Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = caudate putamen complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7507 KB  
Article
High-Speed-Ventral-Plane Videography Identifies Specific Gait Pattern Changes in Cuprizone-Induced Demyelination in Mice
by Paula Giesler, Markus Kipp and Alexander Hawlitschka
Cells 2025, 14(13), 969; https://doi.org/10.3390/cells14130969 - 24 Jun 2025
Viewed by 662
Abstract
Gait disturbances are among the most prominent motor symptoms in multiple sclerosis (MS), yet their functional characterization in preclinical models remains limited. In this study, we used high-speed ventral plane videography (DigiGait™) to analyze locomotor behavior during 5 weeks of cuprizone-induced demyelination in [...] Read more.
Gait disturbances are among the most prominent motor symptoms in multiple sclerosis (MS), yet their functional characterization in preclinical models remains limited. In this study, we used high-speed ventral plane videography (DigiGait™) to analyze locomotor behavior during 5 weeks of cuprizone-induced demyelination in 10 male C57BL/6 mice. Gait analysis revealed significant alterations in stride time (left front paw from 0.303 ± 0.01 s to 0.257 ± 0.007 s; p = 0.003), paw angle (right fore paw from −13.78 ± 0.928° to 5.456 ± 2.146°; p = 0.003), and midline distance (right hind paw from 1.889 ± 0.099 cm to 1.216 ± 0.096 cm; p = 0.013), particularly in the hind limbs. These behavioral impairments correlated with histopathological findings of reduced myelination and elevated microglial activation in motor-relevant brain regions, including the corpus callosum, caudate-putamen, and motor cortex. Notably, specific gait parameters showed strong correlations with the degree of demyelination, supporting their relevance as functional biomarkers. Our data demonstrate that high-resolution gait analysis provides a sensitive, non-invasive tool to monitor functional deficits in demyelinating models and may aid in evaluating therapeutic efficacy in future studies. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

45 pages, 9440 KB  
Article
Brain Morphometry and Cognitive Features in the Prediction of Irritable Bowel Syndrome
by Arvid Lundervold, Ben René Bjørsvik , Julie Billing , Birgitte Berentsen , Gülen Arslan Lied , Elisabeth K. Steinsvik , Trygve Hausken , Daniela M. Pfabigan  and Astri J. Lundervold 
Diagnostics 2025, 15(4), 470; https://doi.org/10.3390/diagnostics15040470 - 14 Feb 2025
Viewed by 1396
Abstract
Background/Objectives: Irritable bowel syndrome (IBS) is a gut–brain disorder characterized by abdominal pain, altered bowel habits, and psychological distress. While brain–gut interactions are recognized in IBS pathophysiology, the relationship between brain morphometry, cognitive function, and clinical features remains poorly understood. The study aims [...] Read more.
Background/Objectives: Irritable bowel syndrome (IBS) is a gut–brain disorder characterized by abdominal pain, altered bowel habits, and psychological distress. While brain–gut interactions are recognized in IBS pathophysiology, the relationship between brain morphometry, cognitive function, and clinical features remains poorly understood. The study aims to conduct the following: (i) to replicate previous univariate morphometric findings in IBS patients and conduct software comparisons; (ii) to investigate whether multivariate analysis of brain morphometric measures and cognitive performance can distinguish IBS patients from healthy controls (HCs), and evaluate the importance of structural and cognitive features in this discrimination. Methods: We studied 49 IBS patients and 29 HCs using structural brain magnetic resonance images (MRIs) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Brain morphometry was analyzed using FreeSurfer v6.0.1 and v7.4.1, with IBS severity assessed via the IBS-Severity Scoring System. We employed univariate, multivariate, and machine learning approaches with cross-validation. Results: The FreeSurfer version comparison revealed substantial variations in morphometric measurements, while morphometric measures alone showed limited discrimination between groups; combining morphometric and cognitive measures achieved 93% sensitivity in identifying IBS patients (22% specificity). The feature importance analysis highlighted the role of subcortical structures (the hippocampus, caudate, and putamen) and cognitive domains (recall and verbal skills) in group discrimination. Conclusions: Our comprehensive open-source framework suggests that combining brain morphometry and cognitive measures improves IBS-HC discrimination compared to morphometric measures alone. The importance of subcortical structures and specific cognitive domains supports complex brain–gut interaction in IBS, emphasizing the need for multimodal approaches and rigorous methodological considerations. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Gastrointestinal Disease)
Show Figures

