Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = catecholamine metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7234 KiB  
Article
Cold Exposure Exacerbates Cardiac Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction in Male and Female C57Bl/6J Mice
by Sara-Ève Thibodeau, Marie-Lune Legros, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Sarra Beji, Marie Arsenault, Alexandre Caron and Jacques Couet
Biomedicines 2025, 13(8), 1900; https://doi.org/10.3390/biomedicines13081900 - 4 Aug 2025
Abstract
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with [...] Read more.
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with preserved ejection fraction (HFpEF) (Angiotensin II + High-fat diet for 28 days; MHS), we investigated how housing temperature modulates cardiac remodelling and function in male and female C57Bl/6J mice. Methods: Using the MHS mouse model, we investigated cardiac remodelling and function in 8-week-old C57BL/6J mice of both sexes housed at 10 °C, 22 °C, and 30 °C for four weeks. Control mice were analyzed in parallel. Before the MHS, the animals were allowed to acclimate for a week before the MHS started. Results: Mice housed at 10 °C consumed more food and had increased fat mass compared to those at 22 °C or 30 °C. This was accompanied by increased heart weight, stroke volume, heart rate, and cardiac output. Mice housed at 22 °C and 30 °C were similar for these cardiac parameters. Following MHS, mice at 10 °C and 22 °C developed marked cardiac hypertrophy, whereas thermoneutral housing attenuated this response and reduced left atrial enlargement. Cold-exposed females showed more diastolic dysfunction after MHS (increased E’ wave, E/E’, and isovolumetric relaxation time) than those at 22 °C or 30 °C. Ejection fraction and cardiac output declined significantly at 10 °C after MHS but were preserved at 22 °C and 30 °C in females. Conclusions: Cold housing exacerbates cardiac dysfunction in mice subjected to HFpEF-inducing stress, with pronounced effects in females. In contrast, thermoneutrality limits the cardiac hypertrophic response. Full article
Show Figures

Figure 1

19 pages, 4063 KiB  
Article
Exposure to Mitochondrial Toxins: An In Vitro Study of Energy Depletion and Oxidative Stress in Driving Dopaminergic Neuronal Death in MN9D Cells
by Oluwatosin Adefunke Adetuyi and Kandatege Wimalasena
Toxics 2025, 13(8), 637; https://doi.org/10.3390/toxics13080637 - 29 Jul 2025
Viewed by 258
Abstract
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin [...] Read more.
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin A, a Complex III inhibitor, on mitochondrial function in MN9D dopaminergic neuronal cells. Cells were treated with rotenone (1.5 µM) or antimycin A (10 µM) for one hour, and key biochemical parameters were assessed, including ATP levels, reactive oxygen species (ROS) production, dopamine metabolism, and neuromelanin formation. Our results indicate significant ATP depletion and ROS accumulation following treatment with both inhibitors, with antimycin A inducing a more pronounced oxidative stress response. Dysregulation of dopamine biosynthesis differed mechanistically from vesicular monoamine transporter (VMAT2) inhibition by tetrabenazine, suggesting alternative pathways of catecholamine disruption. Additionally, oxidative stress led to increased neuromelanin accumulation, indicating a possible adaptive response to mitochondrial dysfunction. These findings provide insights into the cellular mechanisms underlying dopaminergic neurotoxicity and highlight mitochondrial electron transport chain inhibition as a key driver of PD pathogenesis. Future research should explore therapeutic strategies aimed at enhancing mitochondrial function to mitigate neurodegenerative progression. Full article
Show Figures

