Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = cavitation tunnel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3036 KiB  
Article
On the Hydrodynamic and Structural Performance of Thermoplastic Composite Ship Propellers Produced by Additive Manufacturing Method
by Erkin Altunsaray, Serkan Turkmen, Ayberk Sözen, Alperen Doğru, Pengfei Liu, Akile Neşe Halilbeşe and Gökdeniz Neşer
J. Mar. Sci. Eng. 2024, 12(12), 2206; https://doi.org/10.3390/jmse12122206 - 2 Dec 2024
Viewed by 1629
Abstract
In the marine industry, the search for sustainable methods, materials, and processes, from the product’s design to its end-of-life stages, is a necessity for combating the negative consequences of climate change. In this context, the lightening of products is essential in reducing their [...] Read more.
In the marine industry, the search for sustainable methods, materials, and processes, from the product’s design to its end-of-life stages, is a necessity for combating the negative consequences of climate change. In this context, the lightening of products is essential in reducing their environmental impact throughout their life. In addition to lightening through design, lightweight materials, especially plastic-based composites, will need to be used in new and creative ways. The material extrusion technique, one of the additive manufacturing methods, is becoming more widespread day by day, especially in the production of objects with complex forms. This prevalence has not yet been reflected in the marine industry. In this study, the performances of plastic composite propellers produced by the material extrusion technique is investigated and discussed comparatively with the help of both hydrodynamic and structural tests carried out in a cavitation tunnel and mechanical laboratory. The cavitation tunnel test and numerical simulations were conducted at a range of advance coefficients (J) from 0.3 to 0.9. The shaft rate was kept at 16 rps. The thrust and torque data were obtained using the tunnel dynamometer. Digital pictures were taken to obtain structural deformation and cavitation dynamics. The structural performance of the propellers shows that an aluminum propeller is the most rigid, while a short carbon fiber composite propeller is the most flexible. Continuous carbon fiber composite has high strength and stiffness, while continuous glass fiber composite is more cost-effective. In terms of the hydrodynamic performance of the propellers, flexibility reduces the loading on the blade, which can result in thrust and torque reduction. Overall, the efficiency of the composite propellers was similar and less than that of the rigid aluminum propeller. In terms of weight, the composite carbon propeller containing continuous fiber, which is half the weight of the metal propeller, is considered as an alternative to metal in production. These propellers were produced from a unique composite consisting of polyamide, one of the thermoplastics that is a sustainable composite material, and glass and carbon fiber as reinforcements. The findings showed that the manufacturing method and the new composites can be highly successful for producing ship components. Full article
(This article belongs to the Special Issue Marine Technology: Latest Advancements and Prospects)
Show Figures

Graphical abstract

25 pages, 10924 KiB  
Article
Numerical Study of the Cavitation Performance of an Ice-Blocked Propeller Considering the Free Surface Effect
by Li Zhou, Anwen Zhang, Shifeng Ding, Sen Han, Fang Li and Pentti Kujala
Water 2024, 16(22), 3260; https://doi.org/10.3390/w16223260 - 13 Nov 2024
Cited by 28 | Viewed by 1258
Abstract
Propeller cavitation performance can be predicted based on model tests or simulations. However, the cavitation performance of an ice-blocked propeller near the free surface differs from that of a propeller in the cavitation tunnel. Therefore, research on the cavitation performance simulation of propellers [...] Read more.
Propeller cavitation performance can be predicted based on model tests or simulations. However, the cavitation performance of an ice-blocked propeller near the free surface differs from that of a propeller in the cavitation tunnel. Therefore, research on the cavitation performance simulation of propellers near the free surface holds crucial scientific significance. In this study, a coupled model was established using Computational Fluid Dynamics (CFD) and the Volume of Fluid (VOF) coupling method. The CFD-VOF model weighted the overlapping grids and simulated the cavitation performance of an ice-blocked propeller using various immersion depths, cavitation numbers, and advance coefficients. The propeller inflow ahead of the propeller and the wake field behind it were controlled to accurately obtain the propeller cavitation performance. Moreover, a comparison was conducted between the cavitation tunnel test results and the numerical simulation results at various immersion depths. When the immersion depth was at a distance of 1D, the effect of the free surface on the propeller cavitation performance became significant. When the immersion depth was at a distance of 9D, the average errors between the numerical simulation and the model test data were within 10%. This study analyzed the cavitation performance of ice-blocked propellers near the free surface and provided valuable insights for the design of ice-class propellers. Full article
Show Figures