Figure 1

20 pages, 2323 KB  
Review
Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine
by Andrijana Stanisavljević Ilić and Dragana Filipović
Pharmaceuticals 2024, 17(11), 1527; https://doi.org/10.3390/ph17111527 - 13 Nov 2024
Cited by 3 | Viewed by 3505
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie [...] Read more.
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments. Full article
Show Figures

Figure 1

16 pages, 3378 KB  
Article
Multifractal Analysis of Neuronal Morphology in the Human Dorsal Striatum: Age-Related Changes and Spatial Differences
by Zorana Nedeljković, Bojana Krstonošić, Nebojša Milošević, Olivera Stanojlović, Dragan Hrnčić and Nemanja Rajković
Fractal Fract. 2024, 8(9), 514; https://doi.org/10.3390/fractalfract8090514 - 30 Aug 2024
Cited by 1 | Viewed by 1355
Abstract
Multifractal analysis offers a sophisticated method to examine the complex morphology of neurons, which traditionally have been analyzed using monofractal techniques. This study investigates the multifractal properties of two-dimensional neuron projections from the human dorsal striatum, focusing on potential morphological changes related to [...] Read more.
Multifractal analysis offers a sophisticated method to examine the complex morphology of neurons, which traditionally have been analyzed using monofractal techniques. This study investigates the multifractal properties of two-dimensional neuron projections from the human dorsal striatum, focusing on potential morphological changes related to aging and differences based on spatial origin within the nucleus. Using multifractal spectra, we analyzed various parameters, including generalized dimensions and Hölder exponents, to characterize the neurons’ morphology. Despite the detailed analysis, no significant correlation was found between neuronal morphology and age. However, clear morphological differences were observed between neurons from the caudate nucleus and the putamen. Neurons from the putamen displayed higher morphological complexity and greater local homogeneity, while those from the caudate nucleus exhibited more scaling laws and higher local heterogeneity. These findings suggest that while age may not significantly impact neuronal morphology in the dorsal striatum, the spatial origin within this brain region plays a crucial role in determining neuronal structure. Further studies with larger samples are recommended to confirm these findings and to explore the full potential of multifractal analysis in neuronal morphology research. Full article
Show Figures

Figure 1

12 pages, 801 KB  
Article
Constructing the Schizophrenia Recognition Method Employing GLCM Features from Multiple Brain Regions and Machine Learning Techniques
by Şerife Gengeç Benli and Merve Andaç
Diagnostics 2023, 13(13), 2140; https://doi.org/10.3390/diagnostics13132140 - 22 Jun 2023
Cited by 8 | Viewed by 2631
Abstract
Accurately diagnosing schizophrenia, a complex psychiatric disorder, is crucial for effectively managing the treatment process and methods. Various types of magnetic resonance (MR) images have the potential to serve as biomarkers for schizophrenia. The aim of this study is to numerically analyze differences [...] Read more.
Accurately diagnosing schizophrenia, a complex psychiatric disorder, is crucial for effectively managing the treatment process and methods. Various types of magnetic resonance (MR) images have the potential to serve as biomarkers for schizophrenia. The aim of this study is to numerically analyze differences in the textural characteristics that may occur in the bilateral amygdala, caudate, pallidum, putamen, and thalamus regions of the brain between individuals with schizophrenia and healthy controls via structural MR images. Towards this aim, Gray Level Co-occurence Matrix (GLCM) features obtained from five regions of the right, left, and bilateral brain were classified using machine learning methods. In addition, it was analyzed in which hemisphere these features were more distinctive and which method among Adaboost, Gradient Boost, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Naive Bayes had higher classification success. When the results were examined, it was demonstrated that the GLCM features of these five regions in the left hemisphere could be classified as having higher performance in schizophrenia compared to healthy individuals. Using the LDA algorithm, classification success was achieved with a 100% AUC, 94.4% accuracy, 92.31% sensitivity, 100% specificity, and an F1 score of 91.9% in healthy and schizophrenic individuals. Thus, it has been revealed that the textural characteristics of the five predetermined regions, instead of the whole brain, are an important indicator in identifying schizophrenia. Full article
(This article belongs to the Special Issue Application of Deep Learning in the Diagnosis of Brain Diseases)
Show Figures