Graphical abstract

19 pages, 4255 KiB  
Article
Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects
by Chong Li, Yunfei Xu, Jiale Jia, Xiuxiu Weng, Yang Zhang, Jialin Peng, Xueming An and Guoxiu Wang
Animals 2025, 15(14), 2135; https://doi.org/10.3390/ani15142135 - 18 Jul 2025
Viewed by 342
Abstract
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on [...] Read more.
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on lamb stress physiology, immunity, and gut health, mediated by specific molecular pathways. Twelve pairs of full-sibling male Hu sheep lambs were assigned to control (CON) or early-weaned (EW) groups. Plasma stress/immune markers were dynamically monitored, and intestinal morphology, antioxidant capacity, apoptosis, and transcriptomic profiles were analyzed at 5 and 28 days post-weaning. Early weaning triggered transient psychological stress, elevating hypothalamic–pituitary–adrenal (HPA) axis hormones (cortisol, catecholamines) and inflammatory cytokines (TNF-α) within 1 day (p < 0.05); however, stress responses were transient and recovered by 7 days post-weaning. Sustained intestinal remodeling was observed in EW lambs, featuring reduced ileal villus height, increased crypt depth (p < 0.05), and oxidative damage (MDA levels doubled vs. CON; p < 0.01). Compensatory epithelial adaptation included increased crypt depth but paradoxically reduced villus tip apoptosis. The transcriptome analysis revealed significant changes in gene expression related to immune function, fat digestion, and metabolism. Key DEGs included APOA4, linked to lipid transport adaptation; NOS2, associated with nitric oxide-mediated immune–metabolic crosstalk; and mitochondrial gene COX1, reflecting energy metabolism dysregulation. Protein–protein interaction analysis revealed NOS2 as a hub gene interacting with IDO1 and CXCL11, connecting oxidative stress to immune cell recruitment. Early weaning exerts minimal lasting psychological stress but drives persistent gut dysfunction through transcriptome-mediated changes in metabolic and immune pathways, highlighting key genes such as APOA4, NOS2, and COX1 as potential regulators of these effects. Full article
(This article belongs to the Topic Feeding Livestock for Health Improvement)
Show Figures

Figure 1

19 pages, 3189 KiB  
Article
Blood Metabolic Biomarkers of Occupational Stress in Healthcare Professionals: Discriminating Burnout Levels and the Impact of Night Shift Work
by Andreea Petra Ungur, Andreea-Iulia Socaciu, Maria Barsan, Armand Gabriel Rajnoveanu, Razvan Ionut, Carmen Socaciu and Lucia Maria Procopciuc
Clocks & Sleep 2025, 7(3), 36; https://doi.org/10.3390/clockssleep7030036 - 14 Jul 2025
Viewed by 389
Abstract
Burnout syndrome is characterized mainly by three criteria (emotional exhaustion, depersonalization, and low personal accomplishment), and further exacerbated by night shift work, with profound implications for individual and societal well-being. The Maslach Burnout Inventory survey applied to 97 medical care professionals (with day [...] Read more.
Burnout syndrome is characterized mainly by three criteria (emotional exhaustion, depersonalization, and low personal accomplishment), and further exacerbated by night shift work, with profound implications for individual and societal well-being. The Maslach Burnout Inventory survey applied to 97 medical care professionals (with day and night work) revealed different scores for these criteria. Blood metabolic profiles were obtained by UHPLC-QTOF-ESI+-MS untargeted metabolomics and multivariate statistics using the Metaboanalyst 6.0 platform. The Partial Least Squares Discrimination scores and VIP values, Random Forest graphs, and Heatmaps, based on 99 identified metabolites, were complemented with Biomarker Analysis (AUC ranking) and Pathway Analysis of metabolic networks. The data obtained reflected the biochemical implications of night shift work and correlated with each criterion’s burnout scores. Four main metabolic pathways with important consequences in burnout were affected, namely lipid metabolism, especially steroid hormone synthesis and cortisol, the energetic mitochondrial metabolism involving acylated carnitines, fatty acids, and phospholipids as well polar metabolites’ metabolism, e.g., catecholamines (noradrenaline, acetyl serotonin), and some amino acids (tryptophan, tyrosine, aspartate, arginine, valine, lysine). These metabolic profiles suggest potential strategies for managing burnout levels in healthcare professionals, based on validated criteria, including night shift work management. Full article
(This article belongs to the Special Issue New Advances in Shift Work)
Show Figures

