Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,352)

Search Parameters:
Keywords = cause of accident

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 (registering DOI) - 5 Aug 2025
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

18 pages, 1832 KiB  
Article
On-Demand Maintenance Method Using Fault Prediction to Reduce Elevator Entrapment
by Tianshun Cui, Linlin Wu, Libin Wang, Zhiqun Luo, Yugang Dong and Qiang Wang
Appl. Sci. 2025, 15(15), 8644; https://doi.org/10.3390/app15158644 (registering DOI) - 5 Aug 2025
Abstract
With the rapid growth of elevator installations, conventional scheduled maintenance struggles to meet the dual demands of ensuring operational safety and cost control. This study proposes an innovative on-demand maintenance method that aligns with the Chinese policy directives on elevator maintenance reform. First, [...] Read more.
With the rapid growth of elevator installations, conventional scheduled maintenance struggles to meet the dual demands of ensuring operational safety and cost control. This study proposes an innovative on-demand maintenance method that aligns with the Chinese policy directives on elevator maintenance reform. First, we conduct a historical fault cause analysis to identify the root causes of elevator entrapment incidents. Next, we establish an entrapment prediction model based on our historical data. Then, we design an elevator entrapment risk index report according to the prediction results. Finally, we formulate an on-demand maintenance plan that combines insights from the report with the conclusions of the cause analysis. Field implementation and comparative experiments demonstrate that the proposed on-demand maintenance method outperforms the scheduled one. The result shows significant reductions in accident and maintenance workload, justifying the practical value of this approach for the industry. Full article
(This article belongs to the Special Issue Recent Advances and Innovation in Prognostics and Health Management)
Show Figures

Figure 1

16 pages, 332 KiB  
Systematic Review
Blood Biomarkers as Optimization Tools for Computed Tomography in Mild Traumatic Brain Injury Management in Emergency Departments: A Systematic Review
by Ángela Caballero Ballesteros, María Isabel Alonso Gallardo and Juan Mora-Delgado
J. Pers. Med. 2025, 15(8), 350; https://doi.org/10.3390/jpm15080350 - 3 Aug 2025
Viewed by 80
Abstract
Background/Objectives: Traumatic brain injury (TBI), especially mild TBI (mTBI), is frequently caused by traffic accidents, falls, or sports injuries. Although computed tomography (CT) is the gold standard for diagnosis, overuse can lead to unnecessary radiation exposure, increased healthcare costs, and emergency department saturation. [...] Read more.
Background/Objectives: Traumatic brain injury (TBI), especially mild TBI (mTBI), is frequently caused by traffic accidents, falls, or sports injuries. Although computed tomography (CT) is the gold standard for diagnosis, overuse can lead to unnecessary radiation exposure, increased healthcare costs, and emergency department saturation. Blood-based biomarkers have emerged as potential tools to optimize CT scan use. This systematic review aims to evaluate recent evidence on the role of specific blood biomarkers in guiding CT decisions in patients with mTBI. Methods: A systematic search was conducted in the PubMed, Cochrane, and CINAHL databases for studies published between 2020 and 2024. Inclusion criteria focused on adult patients with mTBI evaluated using both CT imaging and at least one of the following biomarkers: glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and S100 calcium-binding protein B (S100B). After screening, six studies were included in the final review. Results: All included studies reported high sensitivity and negative predictive value for the selected biomarkers in detecting clinically relevant intracranial lesions. GFAP and UCH-L1, particularly in combination, consistently identified low-risk patients who could potentially forgo CT scans. While S100B also showed high sensitivity, discrepancies in cutoff values across studies highlighted the need for harmonization. Conclusions: Blood biomarkers such as GFAP, UCH-L1, and S100B demonstrate strong potential to reduce unnecessary CT imaging in mTBI by identifying patients at low risk of significant brain injury. Future research should focus on standardizing biomarker thresholds and validating protocols to support their integration into clinical practice guidelines. Full article
Show Figures

