Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = bulk DNA extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2123 KB  
Article
Comparative Assessment of Environmental DNA and Bulk-Sample Metabarcoding in Biosecurity Surveillance for Detecting Biting Midges (Ceratopogonidae)
by Jieyun Wu, Dongmei Li, Rebijith K. Balan, Sherly George, Lora Peacock and Chandan Pal
Insects 2025, 16(6), 564; https://doi.org/10.3390/insects16060564 - 27 May 2025
Viewed by 1132
Abstract
Biting midges, Culicoides spp. (Diptera: Ceratopogonidae), are significant vectors capable of transmitting arboviruses, such as bluetongue virus, to livestock. New Zealand is free of Culicoides, and a national surveillance programme is in place for the early detection of an incursion. Traditionally, insect [...] Read more.
Biting midges, Culicoides spp. (Diptera: Ceratopogonidae), are significant vectors capable of transmitting arboviruses, such as bluetongue virus, to livestock. New Zealand is free of Culicoides, and a national surveillance programme is in place for the early detection of an incursion. Traditionally, insect trap samples from the surveillance programme are analyzed using morphology-based diagnostics under microscopes, which is time-consuming and relies on specialized taxonomic expertise. Here, we assessed the effectiveness of DNA metabarcoding using insect bulk samples and environmental DNA (eDNA) from liquid samples collected in surveillance traps. Two Cytochrome oxidase I (COI) barcoding primer sets were employed to study biodiversity and detect exotic species. The results indicated that DNA metabarcoding with homogenized insect bulk samples had a higher overall detection accuracy rate (over 81% for both primer pairs) compared to ethanol fluid-derived eDNA samples from traps (68.42% and 55.26% for the primer sets LCO1490/HCO2198 and mlCOIintF/jgHCO2198, respectively) based on congruence with morphological identification. Detection failures were likely due to eDNA extraction issues or low target species abundance. Both approaches showed similar insect community composition and diversity in the surveillance trap samples, suggesting the potential of DNA metabarcoding for biosecurity surveillance and biodiversity assessments. Overall, DNA metabarcoding using bulk insect samples could enhance the efficiency of Culicoides surveillance, reducing workload and screening time. Full article
(This article belongs to the Special Issue Surveillance and Control of Arthropod-Borne Diseases)
Show Figures

Figure 1

13 pages, 1402 KB  
Article
An Improved Bulk DNA Extraction Method for Detection of Helicoverpa armigera (Lepidoptera: Noctuidae) Using Real-Time PCR
by Kayla A. Mollet, Luke R. Tembrock, Frida A. Zink, Alicia E. Timm and Todd M. Gilligan
Insects 2024, 15(8), 585; https://doi.org/10.3390/insects15080585 - 1 Aug 2024
Cited by 2 | Viewed by 1743
Abstract
Helicoverpa armigera is among the most problematic agricultural pests worldwide due to its polyphagy and ability to evolve pesticide resistance. Molecular detection methods for H. armigera have been developed to track its spread, as such methods allow for rapid and accurate differentiation from [...] Read more.
Helicoverpa armigera is among the most problematic agricultural pests worldwide due to its polyphagy and ability to evolve pesticide resistance. Molecular detection methods for H. armigera have been developed to track its spread, as such methods allow for rapid and accurate differentiation from the native sibling species H. zea. Droplet digital PCR (ddPCR) is a preferred method for bulk screening due to its accuracy and tolerance to PCR inhibitors; however, real-time PCR is less expensive and more widely available in molecular labs. Improvements to DNA extraction yield, purity, and throughput are crucial for real-time PCR assay optimization. Bulk DNA extractions have recently been improved to where real-time PCR sensitivity can equal that of ddPCR, but these new methods require significant time and specialized equipment. In this study, we improve upon previously published bulk DNA extraction methods by reducing bench time and materials. Our results indicate that the addition of caffeine and RNase A improves DNA extraction, resulting in lower Cq values during real-time PCR while reducing the processing time and cost per specimen. Such improvements will enable the use of high throughput screening methods across multiple platforms to improve the probability of detection of H. armigera. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