Figure 1

20 pages, 2891 KiB  
Review
MAPK, PI3K/Akt Pathways, and GSK-3β Activity in Severe Acute Heart Failure in Intensive Care Patients: An Updated Review
by Massimo Meco, Enrico Giustiniano, Fulvio Nisi, Pierluigi Zulli and Emiliano Agosteo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 266; https://doi.org/10.3390/jcdd12070266 - 10 Jul 2025
Viewed by 646
Abstract
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular [...] Read more.
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular signal transduction cascades that translate extracellular stress into cellular responses. Among these, the mitogen-activated protein kinase (MAPK) pathways have received considerable attention due to their roles in mediating inflammation, apoptosis, hypertrophy, and adverse cardiac remodeling. The canonical MAPK cascades—including extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK)—are activated by upstream stimuli such as angiotensin II (Ang II), aldosterone, endothelin-1 (ET-1), and sustained catecholamine release. Additionally, emerging evidence highlights the role of receptor-mediated signaling, cellular stress, and myeloid cell-driven coagulation events in linking MAPK activation to fibrotic remodeling following myocardial infarction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade plays a central role in regulating cardiomyocyte survival, hypertrophy, energy metabolism, and inflammation. Activation of the PI3K/Akt pathway has been shown to confer cardioprotective effects by enhancing anti-apoptotic and pro-survival signaling; however, aberrant or sustained activation may contribute to maladaptive remodeling and progressive cardiac dysfunction. In the context of AHF, understanding the dual role of this pathway is crucial, as it functions both as a marker of compensatory adaptation and as a potential therapeutic target. Recent reviews and preclinical studies have linked PI3K/Akt activation with reduced myocardial apoptosis and attenuation of pro-inflammatory cascades that exacerbate heart failure. Among the multiple signaling pathways involved, glycogen synthase kinase-3β (GSK-3β) has emerged as a key regulator of apoptosis, inflammation, metabolic homeostasis, and cardiac remodeling. Recent studies underscore its dual function as both a negative regulator of pathological hypertrophy and a modulator of cell survival, making it a compelling therapeutic candidate in acute cardiac settings. While earlier investigations focused primarily on chronic heart failure and long-term remodeling, growing evidence now supports a critical role for GSK-3β dysregulation in acute myocardial stress and injury. This comprehensive review discusses recent advances in our understanding of the MAPK signaling pathway, the PI3K/Akt cascade, and GSK-3β activity in AHF, with a particular emphasis on mechanistic insights, preclinical models, and emerging therapeutic targets. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

18 pages, 915 KiB  
Review
The Perioperative Biochemical and Clinical Considerations of Pheochromocytoma Management
by Alexa J. Gombert, Alexandra M. Nerantzinis, Jennifer Li, Weidong Wang, Isaac Y. Yeung, Ana Costa and Sergio D. Bergese
Int. J. Mol. Sci. 2025, 26(13), 6080; https://doi.org/10.3390/ijms26136080 - 25 Jun 2025
Viewed by 813
Abstract
Pheochromocytoma, a rare catecholamine-secreting tumor, poses significant perioperative challenges due to its potential for severe hemodynamic instability. Careful management of patients with pheochromocytoma is critical for patient safety and favorable outcomes. The diagnostic workup focuses on biochemical analysis of plasma or urinary metanephrines, [...] Read more.
Pheochromocytoma, a rare catecholamine-secreting tumor, poses significant perioperative challenges due to its potential for severe hemodynamic instability. Careful management of patients with pheochromocytoma is critical for patient safety and favorable outcomes. The diagnostic workup focuses on biochemical analysis of plasma or urinary metanephrines, followed by imaging for tumor localization and genetic testing to identify hereditary syndromes. Preoperative management emphasizes adequate alpha-adrenergic blockade followed by beta-blockade to stabilize cardiovascular function. Anesthetic planning requires meticulous attention to volume status, cardiovascular optimization, and intraoperative monitoring to mitigate the risks of hypertensive crises and hypotension. Postoperative care must account for ongoing hemodynamic and metabolic fluctuations. A multidisciplinary, protocol-driven approach is essential to improve outcomes in patients undergoing pheochromocytoma resection. This paper provides a comprehensive overview of the genetic, biochemical, clinical, and anesthetic considerations involved in the diagnosis and perioperative management of pheochromocytoma. Full article
Show Figures