Figure 1

16 pages, 4767 KiB  
Article
Modelling the Acoustic Propagation in a Test Section of a Cavitation Tunnel: Scattering Issues of the Acoustic Source
by Romuald Boucheron
Modelling 2023, 4(4), 650-665; https://doi.org/10.3390/modelling4040037 - 8 Dec 2023
Cited by 1 | Viewed by 1481
Abstract
The prediction of the underwater-radiated noise for a vessel is classically performed at a model scale and extrapolated by semi-empirical laws. The accuracy of such a method depends on many parameters. Among them, the acoustic propagation model used to estimate the noise measured [...] Read more.
The prediction of the underwater-radiated noise for a vessel is classically performed at a model scale and extrapolated by semi-empirical laws. The accuracy of such a method depends on many parameters. Among them, the acoustic propagation model used to estimate the noise measured at a model scale is important. The present study focuses on the impact of the presence of a source in the transverse plane. The scattering effect, often neglected in many studies, is here investigated. Applying different methods for computation, we perform several simulations of the acoustic pressure field to show the influence of the scattered field. We finally discuss the results and draw some conclusions about the scattering effect in our experimental configuration. Full article
Show Figures

Figure 1

14 pages, 5032 KiB  
Article
Experimental Parameters Influencing the Cavitation Noise of an Oscillating NACA0015 Hydrofoil
by Leonie S. Föhring, Peter Møller Juhl and Dietrich Wittekind
J. Mar. Sci. Eng. 2023, 11(10), 2023; https://doi.org/10.3390/jmse11102023 - 20 Oct 2023
Cited by 3 | Viewed by 1816
Abstract
The strong increase in anthropogenic underwater noise has caused a growing intention to design quieter ships given that ship propellers are one of the dominating noise sources along the worldwide shipping routes. This creates an imminent demand for deeper knowledge on the noise [...] Read more.
The strong increase in anthropogenic underwater noise has caused a growing intention to design quieter ships given that ship propellers are one of the dominating noise sources along the worldwide shipping routes. This creates an imminent demand for deeper knowledge on the noise generation mechanisms of propeller cavitation. A cavitating, oscillating two-dimensional NACA0015 hydrofoil is analyzed with hydrophone and high-speed video recording as a simplified and manipulatable representative of a propeller blade in a ship’s wake field for the identification of major influencing parameters on the radiated noise. A pneumatic drive allows the application of asymmetrical temporal courses of the angle of attack, a novel amendment to the widely reported sinusoidal setups. Three different courses are tested with various cavitation numbers. The combination of a moderate angle increase and a rapid decrease is found to generate significantly higher pressure peaks compared to symmetrical angular courses. Considering that the rapid change of the angle of attack caused by the inhomogeneous wake field behind the hull is the core of the cavitation occurrence, the understanding of its influence may contribute to the design of quieter ships in the future while still allowing for the necessary high propeller efficiency. Full article
Show Figures