12 pages, 4200 KB  
Article
Exposure of Dairy Cows to Coxiella burnetii in Greece: Surveillance Results and Association of Bacterial Presence with Environmental Variables
by George Valiakos, Ioannis Gouvias, Marios Lysitsas, Ilias Bouzalas, Stefania Tampach, Eleni Malissiova, Alexis Giannakopoulos, Constantina N. Tsokana, Dimitrios Vourvidis, Anna Kyrma and Charalambos Billinis
Microbiol. Res. 2024, 15(2), 655-666; https://doi.org/10.3390/microbiolres15020043 - 25 Apr 2024
Cited by 3 | Viewed by 1720
Abstract
The exposure of dairy cows to Coxiella burnetii using molecular and serological techniques was investigated in this study. Bulk tank milk and serum samples were collected from various farms in Greece (mainly northern Greece). DNA extraction was performed on milk samples, and qPCR [...] Read more.
The exposure of dairy cows to Coxiella burnetii using molecular and serological techniques was investigated in this study. Bulk tank milk and serum samples were collected from various farms in Greece (mainly northern Greece). DNA extraction was performed on milk samples, and qPCR targeting the IS1111 insertion sequence was performed to detect bacterial pathogens. An ELISA was used to detect specific antibodies in bulk milk and individual serum samples. Data on farms were collected in the field using handheld Global Positioning System Garmin units. The collected data were analyzed using an Ecological Niche Model within the framework of a geographic information system. The results indicated that in more than half of the dairy farms (35/60, 58.3%), C. burnetii is present in milk. Specific antibodies were also detected in almost all milk samples (57/60, 95.0%). At least one seropositive animal was identified using ELISA in the majority of the examined farms (25/28, 89.3%). C. burnetii PCR-positive farms were located in the low-altitude zone with a mean value of 97 m above sea level (range: 2–681). The environmental variable with the highest gain when used in isolation is precipitation in the wettest quarter (28.3% contribution), which therefore appears to have the most useful information by itself. The environmental variable that decreases the gain the most when omitted is the minimal temperature of the coldest month (6.9% contribution). The analysis demonstrated that a mild climate with low precipitation favors a positive status. The exposure of dairy cattle farms to C. burnetii is massive, raising significant concerns regarding livestock production and public health implications. Full article
Show Figures

