Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = carbon conservation rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

19 pages, 1363 KiB  
Article
Non-Structural Carbohydrate Concentration Increases and Relative Growth Decreases with Tree Size in the Long-Lived Agathis australis (D.Don) Lindl.
by Julia Kaplick, Benjamin M. Cranston and Cate Macinnis-Ng
Forests 2025, 16(8), 1270; https://doi.org/10.3390/f16081270 - 3 Aug 2025
Viewed by 168
Abstract
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its [...] Read more.
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its distribution. Like many large tree species, little is known about the carbon dynamics of this ecologically and culturally significant species. We explored seasonal variations in non-structural carbohydrates (NSCs) and growth in trees ranging from 20 to 175 cm diameter at breast height (DBH). NSCs were seasonally stable with no measurable pattern across seasons. However, we found growth rates standardised to basal area and sapwood area (growth efficiency) declined with tree age and stem NSC concentrations (including total NSCs, sugars and starch) all increased as trees aged. Total NSC concentrations were 0.3%–0.6% dry mass for small trees and 0.8%–1.8% dry mass for larger trees, with strong relationships between DBH and total NSC, sugar and starch in stems but not roots. Cumulative growth efficiency across the two-year study period declined as tree size increased. Furthermore, there was an inverse relationship between growth efficiency across the two-year study period and NSC concentrations of stems. This relationship was driven by differences in carbon dynamics in trees of different sizes, with trees progressing to a more conservative carbon strategy as they aged. Simultaneously declining growth efficiency and increasing NSC concentrations as trees age could be evidence for active NSC accumulation to buffer against carbon starvation in larger trees. Our study provides new insights into changing carbon dynamics as trees age and may be evidence for active carbon accumulation in older trees. This may provide the key for understanding the role of carbon processes in tree longevity. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

15 pages, 1806 KiB  
Article
Drought and Shrub Encroachment Accelerate Peatland Carbon Loss Under Climate Warming
by Fan Lu, Boli Yi, Jun-Xiao Ma, Si-Nan Wang, Yu-Jie Feng, Kai Qin, Qiansi Tu and Zhao-Jun Bu
Plants 2025, 14(15), 2387; https://doi.org/10.3390/plants14152387 - 2 Aug 2025
Viewed by 156
Abstract
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input [...] Read more.
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input under these stressors remains poorly understood. We incubated peat from two depths with different degrees of decomposition, either alone or incubated with Sphagnum divinum shoots or Betula ovalifolia leaves, under five temperature levels and two moisture conditions in growth chambers. We found that drought and Betula addition increased CO2 emissions in both peat layers, while Sphagnum affected only shallow peat. Deep peat alone or with Betula exhibited higher Q10 than pure shallow peat. Drought increased the Q10 of both depths’ peat, but this effect disappeared with fresh litter addition. The CO2 production rate showed a positive but marginal correlation with microbial biomass carbon, and it displayed a rather similar responsive trend to warming as the microbial metabolism quotient. These results indicate that both deep and dry peat are more sensitive to warming, highlighting the importance of keeping deep peat buried and waterlogged to conserve existing carbon storage. Additionally, they further emphasize the necessity of Sphagnum moss recovery following vascular plant encroachment in restoring carbon sink function in peatlands. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 - 31 Jul 2025
Viewed by 203
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

12 pages, 1419 KiB  
Article
Spatial Patterns of and Temporal Variations in Carbon Storage in the Forest and Grassland Ecosystem of China’s Nature Reserves
by Beijia Sang and Yuexuan Cao
Sustainability 2025, 17(15), 6945; https://doi.org/10.3390/su17156945 - 31 Jul 2025
Viewed by 356
Abstract
Carbon storage is a critical factor for ensuring the provision of ecosystem services such as biodiversity conservation, particularly in nature reserves. Understanding the spatial and temporal dynamics of carbon storage within China’s nature reserves (NRs) is essential for evaluating their role in ecosystem [...] Read more.
Carbon storage is a critical factor for ensuring the provision of ecosystem services such as biodiversity conservation, particularly in nature reserves. Understanding the spatial and temporal dynamics of carbon storage within China’s nature reserves (NRs) is essential for evaluating their role in ecosystem conservation. Using NDVI values, we assessed vegetation carbon storage in NRs across China from 2000 to 2015. The results revealed a 63.06% increase in carbon storage within NRs over the 15-year period, with forest vegetation and grassland vegetation carbon storage increasing by 60.05% and 86.33%, respectively. Approximately 90% of NRs exhibited positive growth rates, with higher increases observed in northeastern and western China compared to other regions. While the carbon density of forest vegetation in NRs exceeded that of areas outside reserves, grassland vegetation displayed the opposite trend. Overall, vegetation carbon storage in NRs demonstrated a significant upward trajectory over the study period. These findings highlight the importance of nature reserves in safeguarding forest carbon functions; however, their protective effect on grassland vegetation carbon function was less pronounced. Full article
Show Figures