Figure 1

18 pages, 2660 KiB  
Article
The Biochemical–Imaging Connection: Urinary Noradrenaline and Fluorodeoxyglucose-Positron Emission Tomography in Unresectable or Metastatic Pheochromocytomas and Paragangliomas
by Junki Takenaka, Shiro Watanabe, Takashige Abe, Satoshi Takeuchi, Kenji Hirata, Rina Kimura, Hiroshi Ishii, Naoto Wakabayashi, Mungunkhuyag Majigsuren and Kohsuke Kudo
Diagnostics 2025, 15(11), 1305; https://doi.org/10.3390/diagnostics15111305 - 22 May 2025
Viewed by 582
Abstract
Background/Objectives: Pheochromocytomas and paragangliomas (PPGLs) are rare tumors of neural crest origin that secrete varying levels of catecholamines. [18F]Fluorodeoxyglucose-positron emission tomography (FDG-PET) is a valuable tool for the detection of metastases and the prediction of prognoses. However, varying FDG avidities [...] Read more.
Background/Objectives: Pheochromocytomas and paragangliomas (PPGLs) are rare tumors of neural crest origin that secrete varying levels of catecholamines. [18F]Fluorodeoxyglucose-positron emission tomography (FDG-PET) is a valuable tool for the detection of metastases and the prediction of prognoses. However, varying FDG avidities in PPGLs raise concerns regarding cost-effectiveness and unnecessary radiation exposure. Catecholamine secretion patterns are associated with metastasis and clinical outcomes. This study aimed to explore the relationships among FDG avidity, catecholamine levels, and clinical factors in patients with PPGLs. Methods: This retrospective study included 25 patients with unresectable or metastatic PPGLs scheduled for [131I]metaiodobenzylguanidine therapy with FDG-PET data available within 40 days of urine catecholamine measurements. FDG avidity was assessed using semiquantitative parameters such as the maximum standardized uptake value (SUVmax), total metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Urine catecholamine levels were quantified. Logistic regression and Spearman’s correlation were performed to evaluate the relationship between FDG parameters and urinary catecholamine levels. Results: Urinary noradrenaline levels were significantly higher in patients with FDG-avid lesions than in those without (726.25 μg/day vs. 166.3 μg/day, p = 0.001). Noradrenaline levels showed significant positive correlations with SUVmax, MTV, and TLG (ρ = 0.527, 0.541, and 0.557, respectively; all p < 0.01). Urinary noradrenaline levels predicted FDG avidity with an AUC of 0.849; a cutoff value of 647.5 μg/day achieved 55.6% sensitivity and 100% specificity. Conclusions: Urinary noradrenaline levels were significantly associated with FDG avidity in PPGLs, suggesting their potential utility in predicting FDG-PET outcomes. Therefore, FDG-PET may be unnecessary in PPGL patients with low urinary noradrenaline levels. These findings may help optimize imaging strategies for patients with PPGLs. Full article
Show Figures