Figure 1

3 pages, 157 KB  
Abstract
Synthesis and Preliminary Investigation of Metal Nanoparticles from the Stem Extract of Bacopa sp. for the Treatment of Lung Cancer
by Yogeshwaran Murugan, Selvamani Palanisamy and Latha Subbiah
Proceedings 2024, 100(1), 8; https://doi.org/10.3390/proceedings2024100008 - 27 Mar 2024
Viewed by 1366
Abstract
Lung cancer is the third most common cancer in women and the most common cancer in males. Chemotherapy, allopathy, hormone therapy, radiation therapy, surgery, immune system, and targeted therapies are frequently used to treat lung cancer. These medications induce other diseases and have [...] Read more.
Lung cancer is the third most common cancer in women and the most common cancer in males. Chemotherapy, allopathy, hormone therapy, radiation therapy, surgery, immune system, and targeted therapies are frequently used to treat lung cancer. These medications induce other diseases and have a variety of negative effects. Thus, we used a different strategy and sought to treat lung cancer with medicinal herbs. We selected the perennial creeping herb Bacopa monnieri, which belongs to the Scrophulariaceae family, among other medicinal herbs. It contains several active phytoconstituents, including sterols, alkaloids, flavanoids, terpenoids, and saponins. The primary component with anti-lung cancer efficacy is phytosterol, according to the components. According to the phytochemical investigation, this plant contained it. The literature review indicates that the problem is lessened by nanoparticle production. Thus, the novelty of our work is the manufacture of zinc oxide nanoparticles for the treatment of lung cancer using BM stem extracts. Researchers have been interested in ZnO material because of its huge band gap (3.37 eV) with n-type semi-conductivity and high excitonic binding energy (60 meV) with regards to the different semiconductor nanomaterials, such as TiO2, SnO2, GaN, CuO, GaAs, Si, and ZnO. Zinc oxide in bulk is economical and can be used for many different industrial processes, such as the creation of nanoparticles. Zinc acetate serves as the precursor and stem extract serves as the reducing agent in the synthesis. The absorbance peak between 300 and 400 nm in UV spectroscopy was used to characterize the ZnO nanoparticles that were produced from hydromethanolic BM stem extract. In later research, lung cancer treatment might be considered. Given that lung (A549) cell lines will be treated with phytosterol-containing hydromethanolic BM stem extract in the form of ZnO nanoparticles, which will cause cell death by reducing cell proliferation, DNA damage and apoptosis may occur. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Cancers)
18 pages, 4055 KB  
Article
Comparison of Experimental Methodologies Based on Bulk-Metagenome and Virus-like Particle Enrichment: Pros and Cons for Representativeness and Reproducibility in the Study of the Fecal Human Virome
by Adriana Soria-Villalba, Nicole Pesantes, Nuria Jiménez-Hernández, Javier Pons, Andrés Moya and Vicente Pérez-Brocal
Microorganisms 2024, 12(1), 162; https://doi.org/10.3390/microorganisms12010162 - 13 Jan 2024
Cited by 5 | Viewed by 2783
Abstract
Studies on the human virome based on the application of metagenomic approaches involve overcoming a series of challenges and limitations inherent not only to the biological features of viruses, but also to methodological pitfalls which different approaches have tried to minimize. These approaches [...] Read more.
Studies on the human virome based on the application of metagenomic approaches involve overcoming a series of challenges and limitations inherent not only to the biological features of viruses, but also to methodological pitfalls which different approaches have tried to minimize. These approaches fall into two main categories: bulk-metagenomes and virus-like particle (VLP) enrichment. In order to address issues associated with commonly used experimental procedures to assess the degree of reliability, representativeness, and reproducibility, we designed a comparative analysis applied to three experimental protocols, one based on bulk-metagenomes and two based on VLP enrichment. These protocols were applied to stool samples from 10 adult participants, including two replicas per protocol and subject. We evaluated the performances of the three methods, not only through the analysis of the resulting composition, abundance, and diversity of the virome via taxonomical classification and type of molecule (DNA versus RNA, single stranded vs. double stranded), but also according to how the a priori identical replicas differed from each other according to the extraction methods used. Our results highlight the strengths and weaknesses of each approach, offering valuable insights and tailored recommendations for drawing reliable conclusions based on specific research goals. Full article
(This article belongs to the Special Issue Advances in Viral Metagenomics)
Show Figures

Figure 1

23 pages, 6965 KB  
Article
Validation of Probabilistic Genotyping Software for Single Cell STR Analysis
by Kaitlin Huffman and Jack Ballantyne
Genes 2023, 14(3), 674; https://doi.org/10.3390/genes14030674 - 8 Mar 2023
Cited by 4 | Viewed by 2625
Abstract
Probabilistic genotyping (PG) and its associated software has greatly aided in forensic DNA mixture analysis, with it primarily being applied to mixed DNA profiles obtained from bulk cellular extracts. However, these software applications do not always result in probative information about the identity [...] Read more.
Probabilistic genotyping (PG) and its associated software has greatly aided in forensic DNA mixture analysis, with it primarily being applied to mixed DNA profiles obtained from bulk cellular extracts. However, these software applications do not always result in probative information about the identity of all donors to said mixtures/extracts. This is primarily due to mixture complexity caused by overlapping alleles and the presence of artifacts and minor donors. One way of reducing mixture complexity is to perform direct single cell subsampling of the bulk mixture prior to genotyping and interpretation. The analysis of low template DNA samples, including from single or few cells, has also benefited from the application of PG methods. With the application of PG, multiple cell subsamples originating from the same donor can be combined into a single analysis using the software replicate analysis function often resulting in full DNA profile donor information. In the present work, we demonstrate how two PG software systems, STRmixTM and EuroForMix, were successfully validated for single or few cell applications. Full article
(This article belongs to the Special Issue Advances in Forensic Molecular Genetics)
Show Figures