Figure 1

26 pages, 3178 KiB  
Review
Micro/Bubble Drag Reduction Focused on New Applications
by Adelaida García-Magariño, Pablo Lopez-Gavilan, Suthyvann Sor and Félix Terroba
J. Mar. Sci. Eng. 2023, 11(7), 1315; https://doi.org/10.3390/jmse11071315 - 28 Jun 2023
Cited by 11 | Viewed by 4664
Abstract
Bubble drag reduction has been shown to be a promising technique for reducing the drag in ships, thus reducing the emission of pollutants and allowing the compliance with the new requirements imposed recently in this respect. Different searches have been conducted in the [...] Read more.
Bubble drag reduction has been shown to be a promising technique for reducing the drag in ships, thus reducing the emission of pollutants and allowing the compliance with the new requirements imposed recently in this respect. Different searches have been conducted in the publications related to this technique, and an increase in interest has been shown, especially in the last decade. In this context, a review of the experimental work related to bubble drag reduction published in the last decade is presented in the present article. The works were classified according to the facility used (towing tank, cavitation tunnel, water channel, Taylor–Couette…), and the main finding are presented. It was found that two new trends in research have arisen, while there are still contradictions in the fundamental basis, which needs further study. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 8776 KiB  
Article
Cavitation Hydrodynamic Performance of 3-D Printed Highly Skewed Stainless Steel Tidal Turbine Rotors
by Stylianos Argyrios Pitsikoulis, Sravya Tekumalla, Anurag Sharma, Wai Leong Eugene Wong, Serkan Turkmen and Pengfei Liu
Energies 2023, 16(9), 3675; https://doi.org/10.3390/en16093675 - 25 Apr 2023
Cited by 5 | Viewed by 1917
Abstract
Hydraulic turbines contribute to 60% of renewable energy in the world; however, they also entail some adverse effects on the aquatic ecology system. One such effect is their excessive noise and vibration. To minimize this effect, one of the most effective and feasible [...] Read more.
Hydraulic turbines contribute to 60% of renewable energy in the world; however, they also entail some adverse effects on the aquatic ecology system. One such effect is their excessive noise and vibration. To minimize this effect, one of the most effective and feasible solutions is to modify the design of the turbine rotor blade by introducing a skew. In this study, two 0.3-meter tidal turbines with 0-degree (no-skewness) and positive 90-degree skewness made of stainless steel 316L were designed and printed using a 3-D printing powder bed fusion technique. These rotors were then tested at the Emerson Cavitation Tunnel (ECT) at Newcastle University, UK, and the variation in the skewness of the blades of the turbines as a function of the power coefficient on a given tip speed ratio (TSR) value was ascertained. Results showed that the highly skewed rotor had significantly lower drag and torque fluctuations, with a slight decrease in efficiency compared to the non-skewed one, which warrants further investigation on the effect of added skew to reduce vibration and noise. Numerical simulations were also performed for verification and validation of the experimental tests, using the H45 dynamometer at the ECT. A comprehensive software code for propellers and tidal turbines, ROTORYSICS, was used to examine the cavitation effect of the two rotors; a comparison was made for both, with and without cavitation. The results indicate that for a high immersion depth of tidal turbine rotors, cavitation rarely occurs, but for hydrokinetic turbines that are installed on dams in rivers and falls, cavitation could be a serious concern. It was concluded that the 0-degree skewed rotor is more hydrodynamically efficient than the 90-degree skewed rotor. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

29 pages, 30183 KiB  
Article
Multiphase Flow Simulation of ITTC Standard Cavitator for Underwater Radiated Noise Prediction
by Antti Hynninen, Ville Viitanen, Jukka Tanttari, Rhena Klose, Claudio Testa and Jussi Martio
J. Mar. Sci. Eng. 2023, 11(4), 820; https://doi.org/10.3390/jmse11040820 - 12 Apr 2023
Cited by 3 | Viewed by 2131
Abstract
This work focuses on the main issues related to noise measurements in cavitation tunnels. The scope of the paper is to twofold: to obtain a better understanding on the main phenomena underlying experiments and to define consistent cavitation tunnel measurement corrections for background [...] Read more.
This work focuses on the main issues related to noise measurements in cavitation tunnels. The scope of the paper is to twofold: to obtain a better understanding on the main phenomena underlying experiments and to define consistent cavitation tunnel measurement corrections for background noise, wall reflections, and distance normalisation. To this aim, the acoustic field generated by the ITTC standard cavitator model inside a cavitation tunnel is predicted by Lighthill’s acoustic analogy and solved through a finite element method that inherently accounts for the presence of the walls. Sources of sound detection relies on two multiphase CFD solvers, namely, the homogeneous mixture model—Volume of Fluid method and the Euler–Euler formulations. Starting from the computation of the sound pressure level in the free field with the assumption of spherical spreading without absorption, corrections from losses and spreading are detected by the above approach. Background-corrected sound pressure levels are identified and then compared with the source levels measured in the cavitation tunnel of the Potsdam Model Basin (SVA). It is found that free-field computations corrected by tunnel-induced effects match well with experiments up to 100 Hz (in the one-third octave band), whereas relevant discrepancies arise out of this range that need further investigations. Full article
Show Figures