Figure 1

12 pages, 235 KiB  
Review
Nutritional Support for Necrotizing Soft Tissue Infection Patients: From ICU to Outpatient Care
by Eftikhar A. Akam, Stacy L. Pelekhaty, Caitlin P. Knisley, Michael G. Ley, Noah V. Loran and Eric J. Ley
J. Clin. Med. 2025, 14(9), 3167; https://doi.org/10.3390/jcm14093167 - 3 May 2025
Cited by 1 | Viewed by 1003
Abstract
Although nutrition recommendations for patients with necrotizing soft tissue infections (NSTIs) often parallel those for patients with burn injuries, differences in the metabolic response to stress indicate that NSTIs require a unique approach. The sepsis and wound management associated with NSTIs trigger a [...] Read more.
Although nutrition recommendations for patients with necrotizing soft tissue infections (NSTIs) often parallel those for patients with burn injuries, differences in the metabolic response to stress indicate that NSTIs require a unique approach. The sepsis and wound management associated with NSTIs trigger a metabolic response, driven by inflammatory and neuroendocrine changes, that leads to high circulating levels of cortisol, catecholamines, insulin, and pro-inflammatory cytokines. This metabolic response follows four phases of recovery (Early Acute; Late Acute; Persistent Inflammation, Immunosuppression, and Catabolism Syndrome; Recovery) that require a thoughtful approach to nutrition by risk screening, malnutrition assessment, and micronutrient deficiency assessment. Close monitoring of energy expenditure and protein needs is required for appropriate nutrition management. Nutrition intake after transfer from the intensive care unit and hospital discharge is often inadequate. Ongoing monitoring of nutrition intake at all outpatient follow-up appointments is necessary, regardless of the route of delivery, until the nutrition status stabilizes and any nutritional decline experienced during hospitalization has been corrected. Full article
(This article belongs to the Special Issue Surgical Wound Infections and Management)
12 pages, 2784 KiB  
Article
Depletion of WWP1 Increases Adrb3 Expression and Lipolysis in White Adipose Tissue of Obese Mice
by Yuka Nozaki, Yuko Ose, Chinatsu Ohmori, Yuhei Mizunoe, Masaki Kobayashi, Akiyoshi Saitoh and Yoshikazu Higami
Int. J. Mol. Sci. 2025, 26(9), 4219; https://doi.org/10.3390/ijms26094219 - 29 Apr 2025
Viewed by 585
Abstract
Obesity is defined as abnormal or excessive accumulation of body fat and contributes to several metabolic disorders. White adipose tissue (WAT) releases energy as free fatty acids and glycerol from triglycerides through a process called lipolysis. People with obesity have impaired catecholamine-stimulated lipolysis, [...] Read more.
Obesity is defined as abnormal or excessive accumulation of body fat and contributes to several metabolic disorders. White adipose tissue (WAT) releases energy as free fatty acids and glycerol from triglycerides through a process called lipolysis. People with obesity have impaired catecholamine-stimulated lipolysis, but comprehensive understanding of this lipolysis is still unclear. We previously showed that expression of WW domain-containing E3 ubiquitin ligase 1 (WWP1), a member of the HECT-type E3 family of ubiquitin ligases, was increased in WAT of obese mice. In this study, we generated Wwp1 knockout (KO) mice to evaluate the effect of WWP1 in WAT of obese mice. The mRNA levels of beta-3 adrenergic receptor (Adrb3), which were decreased with a high-fat diet, were increased by Wwp1 KO in WAT. Moreover, Wwp1 KO mice showed increased phosphorylated hormone-sensitive lipase levels in WAT. In contrast, noradrenaline and its metabolism were not altered in WAT of obese Wwp1 KO mice. These findings indicate that WWP1, which is increased in adipocytes because of obesity, is a candidate for suppressing lipolysis independently of noradrenaline metabolism. We anticipate that inhibition of WWP1 is a promising approach for a new treatment of obesity and type-2 diabetes using Adrb3 agonists. Full article
(This article belongs to the Special Issue Obesity: From Molecular Mechanisms to Clinical Aspects)
Show Figures