Figure 1

24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 235
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

17 pages, 4334 KiB  
Article
Responses of Different Temperature-Acclimated Diatom Species, Smaller Thalassiosira pseudonana and Larger Thalassiosira rotula, to Increased Ambient Temperature
by Wei Zhao, Jihua Liu, Hui Song, Bokun Chen, Hongli Ji, Xue Yang and Gang Li
Microorganisms 2025, 13(7), 1652; https://doi.org/10.3390/microorganisms13071652 - 12 Jul 2025
Viewed by 343
Abstract
The acute rise in temperature due to marine heatwaves has a strong impact on marine phytoplankton. To determine whether these effects depend on ambient temperature and cell size, we acclimated two diatom species, smaller Thalassiosira pseudonana (Hasle and Heimdal, 1970) and larger Thalassiosira [...] Read more.
The acute rise in temperature due to marine heatwaves has a strong impact on marine phytoplankton. To determine whether these effects depend on ambient temperature and cell size, we acclimated two diatom species, smaller Thalassiosira pseudonana (Hasle and Heimdal, 1970) and larger Thalassiosira rotula (Meunier, 1910), at low (LAT), medium (MAT) and high ambient temperatures (HAT) and examined their physiochemical and transcriptional responses to temperature rise (AT + 6 °C). The specific growth rate (µ) of smaller cells was increased by 32% due to temperature rise at LAT, but decreased by 13% at HAT, with the stimulatory and inhibitory extent being ~50% less than that of larger cells. At LAT, chlorophyll a (Chl a), carotenoid (Car) and carbon (POC) contents were increased in smaller cells due to temperature rise, but were decreased in larger cells; at HAT, Chl a and Car were increased in both smaller and larger cells and POC was increased in only smaller cells. At LAT, temperature rise led to a disproportionate increase in photosynthesis and dark respiration, resulting in an increase in carbon utilization efficiency (CUE) in smaller cells and a decrease in CUE in larger cells; at HAT, there was a decrease in CUE in both the smaller and larger cells, but to a lesser extent in the former than in the latter. Our results also show that smaller cells cope with the acute temperature rise mainly by strengthening their enzyme activity (e.g., the antioxidant system) and conservatively regulating their metabolism, while larger cells mainly regulate their photosynthetic and central carbon metabolism. Moreover, larger cells can outperform their smaller counterparts when the temperature rise occurs at lower ambient temperature. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