Figure 1

17 pages, 4741 KB  
Article
Microbiomic Analysis of Bacteria Associated with Rock Tripe Lichens in Continental and Maritime Antarctic Regions
by Zichen He, Takeshi Naganuma, Ryosuke Nakai, Satoshi Imura, Megumu Tsujimoto and Peter Convey
J. Fungi 2022, 8(8), 817; https://doi.org/10.3390/jof8080817 - 3 Aug 2022
Cited by 9 | Viewed by 5379
Abstract
Increased research attention is being given to bacterial diversity associated with lichens. Rock tripe lichens (Umbilicariaceae) were collected from two distinct Antarctic biological regions, the continental region near the Japanese Antarctic station (Syowa Station) and the maritime Antarctic South Orkney Islands [...] Read more.
Increased research attention is being given to bacterial diversity associated with lichens. Rock tripe lichens (Umbilicariaceae) were collected from two distinct Antarctic biological regions, the continental region near the Japanese Antarctic station (Syowa Station) and the maritime Antarctic South Orkney Islands (Signy Island), in order to compare their bacterial floras and potential metabolism. Bulk DNA extracted from the lichen samples was used to amplify the 18S rRNA gene and the V3-V4 region of the 16S rRNA gene, whose amplicons were Sanger- and MiSeq-sequenced, respectively. The fungal and algal partners represented members of the ascomycete genus Umbilicaria and the green algal genus Trebouxia, based on 18S rRNA gene sequences. The V3-V4 sequences were grouped into operational taxonomic units (OTUs), which were assigned to eight bacterial phyla, Acidobacteriota, Actinomyceota, Armatimonadota, Bacteroidota, Cyanobacteria, Deinococcota, Pseudomonadota and the candidate phylum Saccharibacteria (also known as TM7), commonly present in all samples. The OTU floras of the two biological regions were clearly distinct, with regional biomarker genera, such as Mucilaginibacter and Gluconacetobacter, respectively. The OTU-based metabolism analysis predicted higher membrane transport activities in the maritime Antarctic OTUs, probably influenced by the sampling area’s warmer maritime climatic setting. Full article
(This article belongs to the Special Issue Ecology and Evolution of Lichens and Associated Microorganisms)
Show Figures