Figure 1

15 pages, 2879 KiB  
Article
Study on the Eye Movement Transfer Characteristics of Drivers Under Different Road Conditions
by Zhenxiang Hao, Jianping Hu, Xiaohui Sun, Jin Ran, Yuhang Zheng, Binhe Yang and Junyao Tang
Appl. Sci. 2025, 15(15), 8559; https://doi.org/10.3390/app15158559 (registering DOI) - 1 Aug 2025
Viewed by 153
Abstract
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, [...] Read more.
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, and downhill, were selected, and the eye movement data of 23 drivers in different driving stages were collected by aSee Glasses eye-tracking device to analyze the visual gaze characteristics of the drivers and their transfer patterns in each road section. Using Markov chain theory, the probability of staying at each gaze point and the transfer probability distribution between gaze points were investigated. The results of the study showed that drivers’ visual behaviors in different road sections showed significant differences: drivers in the turning section had the largest percentage of fixation on the near front, with a fixation duration and frequency of 29.99% and 28.80%, respectively; the straight ahead section, on the other hand, mainly focused on the right side of the road, with 31.57% of fixation duration and 19.45% of frequency of fixation; on the uphill section, drivers’ fixation duration on the left and right roads was more balanced, with 24.36% of fixation duration on the left side of the road and 25.51% on the right side of the road; drivers on the downhill section looked more frequently at the distance ahead, with a total fixation frequency of 23.20%, while paying higher attention to the right side of the road environment, with a fixation duration of 27.09%. In terms of visual fixation, the fixation shift in the turning road section was mainly concentrated between the near and distant parts of the road ahead and frequently turned to the left and right sides; the straight road section mainly showed a shift between the distant parts of the road ahead and the dashboard; the uphill road section was concentrated on the shift between the near parts of the road ahead and the two sides of the road, while the downhill road section mainly occurred between the distant parts of the road ahead and the rearview mirror. Although drivers’ fixations on the front of the road were most concentrated under the four road sections, with an overall fixation stability probability exceeding 67%, there were significant differences in fixation smoothness between different road sections. Through this study, this paper not only reveals the laws of drivers’ visual behavior under different driving environments but also provides theoretical support for behavior-based traffic safety improvement strategies. Full article
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 (registering DOI) - 1 Aug 2025
Viewed by 194
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

18 pages, 1610 KiB  
Article
Patterns and Causes of Aviation Accidents in Slovakia: A 17-Year Analysis
by Matúš Materna, Lucia Duricova and Andrea Maternová
Aerospace 2025, 12(8), 694; https://doi.org/10.3390/aerospace12080694 - 1 Aug 2025
Viewed by 135
Abstract
Civil aviation safety remains a critical concern globally, with continuous efforts aimed at reducing accidents and fatalities. This paper focuses on the comprehensive evaluation of civil aviation safety in the Slovak Republic over the past several years, with the main objective of identifying [...] Read more.
Civil aviation safety remains a critical concern globally, with continuous efforts aimed at reducing accidents and fatalities. This paper focuses on the comprehensive evaluation of civil aviation safety in the Slovak Republic over the past several years, with the main objective of identifying prevailing trends and key risk factors. A comprehensive analysis of 155 accidents and incidents was conducted based on selected operational parameters. Logistic regression was applied to identify potential causal factors influencing various levels of injury severity in aviation accidents. Moreover, the prediction model can also be used to predict the probability of specific injury severity for accidents with given parameter values. The results indicate a clear declining trend in the annual number of aviation safety events; however, the fatality rate has stagnated or slightly increased in recent years. Human error, particularly mistakes and intentional violations of procedures, was identified as the dominant causal factor across all sectors of civil aviation, including flight operations, airport management, maintenance, and air navigation services. Despite technological advancements and regulatory improvements, human-related failures persist as a major safety challenge. The findings highlight the critical need for targeted strategies to mitigate human error and enhance overall aviation safety in the Slovak Republic. Full article
(This article belongs to the Special Issue New Trends in Aviation Development 2024–2025)
Show Figures

Figure 1

19 pages, 1174 KiB  
Article
Actuator Fault-Tolerant Control for Mechatronic Systems and Output Regulation with Unknown Reference Signals
by Miguel Amador-Macias, Tonatiuh Hernández-Cortés, Víctor Estrada-Manzo, Jaime González-Sierra and Ricardo Tapia-Herrera
Appl. Sci. 2025, 15(15), 8551; https://doi.org/10.3390/app15158551 (registering DOI) - 1 Aug 2025
Viewed by 170
Abstract
Today, mechatronic systems are required to operate reliably and safely. However, actuators can fail, causing the system to malfunction or, in the worst case, resulting in an accident. A clear example of this is the motors of unmanned aerial vehicles. If any of [...] Read more.
Today, mechatronic systems are required to operate reliably and safely. However, actuators can fail, causing the system to malfunction or, in the worst case, resulting in an accident. A clear example of this is the motors of unmanned aerial vehicles. If any of them fail, the vehicle loses control, resulting in a catastrophe and potentially leading to the partial or total loss of the system. Therefore, there is a need to design robust control strategies that allow the system to continue operating even with the loss of one of its actuators. Based on the above, this work presents a controller capable of performing output regulation while tolerating actuator faults in actuated robotic platforms. In contrast to traditional output regulation theory, where a known exosystem provides the reference signal, the proposed approach employs a High-Gain Observer (HGO) to estimate and generate the reference signal from an unknown exosystem. Additionally, an Unknown Input (UI) observer is used to estimate actuator faults, enabling the computation of a fault-tolerant control. The methodology is tested in simulation and real-time experiments on the well-known Furuta pendulum system to illustrate the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Control Systems in Mechatronics and Robotics)
Show Figures