23 pages, 48857 KiB  
Article
A 36-Year Assessment of Mangrove Ecosystem Dynamics in China Using Kernel-Based Vegetation Index
by Yiqing Pan, Mingju Huang, Yang Chen, Baoqi Chen, Lixia Ma, Wenhui Zhao and Dongyang Fu
Forests 2025, 16(7), 1143; https://doi.org/10.3390/f16071143 - 11 Jul 2025
Viewed by 313
Abstract
Mangrove forests serve as critical ecological barriers in coastal zones and play a vital role in global blue carbon sequestration strategies. In recent decades, China’s mangrove ecosystems have experienced complex interactions between degradation and restoration under intense coastal urbanization and systematic conservation efforts. [...] Read more.
Mangrove forests serve as critical ecological barriers in coastal zones and play a vital role in global blue carbon sequestration strategies. In recent decades, China’s mangrove ecosystems have experienced complex interactions between degradation and restoration under intense coastal urbanization and systematic conservation efforts. However, the long-term spatiotemporal patterns and driving mechanisms of mangrove ecosystem health changes remain insufficiently quantified. This study developed a multi-temporal analytical framework using Landsat imagery (1986–2021) to derive kernel normalized difference vegetation index (kNDVI) time series—an advanced phenological indicator with enhanced sensitivity to vegetation dynamics. We systematically characterized mangrove growth patterns along China’s southeastern coast through integrated Theil–Sen slope estimation, Mann–Kendall trend analysis, and Hurst exponent forecasting. A Deep Forest regression model was subsequently applied to quantify the relative contributions of environmental drivers (mean annual sea surface temperature, precipitation, air temperature, tropical cyclone frequency, and relative sea-level rise rate) and anthropogenic pressures (nighttime light index). The results showed the following: (1) a nationally significant improvement in mangrove vitality (p < 0.05), with mean annual kNDVI increasing by 0.0072/yr during 1986–2021; (2) spatially divergent trajectories, with 58.68% of mangroves exhibiting significant improvement (p < 0.05), which was 2.89 times higher than the proportion of degraded areas (15.10%); (3) Hurst persistence analysis (H = 0.896) indicating that 74.97% of the mangrove regions were likely to maintain their growth trends, while 15.07% of the coastal zones faced potential degradation risks; and (4) Deep Forest regression id the relative rate of sea-level rise (importance = 0.91) and anthropogenic (nighttime light index, importance = 0.81) as dominant drivers, surpassing climatic factors. This study provides the first national-scale, 30 m resolution assessment of mangrove growth dynamics using kNDVI, offering a scientific basis for adaptive management and blue carbon strategies in subtropical coastal ecosystems. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 1462 KiB  
Article
Hydrogen Peroxide and Vitexin in the Signaling and Defense Responses of Passiflora incarnata Under Drought Stress
by Felipe G. Campos, Gustavo R. Barzotto, Isabela Melo-Figueiredo, Jonas A. V. Pagassini and Carmen S. F. Boaro
Plants 2025, 14(13), 2078; https://doi.org/10.3390/plants14132078 - 7 Jul 2025
Viewed by 352
Abstract
Hydrogen peroxide (H2O2) functions as a signaling molecule that triggers physiological and biochemical adjustments that help plants cope with environmental stress. This study evaluated the effects of foliar application of 1.5 mM H2O2 on the physiological [...] Read more.
Hydrogen peroxide (H2O2) functions as a signaling molecule that triggers physiological and biochemical adjustments that help plants cope with environmental stress. This study evaluated the effects of foliar application of 1.5 mM H2O2 on the physiological and biochemical responses of Passiflora incarnata subjected to 14 days of drought stress followed by 5 days of rehydration. Drought reduced Fv/Fm and photochemical efficiency, as well as stomatal conductance and transpiration rates. H2O2 treatment under drought further reduced stomatal conductance and transpiration, suggesting enhanced water conservation. Drought-stressed plants treated with H2O2 exhibited increased concentrations of glucose, fructose, and mannose along with reduced sucrose levels, indicating osmotic adjustment and energy mobilization. Enzymatic antioxidant activity, particularly that of superoxide dismutase and catalase, increased with H2O2 treatment, while peroxidase activity remained low. The content of vitexin, arabinose, and trehalose decreased under drought, likely due to their roles in membrane protection, as MDA levels remained stable. After rehydration, Fv/Fm and ΦPSII recovered, and H2O2-treated plants showed higher carbon assimilation and carboxylation efficiency. These results indicate that H2O2 promotes drought acclimation and enhances post-stress recovery in P. incarnata. We conclude that H2O2 induces signaling pathways, with trehalose, arabinose, and vitexin contributing to the regeneration of the photochemical apparatus, as well as defense and acclimation under drought conditions. Full article
Show Figures