Figure 1

10 pages, 1583 KB  
Article
Truth or Lie: Does the DNA Extraction Procedure Really Affect the Insight in Composition and Diversity of Microbial Communities in Saffron Cultivated Soils?
by Samuele Voyron, Íris Marisa Maxaieie Victorino, Matteo Caser, Sonia Demasi, Valentina Scariot, Valeria Bianciotto, Stefano Ghignone and Erica Lumini
Appl. Microbiol. 2022, 2(3), 492-501; https://doi.org/10.3390/applmicrobiol2030038 - 19 Jul 2022
Cited by 3 | Viewed by 2664
Abstract
The aim of this study was to evaluate the performance of two of the most commonly used commercial kits for soil DNA extraction regarding the values of the taxonomic diversity of prokaryotes and community composition of saffron (Crocus sativus) cultivated fields. The impact [...] Read more.
The aim of this study was to evaluate the performance of two of the most commonly used commercial kits for soil DNA extraction regarding the values of the taxonomic diversity of prokaryotes and community composition of saffron (Crocus sativus) cultivated fields. The impact of the QIAGEN-DNeasy PowerSoil Kit (MO) and Macherey-Nagel™ NucleoSpin™ Soil (MN) kit was tested on the soil of an Italian western alpine experimental site located in Saint Christophe (Aosta Valley, AO). Nine biological replicas of bulk soil were collected and analyzed independently with the two kits. 16S rRNA metabarcoding was applied to characterize soil microbial communities. We first noticed that both DNA extraction kits yielded nearly the same number of OTUs: 1284 and 1268 for MN and MO, respectively. Both kits did not differ in the alpha diversity of the samples, while they had an influence on the beta diversity. The comparative analysis of the microbial community composition displayed differences in microbial community structure depending on which kit was used. These differences were especially highlighted at Phylum and Class levels. On the other hand, the fact that, from a functional point of view, our approach did not highlight any differences allows us to state that the results obtained with the two extraction kits are comparable and interchangeable. Based on these results and those in the literature, we could undoubtedly recommend both commercial kits, especially if the soil target microorganisms are prokaryotes and the study focuses on agricultural sites. Full article
Show Figures

Graphical abstract

19 pages, 4673 KB  
Article
Phylotypic Diversity of Bacteria Associated with Speleothems of a Silicate Cave in a Guiana Shield Tepui
by Qi Liu, Zichen He, Takeshi Naganuma, Ryosuke Nakai, Luz María Rodríguez, Rafael Carreño and Franco Urbani
Microorganisms 2022, 10(7), 1395; https://doi.org/10.3390/microorganisms10071395 - 11 Jul 2022
Cited by 5 | Viewed by 3809
Abstract
The diversity of microorganisms associated with speleological sources has mainly been studied in limestone caves, while studies in silicate caves are still under development. Here, we profiled the microbial diversity of opal speleothems from a silicate cave in Guiana Highlands. Bulk DNAs were [...] Read more.
The diversity of microorganisms associated with speleological sources has mainly been studied in limestone caves, while studies in silicate caves are still under development. Here, we profiled the microbial diversity of opal speleothems from a silicate cave in Guiana Highlands. Bulk DNAs were extracted from three speleothems of two types, i.e., one soft whitish mushroom-like speleothem and two hard blackish coral-like speleothems. The extracted DNAs were amplified for sequencing the V3–V4 region of the bacterial 16S rRNA gene by MiSeq. A total of 210,309 valid reads were obtained and clustered into 3184 phylotypes or operational taxonomic units (OTUs). The OTUs from the soft whitish speleothem were mostly affiliated with Acidobacteriota, Pseudomonadota (formerly, Proteobacteria), and Chloroflexota, with the OTUs ascribed to Nitrospirota being found specifically in this speleothem. The OTUs from the hard blackish speleothems were similar to each other and were mostly affiliated with Pseudomonadota, Acidobacteriota, and Actinomycetota (formerly, Actinobacteria). These OTU compositions were generally consistent with those reported for limestone and silicate caves. The OTUs were further used to infer metabolic features by using the PICRUSt bioinformatic tool, and membrane transport and amino acid metabolism were noticeably featured. These and other featured metabolisms may influence the pH microenvironment and, consequently, the formation, weathering, and re-deposition of silicate speleothems. Full article
(This article belongs to the Special Issue Feature Collection in Environmental Microbiology Section 2021-2022)
Show Figures

