5.0 to 20 ng/mL. Impedance measurements revealed a significant decrease in impedance (Z′) with increasing cortisol concentrations, indicating increased conductivity. Specifically, Nyquist plots for a saliva sample containing 5 ng/mL cortisol—within the typical physiological range—exhibited a marked increase in charge-transfer resistance (Rct), confirming the sensor’s ability to detect low hormone levels in biological fluids. These findings underscore the potential of BaTiO3-based IDE platforms at 160 °C for stress biomarker monitoring. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

19 pages, 3448 KB  
Article
Method for Multi-Target Wireless Charging for Oil Field Inspection Drones
by Yilong Wang, Li Ji and Ming Zhang
Drones 2025, 9(5), 381; https://doi.org/10.3390/drones9050381 - 20 May 2025
Viewed by 674
Abstract
Wireless power transfer (WPT) systems are critical for enabling safe and efficient charging of inspection drones in flammable oilfield environments, yet existing solutions struggle with multi-target compatibility and reactive power losses. This study proposes a novel frequency-regulated LCC-S topology that achieves both constant [...] Read more.
Wireless power transfer (WPT) systems are critical for enabling safe and efficient charging of inspection drones in flammable oilfield environments, yet existing solutions struggle with multi-target compatibility and reactive power losses. This study proposes a novel frequency-regulated LCC-S topology that achieves both constant current (CC) and constant voltage (CV) charging modes for heterogeneous drones using a single hardware configuration. By dynamically adjusting the operating frequency, the system minimizes the input impedance angle (θ < 10°) while maintaining load-independent CC and CV outputs, thereby reducing reactive power by 92% and ensuring spark-free operation in explosive atmospheres. Experimental validation with two distinct oilfield inspection drones demonstrates seamless mode transitions, zero-phase-angle (ZPA) resonance, and peak efficiencies of 92.57% and 91.12%, respectively. The universal design eliminates the need for complex alignment mechanisms, offering a scalable solution for multi-drone fleets in energy, agriculture, and disaster response applications. Full article
Show Figures