Figure 1

11 pages, 1346 KB  
Article
Altered Brain Expression of DNA Methylation and Hydroxymethylation Epigenetic Enzymes in a Rat Model of Neuropathic Pain
by Diogo Rodrigues, Clara Monteiro, Helder Cardoso-Cruz and Vasco Galhardo
Int. J. Mol. Sci. 2023, 24(8), 7305; https://doi.org/10.3390/ijms24087305 - 15 Apr 2023
Cited by 13 | Viewed by 3221
Abstract
The role of epigenetics in chronic pain at the supraspinal level is yet to be fully characterized. DNA histone methylation is crucially regulated by de novo methyltransferases (DNMT1-3) and ten-eleven translocation dioxygenases (TET1-3). Evidence has shown that methylation markers are altered in different [...] Read more.
The role of epigenetics in chronic pain at the supraspinal level is yet to be fully characterized. DNA histone methylation is crucially regulated by de novo methyltransferases (DNMT1-3) and ten-eleven translocation dioxygenases (TET1-3). Evidence has shown that methylation markers are altered in different CNS regions related to nociception, namely the dorsal root ganglia, the spinal cord, and different brain areas. Decreased global methylation was found in the DRG, the prefrontal cortex, and the amygdala, which was associated with decreased DNMT1/3a expression. In contrast, increased methylation levels and mRNA levels of TET1 and TET3 were linked to augmented pain hypersensitivity and allodynia in inflammatory and neuropathic pain models. Since epigenetic mechanisms may be responsible for the regulation and coordination of various transcriptional modifications described in chronic pain states, with this study, we aimed to evaluate the functional role of TET1-3 and DNMT1/3a genes in neuropathic pain in several brain areas. In a spared nerve injury rat model of neuropathic pain, 21 days after surgery, we found increased TET1 expression in the medial prefrontal cortex and decreased expression in the caudate-putamen and the amygdala; TET2 was upregulated in the medial thalamus; TET3 mRNA levels were reduced in the medial prefrontal cortex and the caudate-putamen; and DNMT1 was downregulated in the caudate-putamen and the medial thalamus. No statistically significant changes in expression were observed with DNMT3a. Our results suggest a complex functional role for these genes in different brain areas in the context of neuropathic pain. The notion of DNA methylation and hydroxymethylation being cell-type specific and not tissue specific, as well as the possibility of chronologically differential gene expression after the establishment of neuropathic or inflammatory pain models, ought to be addressed in future studies. Full article
(This article belongs to the Special Issue The Multiple Mechanisms Underlying Neuropathic Pain (II))
Show Figures

Figure 1

15 pages, 1810 KB  
Article
Microarrays, Enzymatic Assays, and MALDI-MS for Determining Specific Alterations to Mitochondrial Electron Transport Chain Activity, ROS Formation, and Lipid Composition in a Monkey Model of Parkinson’s Disease
by María Dolores García-Fernández, Ane Larrea, Roberto Fernández, Rafael Rodríguez-Puertas, Egoitz Astigarraga, Iván Manuel and Gabriel Barreda-Gómez
Int. J. Mol. Sci. 2023, 24(6), 5470; https://doi.org/10.3390/ijms24065470 - 13 Mar 2023
Cited by 2 | Viewed by 2887
Abstract
Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson’s disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, [...] Read more.
Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson’s disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, the effects of chronic MPTP on the ETC complexes and on enzymes of lipid metabolism have not yet been thoroughly determined. To face these questions, the enzymatic activities of ETC complexes and the lipidomic profile of MPTP-treated non-human primate samples were determined using cell membrane microarrays from different brain areas and tissues. MPTP treatment induced an increase in complex II activity in the olfactory bulb, putamen, caudate, and substantia nigra, where a decrease in complex IV activity was observed. The lipidomic profile was also altered in these areas, with a reduction in the phosphatidylserine (38:1) content being especially relevant. Thus, MPTP treatment not only modulates ETC enzymes, but also seems to alter other mitochondrial enzymes that regulate the lipid metabolism. Moreover, these results show that a combination of cell membrane microarrays, enzymatic assays, and MALDI-MS provides a powerful tool for identifying and validating new therapeutic targets that might accelerate the drug discovery process. Full article
Show Figures