Graphical abstract

19 pages, 10209 KiB  
Article
Urine Metabolomic Patterns to Discriminate the Burnout Levels and Night-Shift-Related Stress in Healthcare Professionals
by Andreea Petra Ungur, Andreea-Iulia Socaciu, Maria Barsan, Armand Gabriel Rajnoveanu, Razvan Ionut, Carmen Socaciu and Lucia Maria Procopciuc
Metabolites 2025, 15(4), 273; https://doi.org/10.3390/metabo15040273 - 14 Apr 2025
Cited by 1 | Viewed by 951
Abstract
Burnout syndrome, which significantly impacts both individual and societal quality of life, is primarily characterized by three key criteria: depersonalization, emotional exhaustion, and low personal accomplishment, all linked to work-related stress. Purpose: Comparative evaluation of urine metabolite patterns that may discriminate the [...] Read more.
Burnout syndrome, which significantly impacts both individual and societal quality of life, is primarily characterized by three key criteria: depersonalization, emotional exhaustion, and low personal accomplishment, all linked to work-related stress. Purpose: Comparative evaluation of urine metabolite patterns that may discriminate the burnout levels and the effects of night shifts on healthcare professionals. The Maslach Burnout Inventory survey was administered to 64 physicians and nurses working day and night shifts, with scores for each criterion recorded. Methods: Urine samples were collected, and metabolomic patterns were analyzed using UHPLC-QTOF-ESI+-MS technology. This analysis employed both untargeted and semi-targeted metabolomics, coupled with multivariate and ANOVA statistics, utilizing the online Metaboanalyst 6.0 platform. Partial Least Squares Discriminant Analysis (PLSDA) was performed, along with VIP values, Random Forest graphs, and heatmaps based on 79 identified metabolites. These were further complemented by biomarker analysis (AUC ranking) and pathway analysis of metabolic networks. Results: The findings highlighted the biochemical effects of night shifts and their correlation with burnout scores from each dimension. Conclusions: This study demonstrated the involvement of three major metabolic pathways in diagnosing burnout: lipid metabolism, particularly related to steroid hormones (cortisol, cortisone, and androsterone metabolites); energetic metabolism, involving long-chain acylated carnitines as transporters of free fatty acids, which play a role in burnout control; and a third pathway affecting catecholamine metabolism (neurotransmitters derived from tyrosine, such as dopamine, adrenaline, and noradrenaline), as well as tryptophan metabolism (serotonin and melatonin metabolites) and amino acid metabolism (including aspartate, arginine, and valine). Full article
(This article belongs to the Special Issue Integration of Emerging Technologies in Metabolite Analysis)
Show Figures

Graphical abstract

14 pages, 1142 KiB  
Article
Motor and Non-Motor Effects of Acute MPTP in Adult Zebrafish: Insights into Parkinson’s Disease
by Niki Tagkalidou, Marija Stevanović, Irene Romero-Alfano, Gustavo Axel Elizalde-Velázquez, Selene Elizabeth Herrera-Vázquez, Eva Prats, Cristian Gómez-Canela, Leobardo Manuel Gómez-Oliván and Demetrio Raldúa
Int. J. Mol. Sci. 2025, 26(4), 1674; https://doi.org/10.3390/ijms26041674 - 16 Feb 2025
Cited by 4 | Viewed by 1349
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disorder, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been extensively used in different animal species to [...] Read more.
Parkinson’s disease (PD), the second most common neurodegenerative disorder, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been extensively used in different animal species to develop chemical models of PD. This study aimed to evaluate the effects of acute exposure to MPTP (3 × 150 mg/kg, intraperitoneally) on adult zebrafish by assessing the neurochemical, transcriptional, and motor changes associated with PD pathogenesis. MPTP treatment resulted in a significant decrease in brain catecholamines, including dopamine, norepinephrine, and normetanephrine. Additionally, a trend towards decreased levels of dopamine precursors (tyrosine and L-DOPA) and degradation products (3-MT and DOPAC) was also observed, although these changes were not statistically significant. Gene expression analysis showed the downregulation of dbh, while the expression of other genes involved in catecholamine metabolism (th1, th2, mao, comtb) and transport (slc6a3 and slc18a2) remained unaltered, suggesting a lack of dopaminergic neuron degeneration. Behavioral assessments revealed that MPTP-exposed zebrafish exhibited reduced motor activity, consistent with the observed decrease in dopamine levels. In contrast, the kinematic parameters of sharp turning were unaffected. A significant impairment in the sensorimotor gating of the ASR was detected in the MPTP-treated fish, consistent with psychosis. Despite dopamine depletion and behavioral impairments, the absence of neurodegeneration and some hallmark PD motor symptoms suggests limitations in the validity of this model for fully recapitulating PD pathology. Further studies are needed to refine the use of MPTP in zebrafish PD models. Full article
(This article belongs to the Special Issue Zebrafish as a Model for Biomedical Studies—2nd Edition)
Show Figures