Figure 1

16 pages, 3517 KB  
Article
Diverse Host Plants of the First Instars of the Invasive Lycorma delicatula: Insights from eDNA Metabarcoding
by Cameron McPherson, Alina Avanesyan and William O. Lamp
Insects 2022, 13(6), 534; https://doi.org/10.3390/insects13060534 - 10 Jun 2022
Cited by 10 | Viewed by 5065
Abstract
Identification of host plants of the invasive spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), has been the focus of many studies. While the adults and late nymphs are relatively easy to observe on plants and to use for molecular gut-content analysis, studying the early [...] Read more.
Identification of host plants of the invasive spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), has been the focus of many studies. While the adults and late nymphs are relatively easy to observe on plants and to use for molecular gut-content analysis, studying the early instars is more challenging. This study is the continuation of our ongoing efforts to determine the host range for each developmental stage of L. delicatula. In the present study, we focused exclusively on the first nymphal instars, and we used a novel approach, utilizing “bulk” DNA extracts for DNA metabarcoding of nymphal gut contents, to identify all the detectable plants that the nymphs had ingested prior to being collected. We were able to obtain high-quality amplicons (up to 406 bp) of a portion of the rbcL gene and detect 27 unique ingested plant species belonging to 17 families. Both native and introduced plants with the prevalence of trees and grasses were present among the ingested plants. We also identified 13 novel host plants that have not been previously reported for L. delicatula on the U.S. territory. The results from our study have important applications for developing effective programs on early monitoring of invasive L. delicatula. Full article
Show Figures

Figure 1

19 pages, 3163 KB  
Article
The Effects of Plant Health Status on the Community Structure and Metabolic Pathways of Rhizosphere Microbial Communities Associated with Solanum lycopersicum
by Afeez Adesina Adedayo, Ayomide Emmanuel Fadiji and Olubukola Oluranti Babalola
Horticulturae 2022, 8(5), 404; https://doi.org/10.3390/horticulturae8050404 - 4 May 2022
Cited by 21 | Viewed by 4132
Abstract
Powdery mildew disease caused by Oidium neolycopersici is one of the major diseases affecting tomato production in South Africa. Interestingly, limited studies exist on how this disease affects the community structure microbial communities associated with tomato plants employing shotgun metagenomics. In this study, [...] Read more.
Powdery mildew disease caused by Oidium neolycopersici is one of the major diseases affecting tomato production in South Africa. Interestingly, limited studies exist on how this disease affects the community structure microbial communities associated with tomato plants employing shotgun metagenomics. In this study, we assess how the health status of a tomato plant affects the diversity of the rhizosphere microbial community. We collected soil samples from the rhizosphere of healthy (HR) and diseased (DR; powdery mildew infected) tomatoes, alongside bulk soil (BR), extracted DNA, and did sequencing using shotgun metagenomics. Our results demonstrated that the rhizosphere microbiome alongside some specific functions were abundant in HR followed by DR and bulk soil (BR) in the order HR > DR > BR. We found eighteen (18) bacterial phyla abundant in HR, including Actinobacteria, Acidobacteria, Aquificae, Bacteroidetes, etc. The dominant fungal phyla include; Ascomycota and Basidiomycota, while the prominent archaeal phyla are Thaumarchaeota, Crenarchaeota, and Euryarchaeota. Three (3) bacteria phyla dominated the DR samples; Bacteroidetes, Gemmatimonadetes, and Thermotoga. Our result also employed the SEED subsystem and revealed that the metabolic pathways involved were abundant in HR. The α-diversity demonstrates that there is no significant difference among the rhizosphere microbiomes across the sites, while β-diversity demonstrated a significant difference. Full article
(This article belongs to the Special Issue Advancements in Soil Health)
Show Figures