Figure 1

23 pages, 14988 KB  
Article
Expression Mapping and Functional Analysis of Orphan G-Protein-Coupled Receptor GPR158 in the Adult Mouse Brain Using a GPR158 Transgenic Mouse
by Jinlong Chang, Ze Song, Shoupeng Wei, Yunxia Zhou, Jun Ju, Peijia Yao, Youheng Jiang, Hui Jin, Xinjin Chi and Ningning Li
Biomolecules 2023, 13(3), 479; https://doi.org/10.3390/biom13030479 - 5 Mar 2023
Cited by 9 | Viewed by 4919
Abstract
Aberrant expression of G-protein-coupled receptor 158 (GPR158) has been reported to be inextricably linked to a variety of diseases affecting the central nervous system, including Alzheimer’s disease (AD), depression, intraocular pressure, and glioma, but the underlying mechanism remains elusive due to a lack [...] Read more.
Aberrant expression of G-protein-coupled receptor 158 (GPR158) has been reported to be inextricably linked to a variety of diseases affecting the central nervous system, including Alzheimer’s disease (AD), depression, intraocular pressure, and glioma, but the underlying mechanism remains elusive due to a lack of biological and pharmacological tools to elaborate its preferential cellular distribution and molecular interaction network. To assess the cellular localization, expression, and function of GPR158, we generated an epitope-tagged GPR158 mouse model (GPR158Tag) that exhibited normal motor, cognitive, and social behavior, no deficiencies in social memory, and no anxiety-like behavior compared to C57BL/6J control mice at P60. Using immunofluorescence, we found that GPR158+ cells were distributed in several brain regions including the cerebral cortex, hippocampus, cerebellum, and caudate putamen. Next, using the cerebral cortex of the adult GPR158Tag mice as a representative region, we found that GPR158 was only expressed in neurons, and not in microglia, oligodendrocytes, or astrocytes. Remarkably, the majority of GPR158 was enriched in Camk2a+ neurons whilst limited expression was found in PV+ interneurons. Concomitant 3D co-localization analysis revealed that GPR158 was mainly distributed in the postsynaptic membrane, but with a small portion in the presynaptic membrane. Lastly, via mass spectrometry analysis, we identified proteins that may interact with GPR158, and the relevant enrichment pathways were consistent with the immunofluorescence findings. RNA-seq analysis of the cerebral cortex of the GPR158−/− mice showed that GPR158 and its putative interacting proteins are involved in the chloride channel complex and synaptic vesicle membrane composition. Using these GPR158Tag mice, we were able to accurately label GPR158 and uncover its fundamental function in synaptic vesicle function and memory. Thus, this model will be a useful tool for subsequent biological, pharmacological, and electrophysiological studies related to GPR158. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Compartmentalized GPCR Signaling)
Show Figures