Figure 1

32 pages, 1809 KiB  
Review
Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications
by Andrei Cristian Grădinaru and Setalia Popa
Life 2025, 15(2), 238; https://doi.org/10.3390/life15020238 - 5 Feb 2025
Cited by 1 | Viewed by 5080
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin [...] Read more.
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

24 pages, 1110 KiB  
Review
Complexities, Benefits, Risks, and Clinical Implications of Sodium Bicarbonate Administration in Critically Ill Patients: A State-of-the-Art Review
by Akram M. Eraky, Yashwanth Yerramalla, Adnan Khan, Yasser Mokhtar, Alisha Wright, Walaa Alsabbagh, Kevin Franco Valle, Mina Haleem, Kyle Kennedy and Chad Boulware
J. Clin. Med. 2024, 13(24), 7822; https://doi.org/10.3390/jcm13247822 - 21 Dec 2024
Viewed by 14070
Abstract
Sodium bicarbonate has been used in the treatment of different pathologies, such as hyperkalemia, cardiac arrest, tricyclic antidepressant toxicity, aspirin toxicity, acute acidosis, lactic acidosis, diabetic ketoacidosis, rhabdomyolysis, and adrenergic receptors’ resistance to catecholamine in patients with shock. An ongoing debate about bicarbonate’s [...] Read more.
Sodium bicarbonate has been used in the treatment of different pathologies, such as hyperkalemia, cardiac arrest, tricyclic antidepressant toxicity, aspirin toxicity, acute acidosis, lactic acidosis, diabetic ketoacidosis, rhabdomyolysis, and adrenergic receptors’ resistance to catecholamine in patients with shock. An ongoing debate about bicarbonate’s efficacy and potential harm has been raised for decades because of the lack of evidence supporting its potential efficacy. Despite the guidelines’ restrictions, sodium bicarbonate has been overused in clinical practice. The overuse of sodium bicarbonate could be because of the desire to correct the arterial blood gas parameters rapidly instead of achieving homeostasis by treating the cause of the metabolic acidosis. Moreover, it is believed that sodium bicarbonate may reverse acidosis-induced myocardial depression, hemodynamic instability, ventricular arrhythmias, impaired cellular energy production, resistance to catecholamines, altered metabolism, enzyme suppression, immune dysfunction, and ineffective oxygen delivery. On the other hand, it is crucial to pay attention to the potential harm that could be caused by excessive sodium bicarbonate administration. Sodium bicarbonate may cause paradoxical respiratory acidosis, intracellular acidosis, hypokalemia, hypocalcemia, alkalosis, impaired oxygen delivery, cerebrospinal fluid acidosis, and neurologic dysfunction. In this review, we discuss the pathophysiology of sodium bicarbonate-induced adverse effects and potential benefits. We also review the most recent clinical trials, observational studies, and guidelines discussing the use of sodium bicarbonate in different pathologies. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