Figure 1

32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Viewed by 334
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

11 pages, 1585 KiB  
Article
Age-Related Patterns of Midfacial Fractures in a Hungarian Population: A Single-Center Retrospective Study
by Enikő Orsi, Lilla Makszin, Zoltán Nyárády, Lajos Olasz and József Szalma
J. Clin. Med. 2025, 14(15), 5396; https://doi.org/10.3390/jcm14155396 - 31 Jul 2025
Viewed by 197
Abstract
Background: Midfacial fractures are common outcomes of facial trauma. While younger individuals typically sustain these injuries through high-energy events like assaults and traffic or sports accidents, elderly patients increasingly present with fractures from low-energy mechanisms, primarily falls. Purpose: The aim of this study [...] Read more.
Background: Midfacial fractures are common outcomes of facial trauma. While younger individuals typically sustain these injuries through high-energy events like assaults and traffic or sports accidents, elderly patients increasingly present with fractures from low-energy mechanisms, primarily falls. Purpose: The aim of this study was to analyze age- and gender-specific patterns in midfacial fractures over a 10-year period, with emphasis on elderly individuals and low-energy trauma. Methods: A retrospective review was performed of proven midfacial fractures between 2013 and 2022 at the Department of Oral and Maxillofacial Surgery (University of Pécs, Hungary). The patients were stratified by age (<65 vs. ≥65 years) and gender. The variables included the injury mechanism, fracture localization, the dental status, hospitalization, and the presence of associated injuries. Bivariate analyses were performed, and the significance level was set to p < 0.05. Results: A total of 957 radiologically confirmed midfacial fracture cases were evaluated, of whom 344 (35.9%) were ≥65 years old. In the elderly group, females had a 19-fold higher risk for midfacial trauma than younger females (OR: 19.1, 95%CI: 9.30–39.21). In the older group, a fall was significantly the most frequent injury mechanism (OR: 14.5; 95%CI: 9.9–21.3), responsible for 89.5% of the cases, while hospitalization (OR: 0.36; 95%CI: 0.23–0.56) was less characteristic. Most of the fractures occurred in the zygomatic bone, in the zygomaticomaxillary complex, or in the anterior wall of the maxilla. Associated injuries in the elderly group included mostly lower limb injuries—particularly pertrochanteric femoral fractures in females—and upper limb injuries, with a slight male dominance. Conclusions: Low-energy falls are the primary cause of midfacial fractures in elderly patients, particularly in women. Tailored prevention and management strategies are essential for improving the outcomes in this growing demographic group. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