Figure 1

13 pages, 2343 KB  
Article
Human Brain Lipidomics: Pilot Analysis of the Basal Ganglia Sphingolipidome in Parkinson’s Disease and Lewy Body Disease
by Aaron W. Beger, Beatrix Dudzik, Randall L. Woltjer and Paul L. Wood
Metabolites 2022, 12(2), 187; https://doi.org/10.3390/metabo12020187 - 18 Feb 2022
Cited by 14 | Viewed by 4016
Abstract
Sphingolipids constitute a complex class of bioactive lipids with diverse structural and functional roles in neural tissue. Lipidomic techniques continue to provide evidence for their association in neurological diseases, including Parkinson’s disease (PD) and Lewy body disease (LBD). However, prior studies have primarily [...] Read more.
Sphingolipids constitute a complex class of bioactive lipids with diverse structural and functional roles in neural tissue. Lipidomic techniques continue to provide evidence for their association in neurological diseases, including Parkinson’s disease (PD) and Lewy body disease (LBD). However, prior studies have primarily focused on biological tissues outside of the basal ganglia, despite the known relevancy of this brain region in motor and cognitive dysfunction associated with PD and LBD. Therefore electrospray ionization high resolution mass spectrometry was used to analyze levels of sphingolipid species, including ceramides (Cer), dihydroceramides (DHC), hydoxyceramides (OH-Cer), phytoceramides (Phyto-Cer), phosphoethanolamine ceramides (PE-Cer), sphingomyelins (SM), and sulfatides (Sulf) in the caudate, putamen and globus pallidus of PD (n = 7) and LBD (n = 14) human subjects and were compared to healthy controls (n = 9). The most dramatic alterations were seen in the putamen, with depletion of Cer and elevation of Sulf observed in both groups, with additional depletion of OH-Cer and elevation of DHC identified in LBD subjects. Diverging levels of DHC in the caudate suggest differing roles of this lipid in PD and LBD pathogenesis. These sphingolipid alterations in PD and LBD provide evidence for biochemical involvement of the neuronal cell death that characterize these conditions. Full article
Show Figures

Figure 1

16 pages, 2202 KB  
Article
Acute Ethanol Exposure during Synaptogenesis Rapidly Alters Medium Spiny Neuron Morphology and Synaptic Protein Expression in the Dorsal Striatum
by Erin Clabough, James Ingersoll, Tyler Reekes, Alyssa Gleichsner and Amy Ryan
Int. J. Mol. Sci. 2022, 23(1), 290; https://doi.org/10.3390/ijms23010290 - 28 Dec 2021
Cited by 7 | Viewed by 2930
Abstract
Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to [...] Read more.
Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to investigate the effects of an acute, high-dose intoxication event on the development of medium spiny neurons (MSNs) in the striatum, mice were injected with ethanol on P6, and neuronal morphology was assessed after 24 h, or at 1 month or 5 months of age. Data indicate an immediate increase in MSN dendritic length and branching, a rapid decrease in spine number, and increased levels of the synaptic protein PSD-95 as a consequence of this neonatal exposure to ethanol, but these differences do not persist into adulthood. These results demonstrate a rapid neuronal response to ethanol exposure and characterize the dynamic nature of neuronal architecture in the MSNs. Although differences in neuronal branching and spine density induced by ethanol resolve with time, early changes in the caudate/putamen region have a potential impact on the execution of complex motor skills, as well as aspects of long-term learning and addictive behavior. Full article
(This article belongs to the Special Issue Environmental Exposure, Pregnancy, and Neonatal Outcomes)
Show Figures

Figure 1

19 pages, 5381 KB  
Article
The Kynurenic Acid Analog SZR72 Enhances Neuronal Activity after Asphyxia but Is Not Neuroprotective in a Translational Model of Neonatal Hypoxic Ischemic Encephalopathy
by Viktória Kovács, Gábor Remzső, Tímea Körmöczi, Róbert Berkecz, Valéria Tóth-Szűki, Andrea Pénzes, László Vécsei and Ferenc Domoki
Int. J. Mol. Sci. 2021, 22(9), 4822; https://doi.org/10.3390/ijms22094822 - 1 May 2021
Cited by 4 | Viewed by 3244
Abstract
Hypoxic–ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE [...] Read more.
Hypoxic–ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = −17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model. Full article
(This article belongs to the Special Issue New Strategies of Neuroprotection and Repair in the Developing Brain)
Show Figures