Figure 1

21 pages, 8778 KiB  
Article
Application of a Deep Neural Network for Acoustic Source Localization Inside a Cavitation Tunnel
by Bo-Jie Lin, Pai-Chen Guan, Hung-Tang Chang, Hong-Wun Hsiao and Jung-Hsiang Lin
J. Mar. Sci. Eng. 2023, 11(4), 773; https://doi.org/10.3390/jmse11040773 - 1 Apr 2023
Cited by 2 | Viewed by 2397
Abstract
Navigating with low noise is the key capability in the submarine design considerations, and noise reduction is also one of the most critical issues in the related fields. Therefore, it is necessary to identify the source of noise during design stage to improve [...] Read more.
Navigating with low noise is the key capability in the submarine design considerations, and noise reduction is also one of the most critical issues in the related fields. Therefore, it is necessary to identify the source of noise during design stage to improve the survivability of the submarines. The main objective of this research is using the supervised neural network to construct the system of noise localization to identify noise source in the large acoustic tunnel. Firstly, we started our proposed method by improving the Yangzhou’s method and Shunsuke’s method. In the test results, we find that the errors of the both can be reduced by using the min-max normalization to highlight the data characteristics of the low amplitude in some frequency. And Yangzhou’s method has higher accuracy than Shunsuke’s method. Then, we reset the diagonal numbers of the cross spectral matrix in Yangzhou’s method to zero and replace mean absolute error to be the loss function for improving the stability of training, and get the most suitable neural network construction for our research. After our optimization, the error decreases from 0.315 m to 0.008 m in cuboid model test. Finally, we apply our method to the cavitation tunnel model. A total of 100 data sets were used for training, 10 sets for verification, and 5 for testing. The average error of the test result is 0.13 m. For the model test in cavitation tunnel in National Taiwan Ocean University, the length of ship model is around 7 m. And the average error is sufficient to determine the noise source position. Full article
(This article belongs to the Special Issue Underwater Acoustics and Digital Signal Processing)
Show Figures

Figure 1

16 pages, 9359 KiB  
Article
Optimization of Blade Position on an Asymmetric Pre-Swirl Stator Used in Container Ships
by Woo-Seok Jin, Moon-Chan Kim, Jin-Gu Kang, Yong-Jin Shin and Kyuong-Wan Lee
J. Mar. Sci. Eng. 2023, 11(1), 50; https://doi.org/10.3390/jmse11010050 - 29 Dec 2022
Cited by 4 | Viewed by 2942
Abstract
Owing to environmental regulations, ships are equipped with a pre-swirl stator (PSS), which is one of the most effective energy-saving devices (ESDs) that is widely applied to various kinds of ships. It improves energy efficiency by recovering the rotational kinetic energy of the [...] Read more.
Owing to environmental regulations, ships are equipped with a pre-swirl stator (PSS), which is one of the most effective energy-saving devices (ESDs) that is widely applied to various kinds of ships. It improves energy efficiency by recovering the rotational kinetic energy of the propeller with the aid of a PSS placed in front of the propeller. In this study, an asymmetric PSS system is applied to the 2500 TEU eco-friendly liquefied natural gas (LNG) fuel feeder container ship, aimed at optimizing the position of stator blades, using a potential-based program. Additionally, a parametric study was conducted for evaluating the optimum pitch angle and blade spacing. STAR-CCM+ was used for validating the efficiency of the final design. The Samsung towing tank and large cavitation tunnel were also utilized to verify the improvement in the performance of the proposed PSS. Although the efficiency gain is not largely affected by blade position optimization, the cavitation and pressure fluctuation issues are addressed by improving the in-flow to the propeller. Therefore, blade spacing optimization of the stator is important for container ships whose cavitation performance is very significant, especially the relatively high-speed commercial vessels. Full article
(This article belongs to the Special Issue Energy Saving Devices for Ships)
Show Figures

