Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = centhaquine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1676 KiB  
Article
Centhaquine Increases Stroke Volume and Cardiac Output in Patients with Hypovolemic Shock
by Aman Khanna, Krish Vaidya, Dharmesh Shah, Amaresh K. Ranjan and Anil Gulati
J. Clin. Med. 2024, 13(13), 3765; https://doi.org/10.3390/jcm13133765 - 27 Jun 2024
Cited by 2 | Viewed by 1901
Abstract
Introduction: Centhaquine is a resuscitative agent that acts on α2B adrenergic receptors. Its effect on cardiac output in hypovolemic shock patients has not been reported. Methods: This pilot study was conducted in 12 hypovolemic shock patients treated with centhaquine who participated in an [...] Read more.
Introduction: Centhaquine is a resuscitative agent that acts on α2B adrenergic receptors. Its effect on cardiac output in hypovolemic shock patients has not been reported. Methods: This pilot study was conducted in 12 hypovolemic shock patients treated with centhaquine who participated in an open-label phase IV study (NCT05956418). Echocardiography was utilized to measure stroke volume (SV), cardiac output (CO), left ventricular outflow tract velocity time integral (LVOT-VTI) and diameter (LVOTd), heart rate (HR), left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), and inferior vena cava (IVC) diameter before (0 min) and 60, 120, and 300 min after centhaquine (0.01 mg/kg) iv infusion for 60 min. Results: SV was significantly increased after 60, 120, and 300 min. CO increased significantly after 120 and 300 min despite a decrease in HR. IVC diameter and LVOT-VTI at these time points significantly increased, indicating the increased venous return. LVEF and LVFS did not change, while the mean arterial pressure (MAP, mmHg) increased after 120 and 300 min. Positive correlations between IVC diameter and SV (R2 = 0.9556) and between IVC diameter and MAP (R2 = 0.8928) were observed, which indicated the effects of an increase in venous return on SV, CO, and MAP. Conclusions: Centhaquine-mediated increase in venous return is critical in enhancing SV, CO, and MAP in patients with hypovolemic shock; these changes could be pivotal for reducing shock-mediated circulatory failure, promoting tissue perfusion, and improving patient outcomes. Trial Registration: CTRI/2021/01/030263 and NCT05956418. Full article
(This article belongs to the Special Issue Emergency Medicine in Cardiovascular Diseases)
Show Figures

Figure 1

17 pages, 4321 KiB  
Article
Effect of Centhaquine on the Coagulation Cascade in Normal State and Uncontrolled Hemorrhage: A Multiphase Study Combining Ex Vivo and In Vivo Experiments in Different Species
by Athanasios Chalkias, Gwendolyn Pais and Anil Gulati
Int. J. Mol. Sci. 2024, 25(6), 3494; https://doi.org/10.3390/ijms25063494 - 20 Mar 2024
Cited by 4 | Viewed by 1818
Abstract
Centhaquine is a novel vasopressor acting on α2A- and α2B-adrenoreceptors, increasing venous return and improving tissue perfusion. We investigated the effects of centhaquine on blood coagulation in normal state and uncontrolled hemorrhage using ex vivo and in vivo experiments in different species. Thromboelastography [...] Read more.
Centhaquine is a novel vasopressor acting on α2A- and α2B-adrenoreceptors, increasing venous return and improving tissue perfusion. We investigated the effects of centhaquine on blood coagulation in normal state and uncontrolled hemorrhage using ex vivo and in vivo experiments in different species. Thromboelastography (TEG) parameters included clotting time (R), clot kinetics [K and angle (α)], clot strength (MA), and percent lysis 30 min post-MA (LY30). In normal rat blood, centhaquine did not alter R, K, α, MA, or LY30 values of the normal vehicle group or the antithrombotic effects of aspirin and heparin. Subsequently, New Zealand white rabbits with uncontrolled hemorrhage were assigned to three resuscitation groups: Sal-MAP 45 group (normal saline to maintain a mean arterial pressure, MAP, of 45 mmHg), Centh-MAP 45 group (0.05 mg kg−1 centhaquine plus normal saline to maintain a MAP of 45 mmHg), and Sal-MAP 60 group (normal saline to maintain a MAP of 60 mmHg). The Sal-MAP 45 group was characterized by no change in R, reduced K and MA, and increased α. In the Centh-MAP 45 group, TEG showed no change in R, K, and α compared to saline; however, MA increased significantly (p = 0.018). In the Sal-MAP 60 group, TEG showed no change in R, an increase in α (p < 0.001), a decrease in K (p < 0.01), and a decrease in MA (p = 0.029) compared to the Centh-MAP 45 group. In conclusion, centhaquine does not impair coagulation and facilitates hemostatic resuscitation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 7704 KiB  
Review
Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies
by Athanasios Chalkias
Int. J. Mol. Sci. 2023, 24(24), 17522; https://doi.org/10.3390/ijms242417522 - 15 Dec 2023
Cited by 12 | Viewed by 3487
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation [...] Read more.
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells. Full article
Show Figures

Figure 1

25 pages, 1660 KiB  
Review
Controls of Central and Peripheral Blood Pressure and Hemorrhagic/Hypovolemic Shock
by Amaresh K. Ranjan and Anil Gulati
J. Clin. Med. 2023, 12(3), 1108; https://doi.org/10.3390/jcm12031108 - 31 Jan 2023
Cited by 15 | Viewed by 18991
Abstract
The pressure exerted on the heart and blood vessels because of blood flow is considered an essential parameter for cardiovascular function. It determines sufficient blood perfusion, and transportation of nutrition, oxygen, and other essential factors to every organ. Pressure in the primary arteries [...] Read more.
The pressure exerted on the heart and blood vessels because of blood flow is considered an essential parameter for cardiovascular function. It determines sufficient blood perfusion, and transportation of nutrition, oxygen, and other essential factors to every organ. Pressure in the primary arteries near the heart and the brain is known as central blood pressure (CBP), while that in the peripheral arteries is known as peripheral blood pressure (PBP). Usually, CBP and PBP are correlated; however, various types of shocks and cardiovascular disorders interfere with their regulation and differently affect the blood flow in vital and accessory organs. Therefore, understanding blood pressure in normal and disease conditions is essential for managing shock-related cardiovascular implications and improving treatment outcomes. In this review, we have described the control systems (neural, hormonal, osmotic, and cellular) of blood pressure and their regulation in hemorrhagic/hypovolemic shock using centhaquine (Lyfaquin®) as a resuscitative agent. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Traumatic Vascular Injury)
Show Figures

Figure 1

Back to TopTop