Figure 1

25 pages, 5480 KiB  
Article
Functional Trait Responses of Brasenia schreberi to Water and Soil Conditions Reveal Its Endangered Status
by Jingyu Yao, Zhenya Liu, Junbao Yu, Yun Zhang, Rui Xu, Jiahua Li, Yang Xu and Mei Sun
Plants 2025, 14(13), 2072; https://doi.org/10.3390/plants14132072 - 7 Jul 2025
Viewed by 374
Abstract
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to [...] Read more.
[Background] Brasenia schreberi is a perennial floating leaf aquatic plant with high ecological protection value and potential for economic development, and thus, its endangered mechanisms are of great concern. The rapid endangerment of this species in modern times may be primarily attributed to the deterioration of water and soil environmental conditions, as its growth relies on high-quality water and soil. [Objective] Exploring the responses of B. schreberi to water and soil conditions from the perspective of functional traits is of great significance for understanding its endangered mechanisms and implementing effective conservation strategies. [Methods] This study was conducted in the Tengchong Beihai Wetland, which has the largest natural habitat of B. schreberi in China. By measuring the key functional traits of B. schreberi and detecting the water and soil parameters at the collecting sites, the responses of these functional traits to the water and soil conditions have been investigated. [Results] (1) The growth status of B. schreberi affects the expression of its functional traits. Compared with sporadic distribution, B. schreberi in continuous patches have significantly higher stomatal conductance, intercellular CO2 concentration, transpiration rate, and vein density, while these plants have significantly smaller leaf area and perimeter. (2) Good water quality directly promotes photosynthetic, morphological, and structural traits. However, high soil carbon, nitrogen, and phosphorus contents can inhibit the photosynthetic rate. The net photosynthetic rate is significantly positively correlated with dissolved oxygen content, pH value, ammonia nitrogen, and nitrate nitrogen contents in the water, as well as the magnesium, zinc, and silicon contents in the soil. In contrast, the net photosynthetic rate is significantly negatively correlated with the total phosphorus content in water and the total carbon, total nitrogen, and total phosphorus content in the soil. (3) Leaf area and perimeter show positive correlations with various water parameters, including the depth, temperature, pH value, dissolved oxygen content, ammonium nitrogen, and nitrate nitrogen content, yet they are negatively correlated with total phosphorus content, chemical oxygen demand, biological oxygen demand, and permanganate index of water. [Conclusions] This study supports the idea that B. schreberi thrives in oligotrophic water environments, while the notion that fertile soil is required for its growth still needs to be investigated more thoroughly. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

18 pages, 1437 KiB  
Article
Exploration of Microbially Induced Carbonate Precipitation Technology for the Protection of Soil on Agricultural Drainage Ditch Slopes
by Xinran Huang, Jiang Li, Mingxiao Su, Xiyun Jiao, Qiuming Wu and Zhe Gu
Water 2025, 17(13), 2010; https://doi.org/10.3390/w17132010 - 4 Jul 2025
Viewed by 379
Abstract
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), [...] Read more.
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), cementation solution concentrations (1–2 mol/L), and urease inhibitor (NBPT) contents (0–0.3%). Soil experiments further analyzed the effects of solidified layer thickness (4 cm vs. 8 cm) and curing cycles on soil stabilization. The results showed that CaCO3 precipitation peaked at a BCR of 4:5 and declined when NBPT exceeded 0.1%. Optimal parameters (0.1% NBPT, 1 mol/L cementation solution, BCR 4:5) were applied to soil tests, revealing that multi-cycle treatments enhanced soil water retention and CaCO3 content (up to 7.6%) and reduced disintegration rates (by 70%) and permeability (by 83%). A 4 cm solidified layer achieved higher Ca2+ utilization, while an 8 cm layer matched or exceeded 4 cm performance with shorter curing. Calcite crystals dominated CaCO3 formation. Crucially, reagent dosage should approximate four times the target layer’s requirement to ensure efficacy. These findings demonstrate that MICP, when optimized, effectively stabilizes ditch slopes using minimal reagents, providing a sustainable strategy for agricultural soil conservation. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

25 pages, 12803 KiB  
Article
Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers
by Runping Ma, Maofa Wang, Chengcheng Wang, Yibo Zhang, Xiang Zhou and Li Jiang
Sustainability 2025, 17(13), 5840; https://doi.org/10.3390/su17135840 - 25 Jun 2025
Viewed by 375
Abstract
Understanding the spatiotemporal dynamics of vegetation net primary productivity (NPP) and its drivers is critical to sustainable land -carbon management, carbon-neutral development, and ecological restoration in fragile karst landscapes. This study proposes a Pearson Correlation—Deep Transformer (PCADT) model that integrates attention mechanisms and [...] Read more.
Understanding the spatiotemporal dynamics of vegetation net primary productivity (NPP) and its drivers is critical to sustainable land -carbon management, carbon-neutral development, and ecological restoration in fragile karst landscapes. This study proposes a Pearson Correlation—Deep Transformer (PCADT) model that integrates attention mechanisms and geospatial covariates to enhance NPP estimation accuracy in Guangxi, China—a global karst hotspot. Leveraging multisource remote sensing data (2015–2020), PCADT achieves 10.7% higher predictive accuracy (R2 = 0.83 vs. conventional models) at 500 m resolution, thereby capturing the fine-scale heterogeneity essential for sustainability planning. The results reveal a significant annual NPP increase (4.14 gC·m−2·a−1, p < 0.05), with eastern areas exhibiting higher baseline productivity (1129 gC·m−2 in Wuzhou) but western regions showing steeper growth rates (5.2% vs. 2.1%). Vegetation carbon sequestration capacity, validated against MOD17A3HGF data (R2 = 0.998), demonstrates spatial consistency (east > west), with forest-dominated Wuzhou contributing 6.5 TgC annually. Mechanistic analyses identify precipitation as the dominant climatic driver (partial r = 0.62, p < 0.01), surpassing temperature sensitivity, while bimodal NPP-altitude peaks (300 m and 900 m) and land -use transitions (e.g., forest-to-cropland conversions) explain 18.5% of NPP variability and reduce regional carbon stocks by 4593 tC. The PCADT framework offers a scalable solution for precision carbon management by emphasizing the role of anthropogenic interventions—such as afforestation—in alleviating climatic constraints. It advocates for spatially adaptive strategies to optimize water resource utilization, enhance forest conservation, and promote sustainable land -use transitions. By identifying areas where water -scarcity relief and targeted afforestation would yield the highest carbon returns, the PCADT framework directly supports SDG 13 (Climate Action) and SDG 15 (Life on Land), providing a strategic blueprint for sustainable development in water-limited karst regions globally. Full article
Show Figures

Figure 1

24 pages, 3754 KiB  
Article
Route Optimization of Multimodal Transport Considering Regional Differences under Carbon Tax Policy
by Liqing Gao and Miaomiao Zhan
Sustainability 2025, 17(13), 5743; https://doi.org/10.3390/su17135743 - 22 Jun 2025
Viewed by 494
Abstract
Environmental sustainability is receiving growing global attention, making the development of low-carbon and green transportation increasingly important. Low-carbon policies offer significant advantages in incentivizing energy conservation and reducing emissions in the transportation sector; however, it is vital to consider the impacts of regional [...] Read more.
Environmental sustainability is receiving growing global attention, making the development of low-carbon and green transportation increasingly important. Low-carbon policies offer significant advantages in incentivizing energy conservation and reducing emissions in the transportation sector; however, it is vital to consider the impacts of regional differences on the implementation effect of low-carbon policies. This paper explores multimodal transportation route optimization under a carbon tax policy. First, a bi-objective route optimization model is constructed, with the goal of minimizing total transportation cost and time, while accounting for uncertain demand, fixed departure schedules, and regional differences. Trapezoidal fuzzy numbers are used to represent uncertain demand, and a fuzzy adaptive non-dominated sorting genetic algorithm is designed to solve the bi-objective optimization model. The algorithm is then tested on differently sized networks and on real-world transportation networks in eastern and western China to validate its effectiveness and to assess the impacts of regional differences. The experimental results show the following. (1) When considering transportation tasks at different network scales, the proposed fuzzy adaptive non-dominated sorting genetic algorithm outperforms the NSGA-II algorithm, achieving minimum differences in percentages of cost and time of 9.25% and 7.72%, respectively. (2) For transportation tasks assessed using real-world networks in eastern and western China, an increase in the carbon tax rate significantly affects carbon emissions, costs, and time. The degree of carbon emission reduction varies depending on the development of the regional transportation network. In the more developed eastern region, carbon emissions are reduced by up to 44.17% as the carbon tax rate increases. In the less developed western region, the maximum reduction in carbon emissions is 14.37%. The carbon tax policy has a more limited impact in the western region compared to the eastern one. Therefore, formulating differentiated carbon tax policies based on local conditions is an effective way to maximize the economic and environmental benefits of multimodal transportation. Full article
Show Figures

Figure 1

23 pages, 4276 KiB  
Article
Water Saving and Carbon Reduction (CO2) Synergistic Effect and Their Spatiotemporal Distribution Patterns
by Jing Zhao, Hanting Li, Zhiying Liu, Yaoqing Jiang and Wenbin Mu
Water 2025, 17(13), 1847; https://doi.org/10.3390/w17131847 - 21 Jun 2025
Viewed by 376
Abstract
Under the dual constraints of rigid water resource management systems and China’s “dual carbon” national strategy, water resource management authorities face pressing practical demands for the coordinated governance of water conservation and carbon dioxide emission reduction. This study comprehensively compiles nationwide data on [...] Read more.
Under the dual constraints of rigid water resource management systems and China’s “dual carbon” national strategy, water resource management authorities face pressing practical demands for the coordinated governance of water conservation and carbon dioxide emission reduction. This study comprehensively compiles nationwide data on water supply/consumption, energy use, water intensity, and CO2 emissions across Chinese provinces. Employing a non-radial directional distance function (NDDF) model with multiple inputs and outputs, we quantitatively assess provincial water saving and carbon reduction performance during 2000–2021; measure synergistic effects; and systematically examine the spatiotemporal evolution, correlation patterns, and convergence trends of three key indicators: standalone water saving performance, standalone carbon reduction performance, and their synergistic performance—essentially addressing whether “1 + 1 > 2” holds true. Furthermore, we analyze the spatial convergence and clustering characteristics of synergistic effect across regions, delving into the underlying causes of inter-regional disparities in water–carbon synergy. Key findings reveal the following: ① Temporally, standalone water saving and carbon reduction performance generally improved, though the water saving metrics initially declined before stabilizing into sustained growth, ultimately outpacing carbon reduction gains. Synergistic performance consistently surpassed standalone measures, with most regions demonstrating accelerating synergistic enhancement over time. Nationally, water–carbon synergy exhibited early volatile declines followed by steady growth, though the growth rate gradually decelerated. ② Spatially, high-value synergy clusters migrated from the western to eastern regions and the northern to southern zones before stabilizing geographically. The synergy effect demonstrates measurable convergence overall, yet with pronounced regional heterogeneity, manifesting a distinct “high southeast–low northwest” agglomeration pattern. Strategic interventions should prioritize water–carbon nexus domains, leverage spatial convergence trends and clustering intensities, and systematically unlock synergistic potential. Full article
(This article belongs to the Special Issue China Water Forum 2024)
Show Figures

Figure 1

17 pages, 1269 KiB  
Article
Key Influencing Factors in the Variation in Livestock Carbon Emissions in the Grassland Region of Gannan Prefecture, China (2009–2024)
by Guohua Chang, Jinxiang Wang, Panliang Liu, Qi Wang, Fanxiang Han, Chao Wang, Tawatchai Sumpradit and Tianpeng Gao
Agriculture 2025, 15(12), 1300; https://doi.org/10.3390/agriculture15121300 - 17 Jun 2025
Viewed by 501
Abstract
Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s [...] Read more.
Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s average annual carbon emissions from animal husbandry are 774,286 t C-eq (2,839,049 t CO2eq), with enteric emissions from cattle being the biggest contributor. However, as the number of locally raised cattle and sheep has decreased, carbon emissions have gradually fallen at an average annual rate of −1.0%. The annual average total carbon sequestration of vegetation in the region is 6,861,535 t C-eq, and the carbon content in underground biomass is higher than that in aboveground biomass, making it the main contributor to grassland carbon sequestration. Carbon sequestration from grassland vegetation is greater than the carbon emissions from animal husbandry, which means that the entire production system is currently a carbon sink. Meanwhile, the analysis of land-use carbon sequestration found that the annual average total sequestration by forests and grasslands over the same time period was 752,327 t C-eq, and sequestration is increasing at an annual rate of 1.4%, primarily driven by the progressive expansion of forested areas. Although the regional carbon emissions from animal husbandry are lower than the carbon sequestration, developing a science-based animal husbandry plan aligned with regional ecological thresholds, continuing to implement grass–livestock balance management measures, and preventing livestock numbers from exceeding their ecological carrying capacity remain critical to promoting sustainable coordination between livestock economies and ecological conservation. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

Back to TopTop