19 pages, 2913 KiB  
Article
Radiation Mapping: A Gaussian Multi-Kernel Weighting Method for Source Investigation in Disaster Scenarios
by Songbai Zhang, Qi Liu, Jie Chen, Yujin Cao and Guoqing Wang
Sensors 2025, 25(15), 4736; https://doi.org/10.3390/s25154736 - 31 Jul 2025
Viewed by 153
Abstract
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant [...] Read more.
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant challenge in emergency response scenarios. To address this issue, based on standard Gaussian process regression (GPR) models that primarily utilize a single Gaussian kernel to reflect the inverse-square law in free space, a novel multi-kernel Gaussian process regression (MK-GPR) model is proposed for high-fidelity radiation mapping in environments with physical obstructions. MK-GPR integrates two additional kernel functions with adaptive weighting: one models the attenuation characteristics of intervening materials, and the other captures the energy-dependent penetration behavior of radiation. To validate the model, gamma-ray distributions in complex, shielded environments were simulated using GEometry ANd Tracking 4 (Geant4). Compared with conventional methods, including linear interpolation, nearest-neighbor interpolation, and standard GPR, MK-GPR demonstrated substantial improvements in key evaluation metrics, such as MSE, RMSE, and MAE. Notably, the coefficient of determination (R2) increased to 0.937. For practical deployment, the optimized MK-GPR model was deployed to an RK-3588 edge computing platform and integrated into a mobile robot equipped with a NaI(Tl) detector. Field experiments confirmed the system’s ability to accurately map radiation fields and localize gamma sources. When combined with SLAM, the system achieved localization errors of 10 cm for single sources and 15 cm for dual sources. These results highlight the potential of the proposed approach as an effective and deployable solution for radiation source investigation in post-disaster environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Synthetic Data Generation for Machine Learning-Based Hazard Prediction in Area-Based Speed Control Systems
by Mariusz Rychlicki and Zbigniew Kasprzyk
Appl. Sci. 2025, 15(15), 8531; https://doi.org/10.3390/app15158531 (registering DOI) - 31 Jul 2025
Viewed by 243
Abstract
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a [...] Read more.
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a continuous vehicle speed monitoring system to minimize the risk of traffic accidents caused by speeding. The SUMO traffic simulator was used to model driver behavior in the analyzed area and within a given road network. Data from OpenStreetMap and field measurements from over a dozen speed detectors were integrated. Preliminary tests were carried out to record vehicle speeds. Based on these data, several simulation scenarios were run and compared to real-world observations using average speed, the percentage of speed limit violations, root mean square error (RMSE), and percentage compliance. A new metric, the Combined Speed Accuracy Score (CSAS), has been introduced to assess the consistency of simulation results with real-world data. For this study, a basic hazard prediction model was developed using LoRaWAN sensor network data and environmental contextual variables, including time, weather, location, and accident history. The research results in a method for evaluating and selecting the simulation scenario that best represents reality and drivers’ propensities to exceed speed limits. The results and findings demonstrate that it is possible to produce synthetic data with a level of agreement exceeding 90% with real data. Thus, it was shown that it is possible to generate synthetic data for machine learning in hazard prediction for area-based speed control systems using traffic simulators. Full article
Show Figures

Figure 1

29 pages, 1289 KiB  
Article
An Analysis of Hybrid Management Strategies for Addressing Passenger Injuries and Equipment Failures in the Taipei Metro System: Enhancing Operational Quality and Resilience
by Sung-Neng Peng, Chien-Yi Huang, Hwa-Dong Liu and Ping-Jui Lin
Mathematics 2025, 13(15), 2470; https://doi.org/10.3390/math13152470 - 31 Jul 2025
Viewed by 282
Abstract
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates [...] Read more.
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates strong novelty and practical contributions. In the passenger injury analysis, a dataset of 3331 cases was examined, from which two highly explanatory rules were extracted: (i) elderly passengers (aged > 61) involved in station incidents are more likely to suffer moderate to severe injuries; and (ii) younger passengers (aged ≤ 61) involved in escalator incidents during off-peak hours are also at higher risk of severe injury. This is the first study to quantitatively reveal the interactive effect of age and time of use on injury severity. In the train malfunction analysis, 1157 incidents with delays exceeding five minutes were analyzed. The study identified high-risk condition combinations—such as those involving rolling stock, power supply, communication, and signaling systems—associated with specific seasons and time periods (e.g., a lift value of 4.0 for power system failures during clear mornings from 06:00–12:00, and 3.27 for communication failures during summer evenings from 18:00–24:00). These findings were further cross-validated with maintenance records to uncover underlying causes, including brake system failures, cable aging, and automatic train operation (ATO) module malfunctions. Targeted preventive maintenance recommendations were proposed. Additionally, the study highlighted existing gaps in the completeness and consistency of maintenance records, recommending improvements in documentation standards and data auditing mechanisms. Overall, this research presents a new paradigm for intelligent metro system maintenance and safety prediction, offering substantial potential for broader adoption and practical application. Full article
Show Figures