Figure 1

16 pages, 3980 KiB  
Article
Acoustic Source Characterization of Marine Propulsors
by Jukka Tanttari and Antti Hynninen
J. Mar. Sci. Eng. 2022, 10(9), 1273; https://doi.org/10.3390/jmse10091273 - 9 Sep 2022
Cited by 6 | Viewed by 2459
Abstract
Marine propulsors represent one of the most important contributors among anthropogenic sounds radiated into water. Blade based propulsors, e.g., propellers, generate tones at the blade passing frequency and its harmonics, especially in cavitating conditions. In addition to hydrodynamic noise, pressure fluctuations cause vibrations [...] Read more.
Marine propulsors represent one of the most important contributors among anthropogenic sounds radiated into water. Blade based propulsors, e.g., propellers, generate tones at the blade passing frequency and its harmonics, especially in cavitating conditions. In addition to hydrodynamic noise, pressure fluctuations cause vibrations in ship hull leading to mechanical noise. For noise prediction purposes, it is highly beneficial to characterize the noise sources as simplified, complex valued arrays having information on source positions, source strengths and phases. In this paper, procedure to characterize marine propulsors as acoustic sources with inverse method is introduced. First, the numerical model with complete hydro-acoustic sources is investigated. Second, a source model composed of sensible number and distribution of elementary (“equivalent”) compact sources is specified. Then selected responses are used as input in source characterization with inverse method. Finally, the model with equivalent sources is solved and the results are validated by comparison against the results from the complete simulation model. The introduced acoustic source characterization procedure of marine propulsors is applicable also for the responses determined experimentally, e.g., in a cavitation tunnel when the pressure transducer array is determined appropriately. Full article
Show Figures

Figure 1

21 pages, 15309 KiB  
Article
Numerical Analysis and Experimental Investigation of Cavitating Flows Considering Thermal and Compressibility Effects
by Milan Sedlář, Tomáš Krátký, Martin Komárek and Michal Vyroubal
Energies 2022, 15(18), 6503; https://doi.org/10.3390/en15186503 - 6 Sep 2022
Cited by 4 | Viewed by 2101
Abstract
This article deals with the numerical simulation of unsteady cavitating flow around hydrofoils, supported by experimental research realized in a cavitation tunnel situated in the Centre of Hydraulic Research. Two straight NACA hydrofoils (NACA0020 and NACA2412) were employed. The comprehensive unsteady CFD analysis [...] Read more.
This article deals with the numerical simulation of unsteady cavitating flow around hydrofoils, supported by experimental research realized in a cavitation tunnel situated in the Centre of Hydraulic Research. Two straight NACA hydrofoils (NACA0020 and NACA2412) were employed. The comprehensive unsteady CFD analysis was based on scale-resolving simulations (hereinafter SRS) with the aim of capturing correctly the interactions between the cavitation structures and re-entrant flow as well as the compressibility and thermal effects of cavitation. The static pressure fluctuations during the cavity oscillation cycles and the evaporation and condensation processes are discussed in detail. To predict correctly the high-pressure peaks during the bubble cloud collapses and the pressure pulse propagation speed, the real properties of water and the mixture total energy conservation equation were considered. In addition, the estimated content of undissolved air was taken into account. The numerical simulations were validated by means of already published experiments or compared with experiments conducted by the authors, and with good agreement. Full article
Show Figures