Figure 1

21 pages, 1933 KB  
Article
Malva parviflora Leaves Mucilage: An Eco-Friendly and Sustainable Biopolymer with Antioxidant Properties
by Ans Munir, Fadia S. Youssef, Saiqa Ishtiaq, Sairah H. Kamran, Alaa Sirwi, Safwat A. Ahmed, Mohamed L. Ashour and Sameh S. Elhady
Polymers 2021, 13(23), 4251; https://doi.org/10.3390/polym13234251 - 3 Dec 2021
Cited by 26 | Viewed by 5235
Abstract
Malva parviflora L. is an edible and medicinal herb containing mucilaginous cells in its leaves. Mucilage obtained from M. parviflora leaves (MLM) was extracted in distilled water (1:10 w/v) at 70 °C followed by precipitation with alcohol. Preliminary phytochemical tests [...] Read more.
Malva parviflora L. is an edible and medicinal herb containing mucilaginous cells in its leaves. Mucilage obtained from M. parviflora leaves (MLM) was extracted in distilled water (1:10 w/v) at 70 °C followed by precipitation with alcohol. Preliminary phytochemical tests were performed to assess the purity of the extracted mucilage. Results showed that the yield of mucilage was 7.50%, and it was free from starch, alkaloids, glycosides, saponins, steroids, lipids and heavy metals. MLM had 16.19% carbohydrates, 13.55% proteins and 4.76% amino acids, which indicate its high nutritional value. Physicochemical investigations showed that MLM is neutral and water-soluble, having 5.84% moisture content, 15.60% ash content, 12.33 swelling index, 2.57 g/g water-holding capacity and 2.03 g/g oil-binding capacity. The functional properties, including emulsion capacity, emulsion stability, foaming capacity and stability increased with increased concentrations. Micromeritic properties, such as bulk density, tapped density, Carr’s index, Hausner ratio, and angle of repose, were found to be 0.69 g/cm3, 0.84 g/cm3, 17.86%, 1.22 and 28.5, respectively. Scanning electron microscopy (SEM) showed that MLM is an amorphous powder possessing particles of varying size and shape; meanwhile, rheological studies revealed the pseudoplastic behavior of MLM. The thermal transition process of MLM revealed by a differential scanning calorimetry (DSC) thermogram, occurring at a reasonable enthalpy change (∆H), reflects its good thermal stability. The presence of functional groups characteristic of polysaccharides was ascertained by the infrared (IR) and gas chromatography/mass spectrometry (GC/MS) analyses. GC revealed the presence of five neutral monosaccharides; namely, galactose, rhamnose, arabinose, glucose and mannose, showing 51.09, 10.24, 8.90, 1.80 and 0.90 mg/g of MLM, respectively. Meanwhile, galacturonic acid is the only detected acidic monosaccharide, forming 15.06 mg/g of MLM. It showed noticeable antioxidant activity against the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical with an IC50 value of 154.27 µg/mL. It also prevented oxidative damage to DNA caused by the Fenton reagent, as visualized in gel documentation system. The sun protection factor was found to be 10.93 ± 0.15 at 400 µg/mL. Thus, MLM can be used in food, cosmetic and pharmaceutical industry and as a therapeutic agent due to its unique properties. Full article
(This article belongs to the Special Issue Functional Natural-Based Polymers)
Show Figures

