Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,027)

Search Parameters:
Keywords = changing trend

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

21 pages, 4581 KiB  
Article
Spatiotemporal Variations and Drivers of the Ecological Footprint of Water Resources in the Yangtze River Delta
by Aimin Chen, Lina Chang, Peng Zhao, Xianbin Sun, Guangsheng Zhang, Yuanping Li, Haojun Deng and Xiaoqin Wen
Water 2025, 17(15), 2340; https://doi.org/10.3390/w17152340 - 6 Aug 2025
Abstract
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial [...] Read more.
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial and temporal scales. In this study, we collected the data and information from the 2005–2022 Statistical Yearbook and Water Resources Bulletin of the Yangtze River Delta Urban Agglomeration (YRDUA), and calculated evaluation indicators: WREF, water resources ecological carrying capacity (WRECC), water resources ecological pressure (WREP), and water resources ecological surplus and deficit (WRESD). We primarily analyzed the temporal and spatial variation in the per capita WREF and used the method of Geodetector to explore factors driving its temporal and spatial variation in the YRDUA. The results showed that: (1) From 2005 to 2022, the per capita WREF (total water, agricultural water, and industrial water) of the YRDUA generally showed fluctuating declining trends, while the per capita WREF of domestic water and ecological water showed obvious growth. (2) The per capita WREF and the per capita WRECC were in the order of Jiangsu Province > Anhui Province > Shanghai City > Zhejiang Province. The spatial distribution of the per capita WREF was similar to those of the per capita WRECC, and most areas effectively consume water resources. (3) The explanatory power of the interaction between factors was greater than that of a single factor, indicating that the spatiotemporal variation in the per capita WREF of the YRDUA was affected by the combination of multiple factors and that there were regional differences in the major factors in the case of secondary metropolitan areas. (4) The per capita WREF of YRDUA was affected by natural resources, and the impact of the ecological condition on the per capita WREF increased gradually over time. The impact factors of secondary metropolitan areas also clearly changed over time. Our results showed that the ecological situation of per capita water resources in the YRDUA is generally good, with obvious spatial and temporal differences. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
20 pages, 8429 KiB  
Article
Altitude and Temperature Drive Spatial and Temporal Changes in Vegetation Cover on the Eastern Tibetan Plateau
by Yu Feng, Hongjin Zhu, Xiaojuan Zhang, Feilong Qin, Peng Ye, Pengtao Niu, Xueman Wang and Songlin Shi
Earth 2025, 6(3), 92; https://doi.org/10.3390/earth6030092 (registering DOI) - 6 Aug 2025
Abstract
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and [...] Read more.
The Tibetan Plateau (TP) is experiencing higher warming rates than elsewhere, which may affect regional vegetation growth. Particularly on the Eastern Tibetan Plateau (ETP), where the topography is diverse and rich in biodiversity, it is necessary to clarify the drivers of climate and topography on vegetation cover. In this research, we selected the Shaluli Mountains (SLLM) in the ETP as the study area, monitored the spatial and temporal dynamics of the regional vegetation cover using remote sensing methods, and quantified the drivers of vegetation change using Geodetector (GD). The results showed a decreasing trend in annual precipitation (PRE) (−2.4054 mm/year) and the Palmer Drought Severity Index (PDSI) (−0.1813/year) in the SLLM. Annual maximum temperature (TMX) on the spatial and temporal scales showed an overall increasing trend, and the regional climate tended to become warmer and drier. Since 2000, fractional vegetation cover (FVC) has shown a fluctuating upward trend, with an average value of 0.6710, and FVC has spatially shown a pattern of “low in the middle and high in the surroundings”. The areas with non-significant increases (p > 0.05) and significant increases (p < 0.05) in FVC accounted for 46.03% and 5.76% of the SLLM. Altitude (q = 0.3517) and TMX (q = 0.3158) were the main drivers of FVC changes. As altitude and TMX increased, FVC showed a trend of increasing and then decreasing. The results of this study help us to clarify the influence of climate and topography on the vegetation ecosystem of the ETP and provide a scientific basis for regional biodiversity conservation and sustainable development. Full article
Show Figures