Figure 1

15 pages, 43943 KiB  
Article
Easy-Scalable Flexible Sensors Made of Carbon Nanotube-Doped Polydimethylsiloxane: Analysis of Manufacturing Conditions and Proof of Concept
by Antonio del Bosque, Xoan F. Sánchez-Romate, María Sánchez and Alejandro Ureña
Sensors 2022, 22(14), 5147; https://doi.org/10.3390/s22145147 - 8 Jul 2022
Cited by 22 | Viewed by 2696
Abstract
Carbon nanotube (CNT) reinforced polydimethylsiloxane (PDMS) easy-scalable sensors for human motion monitoring are proposed. First, the analysis of the dispersion procedure of nanoparticles into the polymer matrix shows that the ultrasonication (US) technique provides a higher electrical sensitivity in comparison to three-roll milling [...] Read more.
Carbon nanotube (CNT) reinforced polydimethylsiloxane (PDMS) easy-scalable sensors for human motion monitoring are proposed. First, the analysis of the dispersion procedure of nanoparticles into the polymer matrix shows that the ultrasonication (US) technique provides a higher electrical sensitivity in comparison to three-roll milling (3RM) due to the higher homogeneity of the CNT distribution induced by the cavitation forces. Furthermore, the gauge factor (GF) calculated from tensile tests decreases with increasing the CNT content, as the interparticle distance between CNTs is reduced and, thus, the contribution of the tunnelling mechanisms diminishes. Therefore, the optimum conditions were set at 0.4 CNT wt.% dispersed by US procedure, providing a GF of approximately 37 for large strains. The electrical response under cycling load was tested at 2%, 5%, and 10% strain level, indicating a high robustness of the developed sensors. Thus, this strain sensor is in a privileged position with respect to the state-of-the-art, considering all the characteristics that this type of sensor must accomplish: high GF, high flexibility, high reproducibility, easy manufacturing, and friendly operation. Finally, a proof-of-concept of human motion monitoring by placing a sensor for elbow and finger movements is carried out. The electrical resistance was found to increase, as expected, with the bending angle and it is totally recovered after stretching, indicating that there is no prevalent damage and highlighting the huge robustness and applicability of the proposed materials as wearable sensors. Full article
(This article belongs to the Special Issue Sensing Technologies with Carbon Nanotube-Based Materials)
Show Figures

Figure 1

19 pages, 5510 KiB  
Article
Experimental and Numerical Study on Ice Blockage Performance of Propeller in Cavitation Flow
by Li Zhou, Sijie Zheng, Feng Diao, Shifeng Ding and Junliang Gao
Water 2022, 14(7), 1060; https://doi.org/10.3390/w14071060 - 28 Mar 2022
Cited by 9 | Viewed by 3385
Abstract
Cavitation greatly affects the ice blockage performance of propellers in polar areas, while the combined effect of cavitation and ice blockage on propellers has rarely been considered. In this work, the propeller model test in the cavitation tunnel and the viscous flow CFD [...] Read more.
Cavitation greatly affects the ice blockage performance of propellers in polar areas, while the combined effect of cavitation and ice blockage on propellers has rarely been considered. In this work, the propeller model test in the cavitation tunnel and the viscous flow CFD numerical simulation based on RANS were conducted. In the cavitation tunnel test, the ice blockage model was simulated by a water-insoluble rectangular solid block, and the ice blockage was measured by the distance between the solid block and the propeller. The thrust and torque in tests and simulations were discussed under the uniform flow and ice blockage scenarios, as well as the variation of cavitation excitation force, pressure distribution of blades, cavitation characteristics and vortex intensity with advance coefficient when σn = 1.5, L/D = 0.15 in an ice blockage environment. The research shows that the numerical simulation results based on overlapping grids are in good agreement with the model test results, and the mean hydrodynamic errors are within 5%. In the uniform flow test, when the advance coefficient is small, the thrust and torque of the propeller will experience a sharp drop due to the influence of heavy cavitation. In the ice blockage test, the thrust and torque increase with the decrease of ice-propeller spacing, and the ice blockage becomes more serious as the cavitation grows. The propeller oscillates violently due to the cavitation excitation force, and the oscillation frequency increases with the increase of the advance coefficient. The cavitation is generated in the low-pressure area of the suction surface, and the cavitation shape captured in the present numerical simulation is consistent with the experimental phenomenon. Since the cavitation reduces the contact area between the water and the blade, the vortex strength will be reduced for the attachment of cavitation, and the vortex strength increases with the increase of the advance coefficient. This study will explore more hydrodynamic regularities with ice-class propellers in an ice blockage environment when cavitation occurrs, and provide technical support for the design of propellers of polar ships. Full article
(This article belongs to the Special Issue Sea, River, Lake Ice Properties and Their Applications in Practices)
Show Figures

