Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = canon of proportions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1633 KiB  
Article
Responses of Rhizospheric Microbial Communities to Brevibacillus laterosporus-Enhanced Reductive Soil Disinfestation in Continuous Cropping Systems
by Risheng Xu, Haijiao Liu, Yafei Chen, Zhen Guo, Juan Liu, Yue Li, Jingyi Mei, Tengfei Ma and Yanlong Chen
Agronomy 2025, 15(8), 1775; https://doi.org/10.3390/agronomy15081775 - 24 Jul 2025
Viewed by 232
Abstract
Reductive soil disinfestation (RSD) significantly alters soil characteristics, yet its combined effects with bacterial inoculation on subsequent rhizospheric microbial community composition remains poorly understood. To address this knowledge gap, we investigated the effects of RSD and endophytic Brevibacillus laterosporus inoculation on the composition, [...] Read more.
Reductive soil disinfestation (RSD) significantly alters soil characteristics, yet its combined effects with bacterial inoculation on subsequent rhizospheric microbial community composition remains poorly understood. To address this knowledge gap, we investigated the effects of RSD and endophytic Brevibacillus laterosporus inoculation on the composition, network, and predicted function of peanut rhizospheric bacteria and fungi. Our results demonstrated that RSD and B. laterosporus inoculation substantially increased rhizospheric bacterial diversity while reducing fungal diversity. Specifically, B. laterosporus-enhanced RSD significantly reshaped the bacterial community, resulting in increased relative abundances of Chloroflexi, Desulfobacterota, and Myxococcota while decreasing those of Firmicutes, Gemmatimonadota, and Acidobacteriota. The fungal community exhibited a more consistent response to RSD and B. laterosporus amendment, with reduced proportions of Ascomycota and Gemmatimonadota but an increase in Chytridiomycota. Network analysis revealed that B. laterosporus inoculation and RSD enhanced the bacterial species complexity and keystone taxa. Furthermore, canonical correspondence analysis indicated strong associations between the soil bacterial community and soil properties, including Eh, EC, NO3-N, and SOC. Our findings highlight that the shifts in bacterial taxa induced by B. laterosporus inoculation and RSD, particularly the keystone taxa identified in the network, may contribute to the suppression of soil-borne pathogens. Overall, this study provides a novel insight into the shifts in rhizospheric bacterial and fungal communities and their ecological functions after bacteria inoculation and RSD treatment. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 271 KiB  
Article
Canonical Commutation Relation Derived from Witt Algebra
by Huber Nieto-Chaupis
Mathematics 2025, 13(12), 1910; https://doi.org/10.3390/math13121910 - 7 Jun 2025
Viewed by 493
Abstract
From an arbitrary definition of operators inspired by oscillators of Virasoro, an algebra is derived. It fits the structure of Virasoro algebra with null central charge or Witt algebra. The resulting formalism has yielded commutators with a dependence on integer numbers, and it [...] Read more.
From an arbitrary definition of operators inspired by oscillators of Virasoro, an algebra is derived. It fits the structure of Virasoro algebra with null central charge or Witt algebra. The resulting formalism has yielded commutators with a dependence on integer numbers, and it follows the Witt-like algebra. Also, the quantum mechanics evolution operator for the case of the quantum harmonic oscillator was identified. Furthermore, the Schrödinger equation was systematically derived under the present framework. When operators are expressed in the framework of Hilbert space states, the resulting Witt algebra seems to be proportional to the well-known canonical commutation relation. This has demanded the development of a formalism based on arbitrary and physical operators as well as well-defined rules of commutation. The Witt-like was also redefined through the direct usage of the uncertainty principle. The results of the paper might suggest that Witt algebra encloses not only quantum mechanics’ fundamental commutator but also other unexplored relations among quantum mechanics observables and Witt algebra. Full article
(This article belongs to the Special Issue Advanced Research in Pure and Applied Algebra)
19 pages, 1840 KiB  
Article
Facial Analysis for Plastic Surgery in the Era of Artificial Intelligence: A Comparative Evaluation of Multimodal Large Language Models
by Syed Ali Haider, Srinivasagam Prabha, Cesar A. Gomez-Cabello, Sahar Borna, Ariana Genovese, Maissa Trabilsy, Adekunle Elegbede, Jenny Fei Yang, Andrea Galvao, Cui Tao and Antonio Jorge Forte
J. Clin. Med. 2025, 14(10), 3484; https://doi.org/10.3390/jcm14103484 - 16 May 2025
Viewed by 913
Abstract
Background/Objectives: Facial analysis is critical for preoperative planning in facial plastic surgery, but traditional methods can be time consuming and subjective. This study investigated the potential of Artificial Intelligence (AI) for objective and efficient facial analysis in plastic surgery, with a specific focus [...] Read more.
Background/Objectives: Facial analysis is critical for preoperative planning in facial plastic surgery, but traditional methods can be time consuming and subjective. This study investigated the potential of Artificial Intelligence (AI) for objective and efficient facial analysis in plastic surgery, with a specific focus on Multimodal Large Language Models (MLLMs). We evaluated their ability to analyze facial skin quality, volume, symmetry, and adherence to aesthetic standards such as neoclassical facial canons and the golden ratio. Methods: We evaluated four MLLMs—ChatGPT-4o, ChatGPT-4, Gemini 1.5 Pro, and Claude 3.5 Sonnet—using two evaluation forms and 15 diverse facial images generated by a Generative Adversarial Network (GAN). The general analysis form evaluated qualitative skin features (texture, type, thickness, wrinkling, photoaging, and overall symmetry). The facial ratios form assessed quantitative structural proportions, including division into equal fifths, adherence to the rule of thirds, and compatibility with the golden ratio. MLLM assessments were compared with evaluations from a plastic surgeon and manual measurements of facial ratios. Results: The MLLMs showed promise in analyzing qualitative features, but they struggled with precise quantitative measurements of facial ratios. Mean accuracy for general analysis were ChatGPT-4o (0.61 ± 0.49), Gemini 1.5 Pro (0.60 ± 0.49), ChatGPT-4 (0.57 ± 0.50), and Claude 3.5 Sonnet (0.52 ± 0.50). In facial ratio assessments, scores were lower, with Gemini 1.5 Pro achieving the highest mean accuracy (0.39 ± 0.49). Inter-rater reliability, based on Cohen’s Kappa values, ranged from poor to high for qualitative assessments (κ > 0.7 for some questions) but was generally poor (near or below zero) for quantitative assessments. Conclusions: Current general purpose MLLMs are not yet ready to replace manual clinical assessments but may assist in general facial feature analysis. These findings are based on testing models not specifically trained for facial analysis and serve to raise awareness among clinicians regarding the current capabilities and inherent limitations of readily available MLLMs in this specialized domain. This limitation may stem from challenges with spatial reasoning and fine-grained detail extraction, which are inherent limitations of current MLLMs. Future research should focus on enhancing the numerical accuracy and reliability of MLLMs for broader application in plastic surgery, potentially through improved training methods and integration with other AI technologies such as specialized computer vision algorithms for precise landmark detection and measurement. Full article
(This article belongs to the Special Issue Innovation in Hand Surgery)
Show Figures

Figure 1

14 pages, 2834 KiB  
Article
Belowground Structural Attributes and Morpho-Anatomical Response Strategies of Bromus valdivianus Phil. and Lolium perenne L. to Soil Water Restriction
by Yongmei Zhang, Javier García-Favre, Haiying Hu, Ignacio F. López, Iván P. Ordóñez, Andrew D. Cartmill, Vaughan Symonds and Peter D. Kemp
Agronomy 2025, 15(5), 1024; https://doi.org/10.3390/agronomy15051024 - 24 Apr 2025
Viewed by 389
Abstract
The effect of soil water restriction on the root structure and morpho-anatomical attributes of Lolium perenne L. (Lp) and Bromus valdivianus Phil. (Bv) was investigated. The anatomical structure of roots from plants grown under two water restriction conditions (20–25% and 80–85% field capacity [...] Read more.
The effect of soil water restriction on the root structure and morpho-anatomical attributes of Lolium perenne L. (Lp) and Bromus valdivianus Phil. (Bv) was investigated. The anatomical structure of roots from plants grown under two water restriction conditions (20–25% and 80–85% field capacity (FC)) were assessed using paraffin embedding and thin sections. These sections were examined to assess anatomical traits, including root diameter (root D), stele diameter (stele D) and cortex thickness (cortex T), and xylem vessel of Lp and Bv roots. Tiller population, shoot herbage mass, and the shoot-to-root ratio were also determined. Under water restriction, biomass and tillers were significantly decreased (p < 0.001), while the root-to-shoot ratio significantly increased, indicating a higher proportion of Bv roots than shoots when compared to Lp. The root D and stele D, and cortex T, were larger in Bv than in Lp (p < 0.001), indicating a greater adaptation of Bv for water uptake and storage compared to Lp. Xylem vessels were wider in Lp when compared to Bv (p < 0.01), indicating greater water flow within the plant. Water restriction generated a decrease in root D, stele D, and cortex T (p < 0.01). Canonical variate analysis showed that the pith cell wall had a strong positive relationship with water restriction in both Bv and Lp; lignified xylem and the endodermis wall had a close relationship with Lp under water restriction. The findings demonstrate that Lp and Bv have individual structural and morpho-anatomical response strategies to increasing water restriction. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

14 pages, 1449 KiB  
Article
Dietary Composition of Big Head Croaker, Collichthys lucidus, in the Early Stage of the “10-Year Fishing Ban” Policy
by Zihan Ma, Jianhua Li, Guanyu Hu, Leqing Liu, Jianhui Wu and Dongyan Han
Fishes 2025, 10(5), 193; https://doi.org/10.3390/fishes10050193 - 23 Apr 2025
Viewed by 403
Abstract
Big head croaker (Collichthys lucidus) is a dominant fish species in the Yangtze River estuary, with significant economic and ecological value in the local ecosystem. In this study, the dietary composition of big head croaker in the Yangtze River estuary from [...] Read more.
Big head croaker (Collichthys lucidus) is a dominant fish species in the Yangtze River estuary, with significant economic and ecological value in the local ecosystem. In this study, the dietary composition of big head croaker in the Yangtze River estuary from 2022 to 2023 was determined using stomach content analysis. Statistical methods such as cluster analysis and canonical correspondence analysis were also applied to study the ontogenetic variation in the feeding habits of big head croaker and their relationships with environmental factors. The results indicated that big head croaker in the Yangtze River estuary fed primarily on 15 prey groups and 33 prey species. Copepods were the dominant prey group, followed by mysids, shrimp, and fish. The dominant prey species included Acanthomysis longirostris, Neomysis awatschensis, and Calanus sinicus. Compared with historical studies, the proportion of large prey such as fish and crustaceans in the diet of big head croaker has increased since the implementation of the “10-Year Fishing Ban” on the Yangtze River, which reflects the improved aquatic habitat for organisms in the Yangtze River estuary to some extent. The feeding habits of big head croaker exhibited clear ontogenetic and seasonal variations. The empty stomach rate gradually decreased as the body size of big head croaker increased and their main prey shifted from small individuals such as Acetes chinensis and A. longirostris to larger individual fishes and Brachyura. In addition, big head croaker primarily fed on N. awatschensis in spring, A. longirostris in summer and autumn, and Acrocalanus gibber in winter. Canonical correspondence analysis indicated that salinity and length were the factors most strongly correlated with the feeding habits of big head croaker, followed by latitude and longitude. Full article
(This article belongs to the Special Issue Trophic Ecology of Freshwater and Marine Fish Species)
Show Figures

Figure 1

12 pages, 3475 KiB  
Article
Research on the Microscopic Adsorption Characteristics of Methane by Coals with Different Pore Sizes Based on Monte Carlo Simulation
by Chunhua Zhang and Yuqi Zhai
Appl. Sci. 2025, 15(5), 2349; https://doi.org/10.3390/app15052349 - 22 Feb 2025
Viewed by 498
Abstract
In order to explore the influence of different pore sizes of anthracite on the methane adsorption characteristics, a low-temperature liquid nitrogen adsorption experiment was carried out. Six types of anthracite with pore sizes ranging from 10 Å to 60 Å were selected as [...] Read more.
In order to explore the influence of different pore sizes of anthracite on the methane adsorption characteristics, a low-temperature liquid nitrogen adsorption experiment was carried out. Six types of anthracite with pore sizes ranging from 10 Å to 60 Å were selected as simulation objects. By means of molecular simulation technology and using the Materials Studio 2020 software, a macromolecular model of anthracite was established, and a grand canonical Monte Carlo (GCMC) simulation comparative study was conducted. The variation laws of the interaction energy and diffusion during the process of coal adsorbing CH4 under different pore size conditions were obtained. The results show that affected by the pore size, under the same temperature condition, the peak value of the interaction energy distribution between coal and CH4 shows a downward trend with the increase in the pore size under the action of pressure, and the energy gradually decreases. The isothermal adsorption curves all conform to the Langmuir isothermal adsorption model. The Langmuir adsorption constant a shows an obvious upward trend with the increase in the pore size, with an average increase of 16.43%. Moreover, under the same pressure, when the pore size is 60 Å, the adsorption amount of CH4 is the largest, and as the pore size decreases, the adsorption amount also gradually decreases. The size of the pore size is directly proportional to the diffusion coefficient of CH4. When the pore size increases to 50 Å, the migration state of CH4 reaches the critical point of transformation, and the diffusion coefficient rapidly increases to 2.3 times the original value. Full article
Show Figures

Figure 1

19 pages, 5155 KiB  
Article
Ex Vivo Regional Gene Therapy Compared to Recombinant BMP-2 for the Treatment of Critical-Size Bone Defects: An In Vivo Single-Cell RNA-Sequencing Study
by Arijita Sarkar, Matthew C. Gallo, Jennifer A. Bell, Cory K. Mayfield, Jacob R. Ball, Mina Ayad, Elizabeth Lechtholz-Zey, Stephanie W. Chang, Osamu Sugiyama, Denis Evseenko and Jay R. Lieberman
Bioengineering 2025, 12(1), 29; https://doi.org/10.3390/bioengineering12010029 - 1 Jan 2025
Viewed by 1868
Abstract
Ex vivo regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect [...] Read more.
Ex vivo regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect to exert a therapeutic effect. Compared to recombinant human BMP-2 (rhBMP-2), which is approved for clinical use, regional gene therapy may have unique benefits related to the addition of MSCs and the sustained release of BMP-2. However, the cellular and transcriptional mechanisms regulating the response to these two strategies for BMP-2 mediated bone regeneration are largely unknown. Here, for the first time, we performed single-cell RNA sequencing (10x Genomics) of hematoma tissue in six rats with critical-sized femoral defects that were treated with either regional gene therapy or rhBMP-2. Our unbiased bioinformatic analysis of 2393 filtered cells in each group revealed treatment-specific differences in their cellular composition, transcriptional profiles, and cellular communication patterns. Gene therapy treatment induced a more robust chondrogenic response, as well as a decrease in the proportion of fibroblasts and the expression of profibrotic pathways. Additionally, gene therapy was associated with an anti-inflammatory microenvironment; macrophages expressing canonical anti-inflammatory markers were more common in the gene therapy group. In contrast, pro-inflammatory markers were more highly expressed in the rhBMP-2 group. Collectively, the results of our study may offer insights into the unique pathways through which ex vivo regional gene therapy can augment bone regeneration compared to rhBMP-2. Furthermore, an improved understanding of the cellular pathways involved in segmental bone defect healing may allow for the further optimization of regional gene therapy or other bone repair strategies. Full article
Show Figures

Graphical abstract

18 pages, 2615 KiB  
Article
The Vimentin-Targeting Drug ALD-R491 Partially Reverts the Epithelial-to-Mesenchymal Transition and Vimentin Interactome of Lung Cancer Cells
by Marieke Rosier, Anja Krstulović, Hyejeong Rosemary Kim, Nihardeep Kaur, Erhumuoghene Mary Enakireru, Deebie Symmes, Katalin Dobra, Ruihuan Chen, Caroline A. Evans and Annica K. B. Gad
Cancers 2025, 17(1), 81; https://doi.org/10.3390/cancers17010081 - 30 Dec 2024
Viewed by 1701
Abstract
Background: The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. Methods: To clarify this, we induced EMT in lung cancer cells with [...] Read more.
Background: The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. Methods: To clarify this, we induced EMT in lung cancer cells with TGF-β1, followed by treatment with the vimentin-targeting drug ALD-R491, live-cell imaging, and quantitative proteomics. Results: We identified 838 proteins in the intermediate filament fraction of cells. TGF-β1 treatment increased the proportion of vimentin in this fraction and the levels of 24 proteins. Variants of fibronectin showed the most pronounced increase (137-fold), followed by regulators of the cytoskeleton, cell motility, and division, such as the mRNA-splicing protein SON. TGF-β1 increased cell spreading and cell migration speed, and changed a positive correlation between cell migration speed and persistence to negative. ALD-R491 reversed these mesenchymal phenotypes to epithelial and the binding of RNA-binding proteins, including SON. Conclusions: These findings present many new interactors of intermediate filaments, describe how EMT and vimentin filament dynamics influence the intermediate filament interactome, and present ALD-R491 as a possible EMT-inhibitor. The observations support the hypothesis that the dynamic turnover of vimentin filaments and their interacting proteins govern mesenchymal cell migration, EMT, cell invasion, and cancer metastasis. Full article
(This article belongs to the Special Issue Extracellular Matrix Proteins in Cancer)
Show Figures

Figure 1

9 pages, 4860 KiB  
Article
Optimizing Visualization of Pollen Tubes in Wheat Pistils
by Kohei Mishina, Minami Morita, Sora Matsumoto and Shun Sakuma
Plants 2024, 13(24), 3600; https://doi.org/10.3390/plants13243600 - 23 Dec 2024
Viewed by 1078
Abstract
Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat (Triticum aestivum) cultivars is limited. Introducing favorable alleles from related wild and [...] Read more.
Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat (Triticum aestivum) cultivars is limited. Introducing favorable alleles from related wild and cultivated wheat species is a promising breeding strategy for resolving this issue. However, wide hybridization between bread wheat and its relatives is hampered by the presence of suppressor genes and difficulties in crossing. Optimized methods for observing pollen tubes are essential for understanding the mechanism of crossability between wheat and its relatives. Here, we improved the crossing procedure between bread wheat and rye (Secale cereale) and established an optimized protocol for visualizing pollen tube behavior. Crossing via detached spike culture significantly enhanced crossing efficiency and phenotypic stability. A combination of canonical aniline blue staining and optimized clearing and sectioning allowed us to visualize pollen tube behavior. The proportion of rye pollen tubes reaching the micropyle was lower than that for pollen tubes germinated on the stigmatic hair, explaining why the hybrid seed-setting rate was approximately 75% instead of 100%. This method sheds light on wide hybridization through deeper visualization of the insides of pistils. Full article
(This article belongs to the Special Issue Wheat Breeding for Global Climate Change)
Show Figures

Figure 1

17 pages, 11030 KiB  
Article
Statistical Thermodynamic Description of Self-Assembly of Large Inclusions in Biological Membranes
by Andres De Virgiliis, Ariel Meyra and Alina Ciach
Curr. Issues Mol. Biol. 2024, 46(10), 10829-10845; https://doi.org/10.3390/cimb46100643 - 26 Sep 2024
Viewed by 893
Abstract
Recent studies revealed anomalous underscreening in concentrated electrolytes, and we suggest that the underscreened electrostatic forces between membrane proteins play a significant role in the process of self-assembly. In this work, we assumed that the underscreened electrostatic forces compete with the thermodynamic Casimir [...] Read more.
Recent studies revealed anomalous underscreening in concentrated electrolytes, and we suggest that the underscreened electrostatic forces between membrane proteins play a significant role in the process of self-assembly. In this work, we assumed that the underscreened electrostatic forces compete with the thermodynamic Casimir forces induced by concentration fluctuations in the lipid bilayer, and developed a simplified model for a binary mixture of oppositely charged membrane proteins with different preference to liquid-ordered and liquid-disordered domains in the membrane. In the model, like macromolecules interact with short-range Casimir attraction and long-range electrostatic repulsion, and the cross-interaction is of the opposite sign. We determine energetically favored patterns in a system in equilibrium with a bulk reservoir of the macromolecules. Different patterns consisting of clusters and stripes of the two components and of vacancies are energetically favorable for different values of the chemical potentials. Effects of thermal flutuations at low temperature are studied using Monte Carlo simulations in grand canonical and canonical ensembles. For fixed numbers of the macromolecules, a single two-component cluster with a regular pattern coexists with dispersed small one-component clusters, and the number of small clusters depends on the ratio of the numbers of the molecules of the two components. Our results show that the pattern formation is controlled by the shape of the interactions, the density of the proteins, and the proportion of the components. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

16 pages, 3283 KiB  
Article
Functional Divergence in the Affinity and Stability of Non-Canonical Cysteines and Non-Canonical Disulfide Bonds: Insights from a VHH and VNAR Study
by Mingce Xu, Zheng Zhao, Penghui Deng, Mengsi Sun, Cookson K. C. Chiu, Yujie Wu, Hao Wang and Yunchen Bi
Int. J. Mol. Sci. 2024, 25(18), 9801; https://doi.org/10.3390/ijms25189801 - 11 Sep 2024
Cited by 3 | Viewed by 2131
Abstract
Single-domain antibodies, including variable domains of the heavy chains of heavy chain-only antibodies (VHHs) from camelids and variable domains of immunoglobulin new antigen receptors (VNARs) from cartilaginous fish, show the therapeutic potential of targeting antigens in a cytosol reducing environment. A large proportion [...] Read more.
Single-domain antibodies, including variable domains of the heavy chains of heavy chain-only antibodies (VHHs) from camelids and variable domains of immunoglobulin new antigen receptors (VNARs) from cartilaginous fish, show the therapeutic potential of targeting antigens in a cytosol reducing environment. A large proportion of single-domain antibodies contain non-canonical cysteines and corresponding non-canonical disulfide bonds situated on the protein surface, rendering them vulnerable to environmental factors. Research on non-canonical disulfide bonds has been limited, with a focus solely on VHHs and utilizing only cysteine mutations rather than the reducing agent treatment. In this study, we examined an anti-lysozyme VNAR and an anti-BC2-tag VHH, including their non-canonical disulfide bond reduced counterparts and non-canonical cysteine mutants. Both the affinity and stability of the VNARs and VHHs decreased in the non-canonical cysteine mutants, whereas the reduced-state samples exhibited decreased thermal stability, with their affinity remaining almost unchanged regardless of the presence of reducing agents. Molecular dynamics simulations suggested that the decrease in affinity of the mutants resulted from increased flexibility of the CDRs, the disappearance of non-canonical cysteine–antigen interactions, and the perturbation of other antigen-interacting residues caused by mutations. These findings highlight the significance of non-canonical cysteines for the affinity of single-domain antibodies and demonstrate that the mutation of non-canonical cysteines is not equivalent to the disruption of non-canonical disulfide bonds with a reducing agent when assessing the function of non-canonical disulfide bonds. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 4908 KiB  
Article
Spatial Pattern of Living Woody and Coarse Woody Debris in Warm-Temperate Broad-Leaved Secondary Forest in North China
by Fang Ma, Shunzhong Wang, Weiguo Sang and Keming Ma
Plants 2024, 13(16), 2339; https://doi.org/10.3390/plants13162339 - 22 Aug 2024
Cited by 2 | Viewed by 954
Abstract
The investigation into the spatial distribution of living woody (LWD) and coarse woody debris (CWD) within forests represents a fundamental methodology for probing the inherent mechanisms governing coexistence and mortality within forest ecosystems. Here, a complete spatial randomness (CSR) null model was employed [...] Read more.
The investigation into the spatial distribution of living woody (LWD) and coarse woody debris (CWD) within forests represents a fundamental methodology for probing the inherent mechanisms governing coexistence and mortality within forest ecosystems. Here, a complete spatial randomness (CSR) null model was employed to scrutinize the spatial pattern, while canonical correspondence analysis (CCA) and the Torus-translation test (TTT) were utilized to elucidate the distribution patterns of LWD and CWD within warm-temperate deciduous broadleaf secondary forests in Dongling Mountains plot, northern China. The results reveal that both LWD and CWD exhibit an aggregated distribution as the predominant pattern in the Dongling Mountains plot, with the proportion and intensity of aggregation diminishing as spatial scale increases. Specifically, the aggregation intensity g0–10 demonstrates a significant negative correlation with abundance and maximum diameter at breast height (DBH). Notably, the g0–10 of LWD manifests a stronger correlation with the maximum DBH, whereas the g0–10 of CWD exhibits a greater association with the mortality rate. CCA outcomes suggest that elevation, convexity, and aspect significantly impact LWD distribution, whereas CWD distribution shows substantial negative correlations with elevation, convexity, slope, and aspect. TTT findings indicate that ecosystems characterized by a substantial presence of LWD also display a notable prevalence of CWD. Additionally, the majority of species exhibit no habitat preference, displaying neutral habitat connections and low ecological niche differentiation within the sampled plot. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 1768 KiB  
Article
Research on Children’s Body Proportions: Determining the Canon of Head Length to Total Body Height on the Example of Children Aged 2 to 15 Years
by Danijela Domljan, Boris Iliev and Tanja Jurčević Lulić
Appl. Sci. 2024, 14(16), 7185; https://doi.org/10.3390/app14167185 - 15 Aug 2024
Cited by 1 | Viewed by 3200
Abstract
Proportions and canons of the human body have always been an area of research mainly through art, architecture, or construction, and today, they have a significant application in product design. Research confirms that body height in most cases corresponds to the canon (head–body [...] Read more.
Proportions and canons of the human body have always been an area of research mainly through art, architecture, or construction, and today, they have a significant application in product design. Research confirms that body height in most cases corresponds to the canon (head–body ratio) of 7.5 to 8 head lengths. This paper investigates the ratio of the head length (HL) to the total body height (BH, stature) of kindergarten and school-aged children, aiming to define the children’s canon inspired by the idea of the harmonic circle theory and the biomechanical model. The data were collected from 1307 children (male 676, female 631) aged 2 to 16 years in the cities of Zagreb (Croatia), Sofia (Bulgaria), and Skopje (North Macedonia). A generalized ESD test (alpha-level 0.10) and Turkey’s 1977 test were used in order to detect outliers in distributions of heights and in the distribution of ratios. Statistical significance was set at 0.05, all p values were two-sided, and the MedCalc statistical tool (version 20.110) was used. The results confirm that canonical changes follow the historical research of artists throughout the centuries, but that they change according to contemporary secular trends in children’s growth and cover HL/BH canons from 5.59 and 5.72 (2-year-old girls and boys) to 7.50 and 7.60 (15-year-old boys and girls) depending on age and gender. HL/BH ratio was significantly higher among female examinees in all age groups where difference was significant (Student’s t test, p < 0.02). In conclusion, such a calculation based on the canon is important for interdisciplinary professions. Creating an anthropological–biomechanical model based on canons, instead of time-consuming measurement, could significantly simplify the long-term collection of anthropometric data used for designing children’s products. Future detailed research is proposed. Full article
Show Figures

Figure 1

25 pages, 6172 KiB  
Article
Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae
by Xuli Jia, Weizhou Chen, Tao Liu and Zepan Chen
Int. J. Mol. Sci. 2024, 25(16), 8584; https://doi.org/10.3390/ijms25168584 - 6 Aug 2024
Cited by 2 | Viewed by 1581
Abstract
Sargassum hemiphyllum var. chinense, a prevalent seaweed along the Chinese coast, has economic and ecological significance. However, systematic positions within Sargassum and among the three orders of Phaeophyceae, Fucales, Ectocarpales, and Laminariales are in debate. Here, we reported the organellar genomes of [...] Read more.
Sargassum hemiphyllum var. chinense, a prevalent seaweed along the Chinese coast, has economic and ecological significance. However, systematic positions within Sargassum and among the three orders of Phaeophyceae, Fucales, Ectocarpales, and Laminariales are in debate. Here, we reported the organellar genomes of S. hemiphyllum var. chinense (34,686-bp mitogenome with 65 genes and 124,323 bp plastome with 173 genes) and the investigation of comparative genomics and systematics of 37 mitogenomes and 22 plastomes of Fucales (including S. hemiphyllum var. chinense), Ectocarpales, and Laminariales in Phaeophyceae. Whole genome collinearity analysis showed gene number, type, and arrangement were consistent in organellar genomes of Sargassum with 360 SNP loci identified as S. hemiphyllum var. chinense and two genes (rps7 and cox2) identified as intrageneric classifications of Sargassum. Comparative genomics of the three orders of Phaeophyceae exhibited the same content and different types (petL was only found in plastomes of the order Fucales and Ectocarpales) and arrangements (most plastomes were rearranged, but trnA and trnD in the mitogenome represented different orders) in genes. We quantified the frequency of RNA-editing (canonical C-to-U) in both organellar genomes; the proportion of edited sites corresponded to 0.02% of the plastome and 0.23% of the mitogenome (in reference to the total genome) of S. hemiphyllum var. chinense. The repetition ratio of Fucales was relatively low, with scattered and tandem repeats (nine tandem repeats of 14–24 bp) dominating, while most protein-coding genes underwent negative selection (Ka/Ks < 1). Collectively, these findings provide valuable insights to guide future species identification and evolutionary status of three important Phaeophyceae order species. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

24 pages, 19292 KiB  
Article
Effects of Coal Mining Activities on the Changes in Microbial Community and Geochemical Characteristics in Different Functional Zones of a Deep Underground Coal Mine
by Zhimin Xu, Li Zhang, Yating Gao, Xianfeng Tan, Yajun Sun and Weixiao Chen
Water 2024, 16(13), 1836; https://doi.org/10.3390/w16131836 - 27 Jun 2024
Cited by 6 | Viewed by 1470
Abstract
For deep underground coal mining ecosystems, research on microbial communities and geochemical characteristics of sediments in different functional zones is lacking, resulting in the knowledge of zone-level mine water pollution prevention and control being narrow. In this study, we surveyed the geochemical distinctions [...] Read more.
For deep underground coal mining ecosystems, research on microbial communities and geochemical characteristics of sediments in different functional zones is lacking, resulting in the knowledge of zone-level mine water pollution prevention and control being narrow. In this study, we surveyed the geochemical distinctions and microbial communities of five typical functional zones in a representative North China coalfield, Xinjulong coal mine. The data indicated that the geochemical compounds and microbial communities of sediments showed distinguishing features in each zone. The microbial community richness and diversity were ranked as follows: surface water > rock roadways > sumps > coal roadways ≥ goafs. Canonical Correlation Analysis (CCA), Spearman correlation and co-occurrence network analysis demonstrated that microbial communities were sensitive and closely related to hydrochemical processes. The microbial community distribution in the underground mine was closely related not only to nutrient elements (i.e., C, S, P and N), but also to redox-sensitive substances (i.e., Fe and As). When it comes to mine water pollution prevention and control, the central zones are goafs. With the increase in goaf closure time, total nitrogen (TN), total organic carbon (TOC) and total sulfur (TS) decreased, but As, Fe and total phosphorus (TP) gradually increased, and the characteristic pollutant SO42− concentration in water samples decreased. Additionally, the sulfate-reducing bacteria (SRB) had relatively higher proportions in goafs, suggesting goafs were able to purify themselves. In practical engineering, in situ nitrogen injection technology used to expel oxygen and create an anaerobic environment can be implemented to enhance SRB reducing sulfate in goafs. Meanwhile, because coal mine pollution discharge generally only discharges mine water and leaves sediment underground, the pollutants can be transferred to the sediment by strengthening the relevant reactions including the heavy metal solidification and stabilization function of bacteria. Full article
(This article belongs to the Special Issue Mine Water Safety and Environment)
Show Figures

Figure 1

Back to TopTop