Figure 1

16 pages, 3873 KB  
Article
Photobiomodulation Mitigates Cerebrovascular Leakage Induced by the Parkinsonian Neurotoxin MPTP
by Mia San Miguel, Kristy L. Martin, Jonathan Stone and Daniel M. Johnstone
Biomolecules 2019, 9(10), 564; https://doi.org/10.3390/biom9100564 - 4 Oct 2019
Cited by 26 | Viewed by 4250
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson’s disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain’s vasculature. Photobiomodulation (PBM), the irradiation of [...] Read more.
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson’s disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain’s vasculature. Photobiomodulation (PBM), the irradiation of tissue with low-intensity red light, mitigates MPTP-induced loss of dopaminergic neurons in the midbrain, but whether PBM also mitigates MPTP-induced damage to the cerebrovasculature has not been investigated. This study aimed to characterize the time course of cerebrovascular disruption following MPTP exposure and to determine whether PBM can mitigate this disruption. Young adult male C57BL/6 mice were injected with 80 mg/kg MPTP or isotonic saline and perfused with fluorescein isothiocyanate FITC-labelled albumin at various time points post-injection. By 7 days post-injection, there was substantial and significant leakage of FITC-labelled albumin into both the substantia nigra pars compacta (SNc; p < 0.0001) and the caudate-putamen complex (CPu; p ≤ 0.0003); this leakage partly subsided by 14 days post-injection. Mice that were injected with MPTP and treated with daily transcranial PBM (670 nm, 50 mW/cm2, 3 min/day), commencing 24 h after MPTP injection, showed significantly less leakage of FITC-labelled albumin in both the SNc (p < 0.0001) and CPu (p = 0.0003) than sham-treated MPTP mice, with levels of leakage that were not significantly different from saline-injected controls. In summary, this study confirms that MPTP damages the brain’s vasculature, delineates the time course of leakage induced by MPTP out to 14 days post-injection, and provides the first direct evidence that PBM can mitigate this leakage. These findings provide new understanding of the use of the MPTP mouse model as an experimental tool and highlight the potential of PBM as a therapeutic tool for reducing vascular dysfunction in neurological conditions. Full article
(This article belongs to the Special Issue Photobiomodulation for Parkinson's Disease)
Show Figures

Figure 1

14 pages, 70804 KB  
Communication
Dopamine Transporter/α-Synuclein Complexes Are Altered in the Post Mortem Caudate Putamen of Parkinson’s Disease: An In Situ Proximity Ligation Assay Study
by Francesca Longhena, Gaia Faustini, Cristina Missale, Marina Pizzi and Arianna Bellucci
Int. J. Mol. Sci. 2018, 19(6), 1611; https://doi.org/10.3390/ijms19061611 - 30 May 2018
Cited by 22 | Viewed by 5774
Abstract
Parkinson’s disease (PD) is characterized by the degeneration of the dopaminergic nigrostriatal neurons and the presence of Lewy bodies (LB) and Lewy neurites (LN) mainly composed of α-synuclein. By using the in situ proximity ligation assay (PLA), which allows for the visualization of [...] Read more.
Parkinson’s disease (PD) is characterized by the degeneration of the dopaminergic nigrostriatal neurons and the presence of Lewy bodies (LB) and Lewy neurites (LN) mainly composed of α-synuclein. By using the in situ proximity ligation assay (PLA), which allows for the visualization of protein-protein interactions in tissues to detect dopamine transporter (DAT)/α-synuclein complexes, we previously described that these are markedly redistributed in the striatum of human α-synuclein transgenic mice at the phenotypic stage, showing dopamine (DA) release impairment without a DAT drop and motor symptoms. Here, we used the in situ PLA to investigate DAT/α-synuclein complexes in the caudate putamen of PD patients and age-matched controls. They were found to be redistributed and showed an increased size in PD patients, where we observed several neuropil-like and neuritic-like PLA-positive structures. In the PD brains, DAT immunolabeling showed a pattern similar to that of in situ PLA in areas with abundant α-synuclein neuropathology. This notwithstanding, the in situ PLA signal was only partially retracing DAT or α-synuclein immunolabeling, suggesting that a large amount of complexes may have been lost along with the degeneration process. These findings reveal a DAT/α-synuclein neuropathological signature in PD and hint that synaptic alterations involving striatal DAT may derive from α-synuclein aggregation. Full article
(This article belongs to the Special Issue Molecular Research on Neurodegenerative Diseases)
Show Figures

Graphical abstract

Back to TopTop