Figure 1

27 pages, 11438 KB  
Article
Investigation on the Performance and Assessment of Cylindrical Latent Heat Storage Units Within Backfill Mines Followed a Similar Experimental Methodology
by Bo Zhang, Chenjie Hou, Chao Huan, Yujiao Zhao and Xiaoyan Zhang
Energies 2025, 18(5), 1299; https://doi.org/10.3390/en18051299 - 6 Mar 2025
Viewed by 817
Abstract
The conversion and storage of renewable energy into thermal energy is an important part of the low carbon economy. The goaf of a deep mine offers the possibility of large-scale thermal energy storage due to its sufficient underground space. Since the repositories are [...] Read more.
The conversion and storage of renewable energy into thermal energy is an important part of the low carbon economy. The goaf of a deep mine offers the possibility of large-scale thermal energy storage due to its sufficient underground space. Since the repositories are built inside the goaf backfill and there are few studies on their heat storage capacity and effectiveness, this paper builds an experimental platform based on the similarity theory and selects the geometric similarity ratio of 1:15 to study the phase change heat storage performance of the backfill mine heat storage. Under the typical operating conditions, the temperature distribution of the PCM inside the cylindrical storage unit was analyzed. At the end of heat storage, the temperature distribution of the PCM was 0.93–0.98, but at the end of heat release, the temperature distribution of the PCM was not uniform. At the same time, the heat is reasonably corrected, so that the thermal energy charging effectiveness is increased to 0.98, and the total effectiveness of thermal energy charge and discharge remains 0.87. The parameters of the storage unit are analyzed in detail by changing the water temperature, the flow velocity and the ratio of heat storage and release time of the circulating medium. The experimental results show that when the heat release water temperature is constant and only the heat storage water temperature is changed, the higher the water temperature, the higher the total effectiveness of thermal energy charge and discharge. On the contrary, when the heat storage water temperature is constant and the heat release water temperature is reduced to 14 °C, the total effectiveness of the heat release is increased by 7.5%. When the flow state is in transition, the total effectiveness decreases. The longer the heat storage/release time, the smaller the TSTDave inside the PCM and the more uniform the temperature distribution. By restoring the experimental data to the engineering prototype, the repositories installed in the goaf were able to store and extract 422.88 GJ and 375.97 GJ of heat, respectively. Finally, the environmental assessment of the C-LHSU showed that the carbon emissions per unit heating area of the CFB, GWHF and GHF were reduced by 88.1%, 84.2% and 83.0%, respectively. The experimental results show that the cylindrical phase change heat reservoir has higher heat transfer energy efficiency, which provides a theoretical basis and engineering reference for efficient heat storage and utilization in deep mine goafs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 1770 KB  
Article
Revisiting the Mechanistic Pathway of Gas-Phase Reactions in InN MOVPE Through DFT Calculations
by Xiaokun He, Nan Xu, Yuan Xue, Hong Zhang, Ran Zuo and Qian Xu
Molecules 2025, 30(4), 971; https://doi.org/10.3390/molecules30040971 - 19 Feb 2025
Cited by 3 | Viewed by 1013
Abstract
III-nitrides are crucial materials for solar flow batteries due to their versatile properties. In contrast to the well-studied MOVPE reaction mechanism for AlN and GaN, few works report gas-phase mechanistic studies on the growth of InN. To better understand the reaction thermodynamics, this [...] Read more.
III-nitrides are crucial materials for solar flow batteries due to their versatile properties. In contrast to the well-studied MOVPE reaction mechanism for AlN and GaN, few works report gas-phase mechanistic studies on the growth of InN. To better understand the reaction thermodynamics, this work revisited the gas-phase reactions involved in metal–organic vapor-phase epitaxy (abbreviated as MOVPE) growth of InN. Utilizing the M06-2X function in conjunction with Pople’s triple-ζ split-valence basis set with polarization functions, this work recharacterized all stationary points reported in previous literature and compared the differences between the structures and reaction energies. For the reaction pathways which do not include a transition state, rigorous constrained geometry optimizations were utilized to scan the PES connecting the reactants and products in adduct formation and XMIn (M, D, T) pyrolysis, confirming that there are no TSs in these pathways, which is in agreement with the previous findings. A comprehensive bonding analysis indicates that in TMIn:NH3, the In-N demonstrates strong coordinate bond characteristics, whereas in DMIn:NH3 and MMIn:NH3, the interactions between the Lewis acid and base fragments lean toward electrostatic attraction. Additionally, the NBO computations show that the H radical can facilitate the migration of electrons that are originally distributed between the In-C bonds in XMIn. Based on this finding, novel reaction pathways were also investigated. When the H radical approaches MMInNH2, MMIn:NH3 rather than MMInHNH2 will generate and this is followed by the elimination of CH4 via two parallel paths. Considering the abundance of H2 in the environment, this work also examines the reactions between H2 and XMIn. The Mulliken charge distributions indicated that intermolecular electron transfer mainly occurs between the In atom and N atom whiling forming (DMInNH2)2, whereas it predominately occurs between the In atom and the N atom intramolecularly when generating (DMInNH2)3. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