Figure 1

16 pages, 6031 KiB  
Article
Experimental and Numerical Studies of Cloud Cavitation Behavior around a Reversible S-Shaped Hydrofoil
by Haiyu Liu, Fangping Tang, Shikai Yan and Daliang Li
J. Mar. Sci. Eng. 2022, 10(3), 386; https://doi.org/10.3390/jmse10030386 - 8 Mar 2022
Cited by 18 | Viewed by 3098
Abstract
The S-shaped hydrofoil is often used in the design of reversible machinery due to its centrally symmetrical camber line. The objective of this paper is to study the influence of cloud cavitation on the flow structure and the unsteady characteristics of lift and [...] Read more.
The S-shaped hydrofoil is often used in the design of reversible machinery due to its centrally symmetrical camber line. The objective of this paper is to study the influence of cloud cavitation on the flow structure and the unsteady characteristics of lift and drag around an S-shaped hydrofoil via experimental tests and numerical simulations. In the experimental component, the tests were carried out in a cavitation tunnel and a high-speed camera was used to record the cavitation details around the S-shaped hydrofoil with different cavitation numbers. The experimental results show that sheet cavitation gradually transforms into cloud cavitation with a decrease in the inlet cavitation number, the maximum cavity length increases faster after the occurrence of cloud cavitation, and the shedding cycle time of cloud cavitation gradually increases with a decrease in the inlet cavitation number. In the numerical component, the numerical results are in good agreement with the experimental data. The numerical results show that the movement of the re-entrant jet is the main factor for the formation of the cloud cavitation around the S-shaped hydrofoil. The shedding cloud cavity induces the U-shaped vortex structure around the S-shaped hydrofoil, and it produces a higher vorticity distribution around the cavity. The periodic motion of cloud cavity causes the unsteady fluctuation of the lift–drag coefficient of the S-shaped hydrofoil, and because of the unique pressure distribution characteristics of the S-shaped hydrofoil, the lift and drag coefficient appeared as two peaks in one typical cycle of cloud cavitation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 30035 KiB  
Article
Fluid-Structure Interaction of a Foiling Craft
by Laura Marimon Giovannetti, Ali Farousi, Fabian Ebbesson, Alois Thollot, Alex Shiri and Arash Eslamdoost
J. Mar. Sci. Eng. 2022, 10(3), 372; https://doi.org/10.3390/jmse10030372 - 6 Mar 2022
Cited by 6 | Viewed by 8983
Abstract
Hydrofoils are a current hot topic in the marine industry both in high performance sailing and in new passenger transport systems in conjunction with electric propulsion. In the sailing community, the largest impact is seen from the America’s cup, where boats are sailed [...] Read more.
Hydrofoils are a current hot topic in the marine industry both in high performance sailing and in new passenger transport systems in conjunction with electric propulsion. In the sailing community, the largest impact is seen from the America’s cup, where boats are sailed at more than 50 knots (over 100 km/h) with 100% “flying” time. Hydrofoils are also becoming popular in the Olympics, as in the 2024 Olympic games 5 gold medals will be decided on foiling boats/boards. The reason for the increasing popularity of hydrofoils and foiling boats is the recent advances in composite materials, especially in their strength to stiffness ratio. In general, hydrofoils have a very small wetted surface area compared to the wetted surface area of the hull. Therefore, after “take-off” speed, the wetted surface area of the hull, and consequently the resistance of the boat, is reduced considerably. The larger the weight of the boat and crew and the higher the speeds, the greater the loads on the hydrofoils will be. The current research investigates the interaction effects between the fluid and structure of the ZP00682 NACRA 17 Z-foil. The study is carried out both experimentally, in SSPA’s cavitation tunnel, and numerically using a fully coupled viscous solver with a structural analysis tool. The experimental methodology has been used to validate the numerical tools, which in turn are used to reverse engineer the material properties and the internal stiffness of the NACRA 17 foil. The experimental flow speed has been chosen to represent realistic foiling speeds found in the NACRA 17 class, namely 5, 7, and 9 m/s. The forces and the deflection of the Z-foil are investigated, showing a maximum deflection corresponding to 24% of the immersed span. Finally, the effects of leeway and rake angles on the bending properties of the Z-foil are investigated to assess the influence of different angles in sailing strategies, showing that a differential rake set-up might be preferred in search for minimum drag. Full article
(This article belongs to the Special Issue Hydrodynamic Performances of Planing and Foiling Craft)
Show Figures

Figure 1

Back to TopTop