Figure 1

22 pages, 9978 KiB  
Article
An Integrated Analysis of Transcriptomics and Metabolomics Elucidates the Role and Mechanism of TRPV4 in Blunt Cardiac Injury
by Liancong Gao, Liu Han, Xiangyu Ma, Huiyan Wang, Mutan Li and Jianhui Cai
Metabolites 2025, 15(8), 512; https://doi.org/10.3390/metabo15080512 - 31 Jul 2025
Viewed by 215
Abstract
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene [...] Read more.
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene in BCI. Elucidating the function of TRPV4 in BCI may reveal potential novel therapeutic targets for the treatment of this condition. Methods: Rats in each group, including the SD control group (SDCON), the SD blunt-trauma group (SDBT), the TRPV4 gene-knockout control group (KOCON), and the TRPV4 gene-knockout blunt-trauma group (KOBT), were all freely dropped from a fixed height with a weight of 200 g and struck in the left chest with a certain energy, causing BCI. After the experiment, the levels of serum IL-6 and IL-1β were detected to evaluate the inflammatory response. The myocardial tissue structure was observed by HE staining. In addition, cardiac transcriptome analysis was conducted to identify differentially expressed genes, and metabolomics studies were carried out using UHPLC-Q-TOF/MS technology to analyze metabolites. The results of transcriptomics and metabolomics were verified by qRT-PCR and Western blot analysis. Results: Compared with the SDCON group, the levels of serum IL-6 and IL-1β in the SDBT group were significantly increased (p < 0.001), while the levels of serum IL-6 and IL-1β in the KOBT group were significantly decreased (p < 0.001), indicating that the deletion of the TRPV4 gene alleviated the inflammation induced by BCI. HE staining showed that myocardial tissue injury was severe in the SDBT group, while myocardial tissue structure abnormalities were mild in the KOBT group. Transcriptome analysis revealed that there were 1045 upregulated genes and 643 downregulated genes in the KOBT group. These genes were enriched in pathways related to inflammation, apoptosis, and tissue repair, such as p53, apoptosis, AMPK, PPAR, and other signaling pathways. Metabolomics studies have found that TRPV4 regulates nucleotide metabolism, amino-acid metabolism, biotin metabolism, arginine and proline metabolism, pentose phosphate pathway, fructose and mannose metabolism, etc., in myocardial tissue. The combined analysis of metabolic and transcriptional data reveals that tryptophan metabolism and the protein digestion and absorption pathway may be the key mechanisms. The qRT-PCR results corroborated the expression of key genes identified in the transcriptome sequencing, while Western blot analysis validated the protein expression levels of pivotal regulators within the p53 and AMPK signaling pathways. Conclusions: Overall, the deletion of the TRPV4 gene effectively alleviates cardiac injury by reducing inflammation and tissue damage. These findings suggest that TRPV4 may become a new therapeutic target for BCI, providing new insights for future therapeutic strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

30 pages, 10655 KiB  
Review
Accidents in Oil and Gas Pipeline Transportation Systems
by Nediljka Gaurina-Međimurec, Karolina Novak Mavar, Katarina Simon and Fran Djerdji
Energies 2025, 18(15), 4056; https://doi.org/10.3390/en18154056 - 31 Jul 2025
Viewed by 351
Abstract
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United [...] Read more.
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United States to modern infrastructure projects, with a particular focus on the role of regulatory requirements and measures (prevention, detection, and mitigation) to improve transport efficiency and pipeline safety. The research uses historical accident data from various databases to identify the main causes of accidents and analyse trends. The focus is on factors such as corrosion, third-party interference, and natural disasters that can lead to accidents. A comparison of the various accident databases shows that there are different practises and approaches to operation and reporting. As each database differs in terms of inclusion criteria, the categories are divided into five main groups to allow systematic interpretation of the data and cross-comparison of accident causes. Regional differences in the causes of accidents involving oil and gas pipelines in Europe, the USA, and Canada are visible. However, an integrated analysis shows that the number of accidents is declining in almost all categories. The majority of all recorded accidents are in the “Human factors and Operational disruption” and “Corrosion and Material damage” groups. It is recommended to use the database as required, as each category has its own specifics. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

15 pages, 9440 KiB  
Proceeding Paper
Mold Flow Analysis and Method of Injection Molding Technology of Safety Belt Outlet Cover
by Hao Jia, Yang Yang, Yi Li, Chengsi Shu and Jie You
Eng. Proc. 2025, 98(1), 42; https://doi.org/10.3390/engproc2025098042 - 30 Jul 2025
Viewed by 159
Abstract
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the [...] Read more.
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the following parameters: the filling time, flow-front temperature and switching pressure, injection position pressure, locking force, shear rate, shear force, air hole, melting mark, material flow freezing-layer factor, volume shrinkage rate during jacking out, coolant temperature and flow rate in the cooling stage, part temperature, mold temperature difference, deflection stage, warping deformation analysis, differential cooling, differential shrinkage, and directional effect. Full article
Show Figures

Figure 1

Back to TopTop