Figure 1

20 pages, 11969 KiB  
Article
Spatiotemporal Variability of Cloud Parameters and Their Climatic Impacts over Central Asia Based on Multi-Source Satellite and ERA5 Data
by Xinrui Xie, Liyun Ma, Junqiang Yao and Weiyi Mao
Remote Sens. 2025, 17(15), 2724; https://doi.org/10.3390/rs17152724 - 6 Aug 2025
Abstract
As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation [...] Read more.
As key components of the climate system, clouds exert a significant influence on the Earth’s radiation budget and hydrological cycle. However, studies focusing on cloud properties over Central Asia are still limited, and the impacts of cloud variability on regional temperature and precipitation remain poorly understood. This study uses reanalysis and multi-source remote sensing datasets to investigate the spatiotemporal characteristics of clouds and their influence on regional climate. The cloud cover increases from the southwest to the northeast, with mid and low-level clouds predominating in high-altitude regions. All clouds have shown a declining trend during 1981–2020. According to satellite data, the sharpest decline in total cloud cover occurs in summer, while reanalysis data show a more significant reduction in spring. In addition, cloud cover changes influence the local climate through radiative forcing mechanisms. Specifically, the weakening of shortwave reflective cooling and the enhancement of longwave heating of clouds collectively exacerbate surface warming. Meanwhile, precipitation is positively correlated with cloud cover, and its spatial distribution aligns with the cloud water path. The cloud phase composition in Central Asia is dominated by liquid water, accounting for over 40%, a microphysical characteristic that further impacts the regional hydrological cycle. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

21 pages, 1278 KiB  
Article
Research on the Main Influencing Factors and Variation Patterns of Basal Area Increment (BAI) of Pinus massoniana
by Zhuofan Li, Cancong Zhao, Jun Lu, Jianfeng Yao, Yanling Li, Mengli Zhou and Denglong Ha
Sustainability 2025, 17(15), 7137; https://doi.org/10.3390/su17157137 - 6 Aug 2025
Abstract
Understanding the environmental drivers of radial growth in the Pinus massoniana (lamb.) is essential for improving forest productivity and carbon sequestration in subtropical ecosystems. This study used the basal area increment (BAI) as an indicator of radial growth to investigate the main factors [...] Read more.
Understanding the environmental drivers of radial growth in the Pinus massoniana (lamb.) is essential for improving forest productivity and carbon sequestration in subtropical ecosystems. This study used the basal area increment (BAI) as an indicator of radial growth to investigate the main factors affecting the radial growth rate of P. massoniana and the changes in BAI with these factors. A total of 58 high quality tree ring series were analyzed. Six common methods were used to comprehensively analyze the importance of nine factor variables on the BAI, including tree age, competition index, average temperature, and so on. Generalized additive models (GAMs) were developed to explore the nonlinear relationships between each selected variable and the BAI. The results revealed the following: (1) Age and Competition Index was identified as the primary driving force; (2) BAI increased with Age when tree age was below 69 years; (3) from the overall trend, the BAI of P. massoniana decreased with the increase in the Competition Index. These findings provide a scientific basis for developing management plans for P. massoniana forests. Full article
22 pages, 4692 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
19 pages, 398 KiB  
Article
Analyzing Regional Disparities in China’s Green Manufacturing Transition
by Xuejuan Wang, Qi Deng, Riccardo Natoli, Li Wang, Wei Zhang and Catherine Xiaocui Lou
Sustainability 2025, 17(15), 7127; https://doi.org/10.3390/su17157127 - 6 Aug 2025
Abstract
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the [...] Read more.
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the panel data of 31 provinces in China from 2011 to 2021 and constructs an evaluation index system for the green transformation of the manufacturing industry from four dimensions: environment, resources, economy, and industrial structure. This not only comprehensively and systematically reflects the dynamic changes in the green transformation of the manufacturing industry but also addresses the limitations of currently used indices. The entropy value method is used to calculate the comprehensive score of the green transformation of the manufacturing industry, while the key factors influencing the convergence of the green transformation of the manufacturing industry are further explored. The results show that first, the overall level of the green transformation of the manufacturing industry has significantly improved as evidenced by an approximate 32% increase. Second, regional differences are significant with the eastern region experiencing significantly higher levels of transformation compared to the central and western regions, along with a decreasing trend from the east to the central and western regions. From a policy perspective, the findings suggest that tailored production methods for each region should be adopted with a greater emphasis on knowledge exchanges to promote green transition in less developed regions. In addition, further regulations are required which, in part, focus on increasing the degree of openness to the outside world to promote the level of green manufacturing transition. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Monitoring Post-Fire Deciduous Shrub Cover Using Machine Learning and Multiscale Remote Sensing
by Hannah Trommer and Timothy Assal
Land 2025, 14(8), 1603; https://doi.org/10.3390/land14081603 - 6 Aug 2025
Abstract
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in [...] Read more.
Wildfire and drought are key drivers of shrubland expansion in southwestern US landscapes. Stand-replacing fires in conifer forests induce shrub-dominated stages, and changing climatic patterns may cause a long-term shift to deciduous shrubland. We assessed change in deciduous fractional shrub cover (DFSC) in the eastern Jemez Mountains from 2019 to 2023 using topographic and Sentinel-2 satellite data and evaluated the impact of spatial scale on model performance. First, we built a 10 m and a 20 m random forest model. The 20 m model outperformed the 10 m model, achieving an R-squared value of 0.82 and an RMSE of 7.85, compared to the 10 m model (0.76 and 9.99, respectively). We projected the 20 m model to the other years of the study using imagery from the respective years, yielding yearly DFSC predictions. DFSC decreased from 2019 to 2022, coinciding with severe drought and a 2022 fire, followed by an increase in 2023, particularly within the 2022 fire footprint. Overall, DFSC trends showed an increase, with elevation being a key variable influencing these trends. This framework revealed vegetation dynamics in a semi-arid system and provided a close look at post-fire regeneration in deciduous resprouting shrubs and could be applied to similar systems. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

41 pages, 4303 KiB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

12 pages, 1106 KiB  
Article
Trends in the Utilization of BRCA1 and BRCA2 Testing After the Introduction of a Publicly Funded Genetic Testing Program
by Fahima Dossa, Nancy N. Baxter, Rinku Sutradhar, Tari Little, Lea Velsher, Jordan Lerner-Ellis, Andrea Eisen and Kelly Metcalfe
Curr. Oncol. 2025, 32(8), 439; https://doi.org/10.3390/curroncol32080439 - 6 Aug 2025
Abstract
Purpose: To effectively reduce cancer burden, genetic testing programs should identify high-risk individuals prior to cancer development, when risk-reduction strategies can be implemented. We evaluated trends in BRCA1/BRCA2 testing use after implementation of a publicly funded testing program. Methods: We conducted [...] Read more.
Purpose: To effectively reduce cancer burden, genetic testing programs should identify high-risk individuals prior to cancer development, when risk-reduction strategies can be implemented. We evaluated trends in BRCA1/BRCA2 testing use after implementation of a publicly funded testing program. Methods: We conducted a retrospective, near population-based study of women who underwent BRCA1/BRCA2 testing in Ontario, Canada, (2007–2016) (n = 15,986). Temporal trends were evaluated using linear and Poisson regression. Results: Although annual utilization of testing increased over time (p < 0.001), mean age at testing increased from 49.9 years (SD 13.8) in 2007 to 53.8 years (SD 13.7) in 2016 (p < 0.001). The proportion of women with a cancer history at testing also increased from 53.5% in 2007 to 66.3% in 2015 (p < 0.001); the proportion of women free from breast cancer did not change significantly (49.2% in 2007 versus 45.1% in 2015, p = 0.90). As a proportion of all tested, those with breast cancer tested within 3 months of diagnosis increased over time (0.39% of tests in 2007 versus 13.6% of tests in 2015; p < 0.001). Conclusions: While the institution of a publicly funded genetic testing program was associated with rising utilization, increasing age at testing and decreasing testing of unaffected women suggest limitations in identifying high-risk individuals eligible for risk-reduction. Full article
(This article belongs to the Special Issue Advanced Research on Breast Cancer Genes in Cancers)
Show Figures

Figure 1

14 pages, 1870 KiB  
Article
Analysis of Risk Factors for High-Risk Lymph Node Metastasis in Papillary Thyroid Microcarcinoma
by Yi-Hsiang Chiu, Shu-Ting Wu, Yung-Nien Chen, Wen-Chieh Chen, Lay-San Lim, Yvonne Ee Wern Chiew, Ping-Chen Kuo, Ya-Chen Yang, Shun-Yu Chi and Chen-Kai Chou
Cancers 2025, 17(15), 2585; https://doi.org/10.3390/cancers17152585 - 6 Aug 2025
Abstract
Background: Papillary thyroid microcarcinoma (PTMC) is associated with certain features that carry an increased risk of local recurrence, underscoring the importance of preoperative risk assessment. This study investigated the clinicopathological factors associated with high-risk lymph node metastasis (HRLNM) and patient outcomes. HRLNM is [...] Read more.
Background: Papillary thyroid microcarcinoma (PTMC) is associated with certain features that carry an increased risk of local recurrence, underscoring the importance of preoperative risk assessment. This study investigated the clinicopathological factors associated with high-risk lymph node metastasis (HRLNM) and patient outcomes. HRLNM is defined as ≥5 metastatic lymph nodes and/or lateral neck metastasis. Methods: We conducted a retrospective review of 985 patients with PTMC who underwent thyroidectomy at the Kaohsiung Chang Gung Memorial Hospital from 2013 to 2022. Results: Among the 985 patients, 100 (10.2%) had lymph node metastasis (LNM), and 27% of these were classified as having HRLNM. Male sex (OR 3.61, p = 0.04) and extranodal extension (OR 3.76, p = 0.043) were independent predictors of HRLNM. Patients with LNM exhibited lower rates of excellent treatment response (75% vs. 87%, p = 0.001), higher recurrence rates (9.0% vs. 0.6%, p = 0.001), and an increased risk of distant metastasis (2.0% vs. 0%). Recurrence-free survival (RFS) was significantly shorter in patients with LNM (120.9 vs. 198.6 months, p < 0.001). Although HRLNM showed a trend toward reduced RFS (113.5 vs. 124.6 months, p = 0.177), its impact on long-term survival remains uncertain. Conclusions: Male sex and extranodal extension were significant risk factors for HRLNM in patients with PTMC. These findings highlight the need for individualized risk stratification to guide treatment strategies and improve patient outcomes. Full article
Show Figures

Figure 1

15 pages, 7500 KiB  
Article
Large-Scale Spatiotemporal Patterns of Burned Areas and Fire-Driven Mortality in Boreal Forests (North America)
by Wendi Zhao, Qingchen Zhu, Qiuling Chen, Xiaohan Meng, Kexu Song, Diego I. Rodriguez-Hernandez, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema, Tong Zhang and Xiali Guo
Forests 2025, 16(8), 1282; https://doi.org/10.3390/f16081282 - 6 Aug 2025
Abstract
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically [...] Read more.
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically within the vast North American boreal forest, as previous studies have predominantly focused on Mediterranean and tropical forests. Therefore, in this study, we used satellite observation data obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra MCD64A1 and related database data to study the spatial and temporal variability in burned area and forest mortality due to wildfires in North America (Alaska and Canada) over an 18-year period (2003 to 2020). By calculating the satellite reflectance data before and after the fire, fire-driven forest mortality is defined as the ratio of the area of forest loss in a given period relative to the total forest area in that period, i.e., the area of forest loss divided by the total forest area. Our findings have shown average values of burned area and forest mortality close to 8000 km2/yr and 40%, respectively. Burning and tree loss are mainly concentrated between May and September, with a corresponding temporal trend in the occurrence of forest fires and high mortality. In addition, large-scale forest fires were primarily concentrated in Central Canada, which, however, did not show the highest forest mortality (in contrast to the results recorded in Northern Canada). Critically, based on generalized linear models (GLMs), the results showed that fire size and duration, but not the burned area, had significant effects on post-fire forest mortality. Overall, this study shed light on the most sensitive forest areas and time periods to the detrimental effects of forest wildfire in boreal forests of North America, highlighting distinct spatial and temporal vulnerabilities within the boreal forest and demonstrating that fire regimes (size and duration) are primary drivers of ecological impact. These insights are crucial for refining models of boreal forest carbon dynamics, assessing ecosystem resilience under changing fire regimes, and informing targeted forest management and conservation strategies to mitigate wildfire impacts in this globally significant biome. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 (registering DOI) - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

Back to TopTop