37 pages, 1433 KiB  
Review
Effects of Caffeinated Chewing Gum on Exercise Performance and Physiological Responses: A Systematic Review
by Chia-Cheng Yang, Meng-Hung Hsieh, Chien-Chang Ho, Ya-Hui Chang and Yi-Jie Shiu
Nutrients 2024, 16(21), 3611; https://doi.org/10.3390/nu16213611 - 24 Oct 2024
Cited by 1 | Viewed by 5785
Abstract
Background: Caffeine intake in the form of chewing gum is characterized by rapid absorption and utilization. Objectives: The purpose of this study was to investigate the effects of caffeinated chewing gum on exercise performance and physiological responses in a systematic review. Methods: All [...] Read more.
Background: Caffeine intake in the form of chewing gum is characterized by rapid absorption and utilization. Objectives: The purpose of this study was to investigate the effects of caffeinated chewing gum on exercise performance and physiological responses in a systematic review. Methods: All articles were searched using the PubMed and Scopus databases to include articles published up to June 2024, following the Preferred Reporting Items for Systematic Evaluation and Meta-Analysis (PRISMA) protocol. Results: Thirty-two studies were finally included. Most studies have found that pre-exercise caffeinated chewing gum supplementation is effective in improving endurance, repetitive sprinting, lower limb strength, and sport-specific performance, as well as lowering rating of perceived exertion (RPE) or fatigue index even with lower dosages of caffeine. Sympathetic activation may be one of the mechanisms by which caffeinated chewing gum affects athletic performance. No significant effect on energy metabolism indicators (blood glucose, blood lactate, free fatty acids) was found. In addition, two studies found that caffeinated chewing gum reduced or maintained cortisol levels and increased testosterone levels. However, caffeinated chewing gum intake does not have an impact on catecholamines and β-endorphins. There have been inconsistent results for explosive performance, agility performance, and pain perception. Only a few studies have examined balance performance. In conclusion, a low dose of caffeine (100–300 mg or 2–4 mg/kg) in the form of chewing gum is rapidly absorbed and utilized, positively impacting most exercise and physiological performance. Conclusions: Future studies should also consider the performance variables of agility, pain perception, and explosive performance to gain a more comprehensive understanding of the effects of caffeinated chewing gum on sympathetic activation and exercise performance. Full article
(This article belongs to the Special Issue New Ergogenic Aid Supplementation Methods and Exercise Performance)
Show Figures

Figure 1

10 pages, 416 KiB  
Article
Energy Expenditure in Critically Ill Patients with Aneurysmal Subarachnoid Hemorrhage, Intracerebral Hemorrhage, and Traumatic Brain Injury—A Prospective Observational Study
by Geraldine de Heer, Anna Leonie Doliwa, Pascal Hilbert, Marlene Fischer, Patrick Czorlich, Nils Schweingruber, Stefan Kluge, Christoph Burdelski and Jörn Grensemann
Nutrients 2024, 16(20), 3448; https://doi.org/10.3390/nu16203448 - 11 Oct 2024
Cited by 1 | Viewed by 1533
Abstract
Background: Energy expenditure (EE) in patients with aneurysmal subarachnoid hemorrhage (SAH) may differ from other intracranial pathologies, such as intracerebral hemorrhage (ICH) or traumatic brain injury (TBI), due to an activation of the sympathetic nervous system. Indirect calorimetry (IC) is recommended, but is [...] Read more.
Background: Energy expenditure (EE) in patients with aneurysmal subarachnoid hemorrhage (SAH) may differ from other intracranial pathologies, such as intracerebral hemorrhage (ICH) or traumatic brain injury (TBI), due to an activation of the sympathetic nervous system. Indirect calorimetry (IC) is recommended, but is not always available. We study EE, catabolism, and metabolic stress in patients with SAH, TBI, ICH, and sepsis as controls. Methods: A prospective observational study was conducted in the intensive care units of the University Medical Center Hamburg-Eppendorf, Germany. IC was used to measure EE on days 2–3, 5–7, and 10–15 post-admission. Urinary catecholamines, metabolites, and urine urea were also measured. Statistical analysis included t-tests, Chi-square tests, and generalized mixed models. Results: We included 110 patients—43 SAH patients (13 with the surgical securing of the aneurysm and 30 with coil embolization of the aneurysm), 22 TBI patients, 23 ICH patients, and 22 controls. The generalized linear mixed model analysis for groups and timepoints including age, height, and weight as covariates revealed a significantly lower EE at timepoint 1 for ICH versus SAH—interventional (p = 0.003) and versus the control (p = 0.004), as well as at timepoint 2 for ICH versus SAH—interventional (p = 0.002) and versus SAH—surgical (p = 0.013) with a lower EE in ICH patients. No significant differences between groups were found for EE at the other timepoints, or concerning urine urea and measurements of catecholamines in urine. Conclusions: In patients with SAH, ICH, and TBI, no meaningful differences in EE were detected compared to septic critically ill patients, except for a lower EE in ICH patients in the early phase. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

Back to TopTop