Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = chalcedonite dust

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7376 KB  
Article
Application of Industrial Waste Materials by Alkaline Activation for Use as Geopolymer Binders
by Kinga Setlak, Janusz Mikuła and Michał Łach
Materials 2023, 16(24), 7651; https://doi.org/10.3390/ma16247651 - 14 Dec 2023
Cited by 8 | Viewed by 2030
Abstract
The purpose of this study is to synthesize geopolymer binders as an environmentally friendly alternative to conventional cement using available local raw materials. Waste materials such as chalcedonite (Ch), amphibolite (A), fly ash from lignite combustion (PB), and diatomite dust (D) calcined at [...] Read more.
The purpose of this study is to synthesize geopolymer binders as an environmentally friendly alternative to conventional cement using available local raw materials. Waste materials such as chalcedonite (Ch), amphibolite (A), fly ash from lignite combustion (PB), and diatomite dust (D) calcined at 900 °C were used to produce geopolymer binders. Metakaolin (M) was used as an additional modifier for binders based on waste materials. The base materials were subjected to fluorescence X-ray fluorescence (XRF) analysis and X-ray diffractometry (XRD) to determine chemical and phase composition. A laser particle size analysis was also performed. The various mixtures of raw materials were activated with a 10 M solution of NaOH and sodium water glass and then annealed for 24 h at 60 °C. The produced geopolymer binders were conditioned for 28 days under laboratory conditions and then subjected to microstructural analysis (SEM) and flexural and compressive strength tests. The best compressive strength results were obtained by the Ch + PB samples—more than 57 MPa, while the lowest results were obtained by the Ch + D+A + M samples—more than 20 MPa. On the other hand, as a result of the flexural strength tests, the highest flexural results were obtained by D + A + M + PB binders—more than 12 MPa, and the lowest values were obtained by binders based on Ch + D+A + M—about 4.8 MPa. Full article
(This article belongs to the Special Issue Advanced and Sustainable Low Carbon Cement and Concrete Materials)
Show Figures

Figure 1

14 pages, 2309 KB  
Article
Parameters of Concrete Modified with Micronized Chalcedonite
by Anna Kotwa, Piotr Ramiączek, Paulina Bąk-Patyna and Robert Kowalik
Materials 2023, 16(9), 3602; https://doi.org/10.3390/ma16093602 - 8 May 2023
Cited by 6 | Viewed by 1752
Abstract
The PN-EN 197-1:2012 standard allows the use of additives as the main component above 5.0% by mass, as well as as a secondary component in an amount less than 5.0% by mass of cement. Proper selection of additives positively affects the rheological characteristics [...] Read more.
The PN-EN 197-1:2012 standard allows the use of additives as the main component above 5.0% by mass, as well as as a secondary component in an amount less than 5.0% by mass of cement. Proper selection of additives positively affects the rheological characteristics and hardened concrete parameters during longer maturity periods. Additives have already become an integral component of concrete mixes. The aim of the research is to confirm the possibility of using the tested additive in the composition of concrete mixes in an amount of 15% relative to the amount of cement, which would solve the problem of storing and utilizing waste generated during the production of broken chalcedonite aggregates. The planned laboratory tests were carried out for concrete of three classes, C30/37, C35/45, C40/50, according to the PN-EN 206+A1:2016-2 standard, with the addition of chalcedonite dust in a constant amount of 15% relative to cement, and three series without additives as control series. The additive used for concrete mixes was chalcedonite dust with a diameter below 72 μm. It is waste from a broken aggregate mine. The research program included rheological tests of fresh concrete mix, i.e., air content, consistency, bulk density, as well as parameters of hardened concrete mix—compressive strength, absorbability, and capillary uptake. Compressive strength was tested after 7, 14, 28, 56, and 90 days. The laboratory tests aimed to verify whether the addition of 15% chalcedonite dust additive would not worsen the predicted hardened concrete parameters resulting from the designed concrete classes. All three tested series, C30/37, C35/45, and C40/50, with the addition of 15% chalcedonite dust relative to the amount of cement, achieved the assumed strength classes after 28 days of maturation. Concrete mix components were correctly designed. The addition of chalcedonite dust to the concrete mix did not cause a decrease in compressive strength to the extent that the analyzed series did not meet the normative requirements for concrete classes according to the PN-EN 206+A1:2014 standard. The results of absorbability testing indicate water absorption below 5%, while the increase in sample mass in the capillary uptake test gained similar values. Full article
(This article belongs to the Special Issue Durability Studies on the Concrete and Related Composites)
Show Figures

Figure 1

17 pages, 6369 KB  
Article
Application of Dynamic Analysis Methods into Assessment of Geometric Properties of Chalcedonite Aggregates Obtained by Means of Gravitational Upgrading Operations
by Tomasz Gawenda, Damian Krawczykowski, Aldona Krawczykowska, Agnieszka Saramak and Alona Nad
Minerals 2020, 10(2), 180; https://doi.org/10.3390/min10020180 - 18 Feb 2020
Cited by 13 | Viewed by 4273
Abstract
The aim of the paper is an assessment of geometrical properties of regular and irregular particles of chalcedonite enrichment products carried out in a laboratory ring jig. The investigative program included experiments of aggregate enrichment, along with visual analyses made for the obtained [...] Read more.
The aim of the paper is an assessment of geometrical properties of regular and irregular particles of chalcedonite enrichment products carried out in a laboratory ring jig. The investigative program included experiments of aggregate enrichment, along with visual analyses made for the obtained products, separately for regular and irregular particles. Several shape coefficients were calculated, and the most effective ones in terms of assessment of particle regularity were selected from among them. Particle size distributions for feed and enrichment products were also determined using the idea of minimum Feret’s diameter, and the intensity of dust emission by individual products was measured as well. The results obtained by the visual system were discussed in the context of their application in the assessment of enrichment operations carried out in a water jig. Full article
(This article belongs to the Special Issue Selected Papers from the Mineral Engineering Conference—MEC 2019)
Show Figures

Figure 1

Back to TopTop