29 pages, 14607 KB  
Article
Development of Dopant-Free N,N′-Bicarbazole-Based Hole Transport Materials for Efficient Perovskite Solar Cells
by Muhammad Adnan, Hira Naz, Muzammil Hussain, Zobia Irshad, Riaz Hussain and Hany W. Darwish
Int. J. Mol. Sci. 2024, 25(23), 13117; https://doi.org/10.3390/ijms252313117 - 6 Dec 2024
Cited by 7 | Viewed by 1592
Abstract
Efficient and stable hole-transport material (HTM) is essential for enhancing the efficiency and stability of high-efficiency perovskite solar cells (PSCs). The commonly used HTMs such as spiro-OMeTAD need dopants to produce high efficiency, but those dopants degrade the perovskite film and cause instability. [...] Read more.
Efficient and stable hole-transport material (HTM) is essential for enhancing the efficiency and stability of high-efficiency perovskite solar cells (PSCs). The commonly used HTMs such as spiro-OMeTAD need dopants to produce high efficiency, but those dopants degrade the perovskite film and cause instability. Therefore, the development of dopant-free N,N′-bicarbazole-based HTM is receiving huge attention for preparing stable, cost-effective, and efficient PSCs. Herein, we designed and proposed seven distinct small-molecule-based HTMs (B1–B7), which are synthesized and do not require dopants to fabricate efficient PSCs. To design this new series, we performed synergistic side-chain engineering on the synthetic reference molecule (B) by replacing two methylthio (–SCH3) terminal groups with a thiophene bridge and electron-withdrawing acceptor. The enhanced phase inversion geometry of the proposed molecules resulted in reduced energy gaps and better electrical, optical, and optoelectronic properties. Density functional theory (DFT) and time-dependent DFT simulations have been used to study the precise photo-physical and optoelectronic properties. We also looked into the effects of holes and electrons and the materials’ structural and photovoltaic properties, including light harvesting energy, frontier molecular orbital, transition density matrix, density of states, electron density matrix, and natural population analysis. Electron density difference maps identify the interfacial charge transfer from the donor to the acceptor through the bridge, and natural population analysis measures the amount of charge on each portion of the donor, bridge, and acceptor, which most effectively represents the role of the end-capped moieties in facilitating charge transfer. Among these designed molecules, the B6 molecule has the greatest absorbance (λmax of 444.93 nm in dichloromethane solvent) and a substantially shorter optical band gap of 3.93 eV. Furthermore, the charge transfer analysis reveals superior charge transfer with improved intrinsic characteristics. Furthermore, according to the photovoltaic analysis, the designed (B1–B7) HTMs have the potential to provide better fill factor and open-circuit voltages, which will ultimately increase the power conversion efficiency (PCE) of PSCs. Therefore, we recommend these molecules for the next-generation PSCs. Full article
(This article belongs to the Special Issue Advancements in Perovskite and Tandem Solar Cell Technologies)
Show Figures

Figure 1

10 pages, 1845 KB  
Article
Phase Transformation on Two-Dimensional MoTe2 Films for Surface-Enhanced Raman Spectroscopy
by Caiye Zhao and Junwen Huang
Molecules 2024, 29(21), 5216; https://doi.org/10.3390/molecules29215216 - 4 Nov 2024
Cited by 4 | Viewed by 2031
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have recently become attractive candidate substrates for surface-enhanced Raman spectroscopy (SERS) owing to their atomically flat surfaces and adjustable electronic properties. Herein, large-scale 2D 1T′- and 2H-MoTe2 films were prepared using a chemical vapor deposition method. [...] Read more.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have recently become attractive candidate substrates for surface-enhanced Raman spectroscopy (SERS) owing to their atomically flat surfaces and adjustable electronic properties. Herein, large-scale 2D 1T′- and 2H-MoTe2 films were prepared using a chemical vapor deposition method. We found that phase structure plays an important role in the enhancement of the SERS performances of MoTe2 films. 1T′-MoTe2 films showed a strong SERS effect with a detection limit of 1 × 10−9 M for the R6G molecule, which is one order of magnitude lower than that of 2H-MoTe2 films. We demonstrated that the SERS sensitivity of MoTe2 films is derived from the efficient photoinduced charge transfer process between MoTe2 and adsorbed molecules. Moreover, a prohibited fish drug could be detected by using 1T′-MoTe2 films as SERS substrates. Our study paves the way to the development and application of high-performance SERS substrates based on TMD phase engineering. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop