Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = cactus pear peel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2408 KB  
Article
Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits
by Berenice Karina Flores-Hernández, Ma. de Lourdes Arévalo-Galarza, Manuel Livera-Muñoz, Cecilia Peña-Valdivia, Aída Martínez-Hernández, Guillermo Calderón-Zavala and Guadalupe Valdovinos-Ponce
Foods 2025, 14(14), 2546; https://doi.org/10.3390/foods14142546 - 21 Jul 2025
Viewed by 874
Abstract
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in [...] Read more.
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in the pericarpel. Recently, by inducing parthenocarpy, seedless fruits of cactus pear have been obtained. They have attractive colors, soft and small seminal residues, with a similar flavor to their original seeded counterparts. Nevertheless, their postharvest physiological behavior has not yet been documented. The aim of this study was to compare the biochemical, anatomical, and physiological characteristics of pollinated fruits, CP30 red and CP40 yellow varieties, with their parthenocarpic counterparts (CP30-P and CP40-P), obtained by the application of growth regulators in preanthesis. Fruits of each type were harvested at horticultural maturity, and analyses were carried out on both pulp and pericarpel (peel), using a completely randomized design. Results showed that red fruits CP30 and CP30-P showed higher concentrations of betacyanins in pulp (13.4 and 18.4 mg 100 g−1 FW) and in pericarpel (25.9 and 24.1 mg 100 g−1 FW), respectively; flavonoid content was significantly higher in partenocarpic fruits compared with the pollinated ones. Parthenocarpy mainly affected the shelf life, in pollinated fruits, CP30 was 14 days but 32 days in CP30-P; for CP40, it was 16 days, and 30 days in CP40-P. Also, the partenocarpic fruits were smaller but with a thicker pericarpel, and lower stomatal frequency. Overall, parthenocarpic fruits represent a viable alternative for commercial production due to their extended shelf life, lower weight loss, and soft but edible pericarpel. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

22 pages, 1279 KB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 1181
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

15 pages, 1334 KB  
Article
Physiological and Metabolic Effects of Opuntia ficus indica spp. Peel Formulations
by José Arias-Rico, Iris Cristal Hernández-Ortega, Osmar Antonio Jaramillo-Morales, Nelly del Socorro Cruz-Cansino, Quinatzin Yadira Zafra-Rojas, Olga Rocío Flores-Chávez, Rosa María Baltazar-Téllez and Esther Ramírez-Moreno
Life 2025, 15(2), 148; https://doi.org/10.3390/life15020148 - 22 Jan 2025
Cited by 1 | Viewed by 3551
Abstract
The objective of this study is to determine the physiological and metabolic effects of administration of dietary fiber formulations to male Wistar rats. The study population was divided into five groups to which food and water were orally administered ad libitum (control), alongside [...] Read more.
The objective of this study is to determine the physiological and metabolic effects of administration of dietary fiber formulations to male Wistar rats. The study population was divided into five groups to which food and water were orally administered ad libitum (control), alongside Psyllium plantago, sennosides A and B, cactus pear peel powder, and cactus pear peel tablet powder for 28 days. Body weight, biochemical parameters, fecal moisture, and intestinal transit were determined. The administration of the fiber formulations did not cause differences between the groups and they maintained a healthy weight; however, the consumption of the cactus pear peel tablet powder decreased serum glucose (127.85 ± 5.37 to 68.30 ± 12.48 mg/dL) in rats in a similar form to Psyllium plantago (127.85 ± 5.37 to 96.96 ± 3.26 mg/dL) in comparison with commercial products for rats, and the cactus pear peel powder had lower triglyceride levels (49.52 to 74.44 mg/dL) than commercial products at the end of the treatment. The samples maintained normal HDL levels with the exception of Psyllium plantago that had a decrease in treatment after 28 days. The administration of formulations of dietary fiber of cactus pear peel had physiological and metabolic effects similar to those of commercial products without change in the growth of the animals. Therefore, it could be used in the pharmaceutical or food industry. Full article
(This article belongs to the Special Issue Implications of Bioactive Compounds in Lifelong Disorders)
Show Figures

Figure 1

18 pages, 2120 KB  
Article
Optimization of Ultrasonication Probe-Assisted Extraction Parameters for Bioactive Compounds from Opuntia macrorhiza Using Taguchi Design and Assessment of Antioxidant Properties
by Dimitrios Kalompatsios, Vassilis Athanasiadis, Martha Mantiniotou and Stavros I. Lalas
Appl. Sci. 2024, 14(22), 10460; https://doi.org/10.3390/app142210460 - 13 Nov 2024
Cited by 9 | Viewed by 2133
Abstract
Opuntia macrorhiza, commonly referred to as red prickly pear, is a type of cactus fruit. The Opuntia macrorhiza (OM) fruit is rich in polyphenols and contains a high amount of ascorbic acid and betalains. The fruit peels have demonstrated many biological abilities, [...] Read more.
Opuntia macrorhiza, commonly referred to as red prickly pear, is a type of cactus fruit. The Opuntia macrorhiza (OM) fruit is rich in polyphenols and contains a high amount of ascorbic acid and betalains. The fruit peels have demonstrated many biological abilities, including antioxidant, antifungal, and antibacterial activities. Ultrasound probe-assisted extraction (UPAE) is a highly promising method for efficiently extracting valuable molecules from natural sources. The objective of this study is to optimize the parameters of UPAE, including the appropriate solvent, liquid-to-solid ratio, extraction duration, and pulsation level. The aim is to maximize the yield of bioactive compounds (polyphenols, betalains, and ascorbic acid) from OM fruits (pulps and peels) and assess their antioxidant activities using Taguchi design. The optimal extraction conditions through the partial least squares method for OM pulp were determined to be aqueous extraction for 12 min with a liquid-to-solid ratio of 60 mL/g and 48 pulses/min, while for OM peels they were determined to be aqueous extraction for 20 min with a liquid-to-solid ratio of 60 mL/g and a pulsation of 48 pulses/min. The optimum UPAE conditions were compared with the values obtained from the optimum extraction under stirring extraction (STE). Overall, UPAE exhibited higher yields than STE. The obtained total polyphenol content ranged from 10.27 to 13.07 mg gallic acid equivalents/g dry weight, while the betalain content ranged from 974 to 1099 μg/g dry weight. Overall, these fruits demonstrated potential as new components for food and medicinal uses due to their good health effects and lack of toxicity. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
Show Figures

Graphical abstract

18 pages, 9867 KB  
Article
Parthenocarpic Cactus Pears (Opuntia spp.) with Edible Sweet Peel and Long Shelf Life
by Manuel Livera-Muñoz, Alfonso Muratalla-Lúa, Roberto Flores-Almaraz, Yolanda Donají Ortiz-Hernández, Víctor Arturo González-Hernández, Fernando Castillo-González, Carlos Hernández-Ramírez, Oscar Eduardo Varela-Delgadillo, Magnolia López-Soto, Jorge Manuel Valdez-Carrasco, José Alfredo Carrillo-Salazar and Ivan Ramírez-Ramírez
Horticulturae 2024, 10(1), 39; https://doi.org/10.3390/horticulturae10010039 - 30 Dec 2023
Cited by 7 | Viewed by 3198
Abstract
The fruits of the nopal (Opuntia spp.), cactus pears, are considered functional foods due to their content of nutritive and bioactive substances. Its pulp is generated by numerous seeds that limit their consumption due to their size and hardness and detract from [...] Read more.
The fruits of the nopal (Opuntia spp.), cactus pears, are considered functional foods due to their content of nutritive and bioactive substances. Its pulp is generated by numerous seeds that limit their consumption due to their size and hardness and detract from their quality. Other undesirable fruit characteristics are its inedible peel and its short shelf life. In the case of the cactus pear cactus (Opuntia spp.), no cultivar has been reported that produces quality parthenocarpic fruits, nor have they been obtained by artificially inducing parthenocarpy. The objectives of this research were to evaluate the response of 11 genotypes to the induction of parthenocarpy, to characterize the fruits of the genotypes with the best response, and to determine their postharvest life. To induce parthenocarpy, floral buds were used in the pre-anthesis stage, from which the style-stigma, stamens, and tepals were removed, generating a cavity in which a solution of growth regulators was applied (250 mg L−1 AG3 + 75 mg L −1 BA + 15 mg L−1 of AIB). A similar number of buds was used as a control, without treatment, and in free pollination. Only two genotypes, MX CP-30 Red and MX CP-40 Yellow, produced parthenocarpic fruits since their empty integuments produced pulp, remaining small, empty, and soft. Their peel was sweet (10–14 °Brix) and edible, and they had a longer shelf life than the corresponding fruits with seeds. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

18 pages, 2761 KB  
Article
Oil-Based Double Emulsion Microcarriers for Enhanced Stability and Bioaccessibility of Betalains and Phenolic Compounds from Opuntia stricta var. dillenii Green Extracts
by Sara Parralejo-Sanz, Iván Gómez-López, Erika González-Álvarez, Mara Montiel-Sánchez and M. Pilar Cano
Foods 2023, 12(11), 2243; https://doi.org/10.3390/foods12112243 - 1 Jun 2023
Cited by 7 | Viewed by 3705
Abstract
Opuntia cactus fruit (prickly pear flesh and agricultural residues such as peels and stalks) is an important source of bioactive compounds, including betalains and phenolic compounds. In this work, two double emulsion W1/O/W2 formulations (A and B) were designed to [...] Read more.
Opuntia cactus fruit (prickly pear flesh and agricultural residues such as peels and stalks) is an important source of bioactive compounds, including betalains and phenolic compounds. In this work, two double emulsion W1/O/W2 formulations (A and B) were designed to encapsulate green extracts rich in betalains and phenolic compounds obtained from Opuntia stricta var. dillenii (OPD) fruits with the aim of improving their stability and protecting them during the in vitro gastrointestinal digestion process. In addition, the characterization of the double emulsions was studied by microscopy and the evaluation of their physical and physico-chemical parameters. Formulation A, based on Tween 20, showed smaller droplets (1.75 µm) and a higher physical stability than Formulation B, which was achieved with sodium caseinate (29.03 µm). Regarding the encapsulation efficiency of the individual bioactives, betalains showed the highest values (73.7 ± 6.7 to 96.9 ± 3.3%), followed by flavonoids (68.2 ± 5.9 to 95.9 ± 7.7%) and piscidic acid (71 ± 1.3 to 70.2 ± 5.7%) depending on the formulation and the bioactive compound. In vitro digestive stability and bioaccessibility of the individual bioactives increased when extracts were encapsulated for both formulations (67.1 to 253.1%) in comparison with the non-encapsulated ones (30.1 to 64.3%), except for neobetanin. Both formulations could be considered as appropriate microcarrier systems for green OPD extracts, especially formulation A. Further studies need to be conducted about the incorporation of these formulations to develop healthier foods. Full article
Show Figures

Graphical abstract

16 pages, 1926 KB  
Article
Mucilage-Based and Calcium Ascorbate Edible Coatings Improve Postharvest Quality and Storability of Minimally Processed Cactus Pear Fruit Stored under Passive Atmosphere
by Giorgia Liguori, Giuseppe Greco, Raimondo Gaglio, Luca Settanni, Carla Gentile and Paolo Inglese
Horticulturae 2023, 9(1), 15; https://doi.org/10.3390/horticulturae9010015 - 21 Dec 2022
Cited by 7 | Viewed by 2479
Abstract
The minimally processed fruit and vegetable industry showed rapid growth worldwide, primarily due to the increasing consumer need for ready-to-eat fresh products characterized by high nutritional, sensory and healthy value. The postharvest life of peeled cactus pear fruits is relatively short, due to [...] Read more.
The minimally processed fruit and vegetable industry showed rapid growth worldwide, primarily due to the increasing consumer need for ready-to-eat fresh products characterized by high nutritional, sensory and healthy value. The postharvest life of peeled cactus pear fruits is relatively short, due to the processing operations that affect fruit integrity and cause metabolic disfunctions, as well as pulp browning, microbial growth, loss of firmness, off-flavor development, and nutraceutical value loss. In this study, we investigated the effects of mucilage-based (OFI) and calcium ascorbate edible coating on minimally processed cactus pear summer-ripening fruit, cold stored under passive atmosphere. The effect of the edible coating on the postharvest life, quality attributes, and nutraceutical value of fruit was evaluated by colors, total soluble solids content, carbohydrates; titratable acidity, ascorbic acid, betalains, DPPH, visual quality, and sensorial analysis. Our data showed a significant effect of mucilage-based and calcium ascorbate-based coating on preserving quality, nutritional value, sensorial parameters, and improving postharvest life of minimally processed cactus pear fruits; OFI had the most effective barrier effect. Furthermore, both coating treatments did not negatively affect the natural taste of minimally processed cactus pear fruits, which is an important aspect regarding the use of edible coatings when taste modification is undesirable. Full article
Show Figures

Figure 1

15 pages, 557 KB  
Review
Applications and Pharmacological Properties of Cactus Pear (Opuntia spp.) Peel: A Review
by Salvador Manzur-Valdespino, José Arias-Rico, Esther Ramírez-Moreno, María de Cortes Sánchez-Mata, Osmar Antonio Jaramillo-Morales, Julieta Angel-García, Quinatzin Yadira Zafra-Rojas, Rosario Barrera-Gálvez and Nelly del Socorro Cruz-Cansino
Life 2022, 12(11), 1903; https://doi.org/10.3390/life12111903 - 16 Nov 2022
Cited by 19 | Viewed by 5233
Abstract
Nowadays, there is a growing interest in the exploitation of by-products from fruits and vegetables, generated from industrial processing or human feeding. Residues of popularly consumed fruits such as orange, lemon, banana, pomegranate, among others, have been widely described and studied; however, cactus [...] Read more.
Nowadays, there is a growing interest in the exploitation of by-products from fruits and vegetables, generated from industrial processing or human feeding. Residues of popularly consumed fruits such as orange, lemon, banana, pomegranate, among others, have been widely described and studied; however, cactus pear (Opuntia spp.) residues, as a locally consumed product, have been forgotten. The whole fruit can be divided into the edible portion (pulp) and the non-edible portion (seeds and peel). Several studies mainly focus on the characteristics of the edible portion or in the whole fruit, ignoring by-products such as peels, which are rich in compounds such as phenols, flavonoids and dietary fiber; they have also been proposed as an alternative source of lipids, carbohydrates and natural colorants. Some uses of the peel have been reported as a food additives, food supplements, as a source of pectins and for wastewater treatment; however, there have not been any deep investigations of the characteristics and potential uses of the cactus pear peel (CPP). The aim of the present paper is to provide an overview of the current research on CPP. CPP has many bio-active compounds that may provide health benefits and may also be useful in pharmaceutical, food and manufacturing industries; however, greater research is needed in order to gain thorough knowledge of the possibilities of this by-product. Full article
(This article belongs to the Special Issue Plants as a Promising Biofactory for Bioactive Compounds)
Show Figures

Graphical abstract

19 pages, 800 KB  
Article
Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill.
by Ambrogina Albergamo, Angela Giorgia Potortí, Giuseppa Di Bella, Nawres Ben Amor, Giovanna Lo Vecchio, Vincenzo Nava, Rossana Rando, Hedi Ben Mansour and Vincenzo Lo Turco
Foods 2022, 11(2), 155; https://doi.org/10.3390/foods11020155 - 7 Jan 2022
Cited by 50 | Viewed by 6018
Abstract
Various dried (by-)products from the Tunisian O. ficus-indica were elucidated for their proximate composition, fatty acid (FA) composition, inorganic elements, sugars, and polyphenols. Nopal and prickly pear peel and seeds were abundant in fiber (respectively, 28.39, 12.54, and 16.28%). Seeds had also high [...] Read more.
Various dried (by-)products from the Tunisian O. ficus-indica were elucidated for their proximate composition, fatty acid (FA) composition, inorganic elements, sugars, and polyphenols. Nopal and prickly pear peel and seeds were abundant in fiber (respectively, 28.39, 12.54, and 16.28%). Seeds had also high protein (17.34%) and may be source of an edible oil, due to lipids (9.65%) poor in saturated FAs (14.12%) and rich in linoleic acid (61.11%). Nopal and peel showed the highest levels of Mg (493.57 and 345.19 mg/100 g), K (6949.57 and 1820.83 mg/100 g), Mn (59.73 and 46.86 mg/Kg) and Fe (23.15 and 15.23 mg/Kg), while the fruit pulp predominantly constituted of sugars, glucose and arabinose being predominant (42.57 and 13.56 g/100 g). Total polyphenols widely varied among the Opuntia products (108.36–4785.36 mg GAE/100 g), being mainly represented by hydroxycinnamic and hydroxybenzoic acids, and flavonoids as well. In particular, peel may be revalorized for these valuable bioactives, including 4-hydroxybenzoic acid (484.95 mg/100 g), cinnamic acid (318.95 mg/100 g), rutin (818.94 mg/100 g), quercetin (605.28 mg/100 g), and several isorhamnetin and kaempferol glycosides. Overall, the Tunisian prickly pear cactus could encourage a sustainable production, an effective waste management, and may provide several benefits for human health, in accordance with the model of the Mediterranean diet. Full article
Show Figures

Figure 1

16 pages, 1480 KB  
Article
Effect of Opuntia ficus-indica Mucilage Edible Coating on Quality, Nutraceutical, and Sensorial Parameters of Minimally Processed Cactus Pear Fruits
by Giorgia Liguori, Raimondo Gaglio, Giuseppe Greco, Carla Gentile, Luca Settanni and Paolo Inglese
Agronomy 2021, 11(10), 1963; https://doi.org/10.3390/agronomy11101963 - 29 Sep 2021
Cited by 30 | Viewed by 4059
Abstract
Cactus pear (Opuntia ficus-indica (L.) Mill.) is a non-climacteric fruit with a relatively short postharvest life span, being very sensitive to water loss, darkening and decay. Cactus pear is a spiny fruit, and the presence of glochids limits fruit consumption and diffusion; [...] Read more.
Cactus pear (Opuntia ficus-indica (L.) Mill.) is a non-climacteric fruit with a relatively short postharvest life span, being very sensitive to water loss, darkening and decay. Cactus pear is a spiny fruit, and the presence of glochids limits fruit consumption and diffusion; therefore, minimally processing, as well as peel removing, could be an opportunity to improve its availability, consumption, and diffusion in national and international markets. In this study, cactus pear minimally processed fruits were treated with a mucilage-based coating extracted from Opuntia ficus-indica cladodes and stored at 5 °C for 9 days. The effect of mucilage edible coating on the postharvest life, qualitative attributes, and nutraceutical value of fruit were evaluated by colors, firmness, total soluble solids content, titratable acidity, ascorbic acid, betalains and DPPH (2,2-diphenyl-1-picrylhydrazyl). Results showed that mucilage-based coating improved the quality and preserves the nutraceutical value of minimally processed cactus pear fruits during storage. The edible coating was effective in maintaining fruit fresh weight, total soluble solids content, fruit firmness, ascorbic acid and betalain content, sensorial traits, and visual score. Coated fruits showed a significantly lower microbiological growth than uncoated control fruits during the entire cold storage period. Full article
(This article belongs to the Special Issue Advances in Fruit Postharvest Physiology and Technology)
Show Figures

Figure 1

20 pages, 896 KB  
Article
Effect of Prickly Pear Cactus Peel Supplementation on Milk Production, Nutrient Digestibility and Rumen Fermentation of Sheep and the Maternal Effects on Growth and Physiological Performance of Suckling Offspring
by Sabrin A. Morshedy, Aymen E. Abdal Mohsen, Mohamed M. Basyony, Rafa Almeer, Mohamed M. Abdel-Daim and Yassmine M. El-Gindy
Animals 2020, 10(9), 1476; https://doi.org/10.3390/ani10091476 - 22 Aug 2020
Cited by 22 | Viewed by 5075
Abstract
Prickly pear cactus peels (Opuntia ficus-indica, PPCP) are sustainable byproducts available in arid regions and a rich source of antioxidants. Fifteen multiparous Barki ewes (2–3 years old, 46.94 ± 0.59 kg body weight, BW) at postpartum were individually distributed [...] Read more.
Prickly pear cactus peels (Opuntia ficus-indica, PPCP) are sustainable byproducts available in arid regions and a rich source of antioxidants. Fifteen multiparous Barki ewes (2–3 years old, 46.94 ± 0.59 kg body weight, BW) at postpartum were individually distributed in three equal groups and fed diets supplemented with PPCP at doses of 0, 5 and 10 g/head/day. Lambs were individually distributed into three equal groups according to their mothers’ groups to investigate the maternal effect on lambs’ growth performance, hematology and serum metabolites. This trial lasted for 56 days from birth to weaning. Moreover, nine adult male Barki sheep with a live BW of 65.76 ± 0.54 kg were randomly allocated into three equal groups to determine the effect of PPCP on the nutrient digestibility of the experimental diets. The results indicate that supplementing PPCP at low levels (5 g/head/day) increased milk yield (p = 0.050), fat-corrected milk (p = 0.022), energy-corrected milk (p = 0.015) and the yield of milk constituents compared to 10 g PPCP and the control group. In addition, lambs suckling from ewes fed the diet supplemented with 5 g PPCP had a higher (p = 0.001) weaning BW compared to other groups. Serum total protein, globulin, superoxide dismutase, glutathione peroxidase enzyme activities and the triiodothyronine hormone improved significantly in lambs suckling from ewes fed diets supplemented with 5 g PPCP compared to the control group. Serum cholesterol profile and kidney activities were enhanced significantly in lambs suckling from ewes fed diets supplemented with 5 and 10 g of PPCP compared to the control group. The dietary supplementation of 5 g PPCP improved the crude protein digestibility, digestible crude protein value, nitrogen balance and rumen fermentation characteristics of male sheep compared to the control group. In conclusion, supplementation with 5 g PPCP improved ewes’ milk production, offspring growth and physiological status. Furthermore, it improved the crude protein digestibility and rumen fermentation characteristics of Barki sheep. Full article
Show Figures

Figure 1

13 pages, 969 KB  
Article
Chemical Characterization of Opuntia ficus-indica (L.) Mill. Hydroalcoholic Extract and Its Efficiency against Gastrointestinal Nematodes of Sheep
by Carolina Santos, Luciano Henrique Campestrini, Douglas Luis Vieira, Izanara Pritsch, Fábio Tomio Yamassaki, Selma Faria Zawadzki-Baggio, Juliana Bello Baron Maurer and Marcelo Beltrão Molento
Vet. Sci. 2018, 5(3), 80; https://doi.org/10.3390/vetsci5030080 - 12 Sep 2018
Cited by 13 | Viewed by 4760
Abstract
Opuntia ficus-indica (L.) Mill. is a xerophylous plant that originated in tropical and subtropical America. This plant is popularly known in Brazil as “palma forrageira” (cactus pear) and plays a fundamental role in animal nutrition, mainly in the Northeastern semi-arid region of the [...] Read more.
Opuntia ficus-indica (L.) Mill. is a xerophylous plant that originated in tropical and subtropical America. This plant is popularly known in Brazil as “palma forrageira” (cactus pear) and plays a fundamental role in animal nutrition, mainly in the Northeastern semi-arid region of the country. The plant has several uses since it presents bioactive compounds that confer biological and pharmacological properties. In this context, the cactus pear can also be considered a potential product to combat parasite infections. The objective of this study was to chemically characterize the O. ficus-indica hydroalcoholic extract (OFIEOH) and to determine its efficacy against gastrointestinal parasites using in vitro tests. Initially, the hydroalcoholic extract from cladode peels of O. ficus-indica was produced by maceration for 21 days. For the chemical characterization, colorimetric dosages were performed for carbohydrates, proteins, phenols and condensed tannins. Liquid chromatography coupled to mass spectrometry/electron spray ionization (LC-MS/ESI) was used to characterize the polyphenolic profile of the OFIEOH extract. Fifteen compounds were identified in the OFIEOH extract, such as methyl, glycosylated and aglycone quercetin derivatives and aglycone and glycosylated kaempferol derivatives. Tri-glycosylated methyl quercetin derivatives were the main compounds identified. In vitro egg hatch (EHT) and larval migration tests (LMT) were used in a range of concentrations of OFIEOH from 12.5 to 100 mg/mL for EHT and 12.5 to 200 mg/mL for LMT. In addition, the LMT was used to test ivermectin (IVM) (from 11.4 to 57.1 µM), associated with the inhibitory concentration of 50% (IC50) for OFIEOH. The combination of OFIEOH (12.5 to 200 mg/mL) plus the IC50 of IVM was also tested. The efficacy of OFIEOH alone varied from 19.33 to 90.0% using the EHT. The LMT revealed an efficacy of 5.78 to 77.26% for the extract. Both tests showed a concentration-dependence inhibitory effect. We found a drug-extract antagonistic neutralizing effect when doses of IVM were added to OFIEOH (maximum efficacy of 73.78%), while a positive additive effect was observed when OFIEOH was added to the IC50 of IVM (IC50 of 82.79 for OFIEOH alone against an IC50 of 55.08 of OFIEOH + IVM). The data from this work indicate that OFIEOH alone may be considered as a suitable ecofriendly product to control gastrointestinal parasites of sheep, offering a more holistic approach to improve animal farming and welfare. The drug-extract interaction is also a promising therapeutic alternative, reducing the final dose to the host, with an optimum combination effect. Full article
Show Figures

Figure 1

Back to TopTop