Graphical abstract

24 pages, 27654 KB  
Article
Monocarboxylate Transporter-2 Expression Restricts Tumor Growth in a Murine Model of Lung Cancer: A Multi-Omic Analysis
by Abdelnaby Khalyfa, Zhuanhong Qiao, Murugesan Raju, Chi-Ren Shyu, Lyndon Coghill, Aaron Ericsson and David Gozal
Int. J. Mol. Sci. 2021, 22(19), 10616; https://doi.org/10.3390/ijms221910616 - 30 Sep 2021
Cited by 7 | Viewed by 5477
Abstract
Monocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in the gut microbiota and host immune system are associated with many diseases, including cancer. Using conditionally expressed MCT2 [...] Read more.
Monocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in the gut microbiota and host immune system are associated with many diseases, including cancer. Using conditionally expressed MCT2 in mice and the TC1 lung carcinoma model, we examined the effects of MCT2 on lung cancer tumor growth and local invasion, while also evaluating potential effects on fecal microbiome, plasma metabolome, and bulk RNA-sequencing of tumor macrophages. Conditional MCT2 mice were generated in our laboratory using MCT2loxP mouse intercrossed with mCre-Tg mouse to generate MCT2loxP/loxP; Cre+ mouse (MCT2 KO). Male MCT2 KO mice (8 weeks old) were treated with tamoxifen (0.18 mg/g BW) KO or vehicle (CO), and then injected with mouse lung carcinoma TC1 cells (10 × 105/mouse) in the left flank. Body weight, tumor size and weight, and local tumor invasion were assessed. Fecal DNA samples were extracted using PowerFecal kits and bacterial 16S rRNA amplicons were also performed. Fecal and plasma samples were used for GC−MS Polar, as well as non-targeted UHPLC-MS/MS, and tumor-associated macrophages (TAMs) were subjected to bulk RNAseq. Tamoxifen-treated MCT2 KO mice showed significantly higher tumor weight and size, as well as evidence of local invasion beyond the capsule compared with the controls. PCoA and hierarchical clustering analyses of the fecal and plasma metabolomics, as well as microbiota, revealed a distinct separation between the two groups. KO TAMs showed distinct metabolic pathways including the Acetyl-coA metabolic process, activation of immune response, b-cell activation and differentiation, cAMP-mediated signaling, glucose and glutamate processes, and T-cell differentiation and response to oxidative stress. Multi-Omic approaches reveal a substantial role for MCT2 in the host response to TC1 lung carcinoma that may involve alterations in the gut and systemic metabolome, along with TAM-related metabolic pathway. These findings provide initial opportunities for potential delineation of oncometabolic immunomodulatory therapeutic approaches. Full article
(This article belongs to the Special Issue Omics for Metabolic Mysfunctions)
Show Figures

Figure 1

19 pages, 5627 KB  
Article
Assay Optimization Can Equalize the Sensitivity of Real-Time PCR with ddPCR for Detection of Helicoverpa armigera (Lepidoptera: Noctuidae) in Bulk Samples
by Thayssa M. R. Oliveira, Frida A. Zink, Renato C. Menezes, Érico C. Dianese, Karina C. Albernaz-Godinho, Marcos G. Cunha, Alicia E. Timm, Todd M. Gilligan and Luke R. Tembrock
Insects 2021, 12(10), 885; https://doi.org/10.3390/insects12100885 - 29 Sep 2021
Cited by 5 | Viewed by 2807
Abstract
Helicoverpa armigera (Hübner) is one of the most important agricultural pests in the world. This historically Old World species was first reported in Brazil in 2013 and has since spread throughout much of South America and into the Caribbean. Throughout North America, H. [...] Read more.
Helicoverpa armigera (Hübner) is one of the most important agricultural pests in the world. This historically Old World species was first reported in Brazil in 2013 and has since spread throughout much of South America and into the Caribbean. Throughout North America, H. armigera surveys are ongoing to detect any incursions. Each trap is capable of capturing hundreds of native Helicoverpa zea (Boddie). The two species cannot be separated without genitalic dissection or molecular methods. A ddPCR assay is currently used to screen large trap samples, but this equipment is relatively uncommon and expensive. Here, we optimized a newly designed assay for accurate and repeatable detection of H. armigera in bulk samples across both ddPCR and less costly, and more common, real-time PCR methods. Improvements over previously designed assays were sought through multiple means. Our results suggest bulk real-time PCR assays can be improved through changes in DNA extraction and purification, so that real-time PCR can be substituted for ddPCR in screening projects. While ddPCR remains a more sensitive method for detection of H. armigera in bulk samples, the improvements in assay design, DNA extraction, and purification presented here also enhance assay performance over previous protocols. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

25 pages, 2383 KB  
Review
Integration of DNA-Based Approaches in Aquatic Ecological Assessment Using Benthic Macroinvertebrates
by Sofia Duarte, Barbara R. Leite, Maria João Feio, Filipe O. Costa and Ana Filipa Filipe
Water 2021, 13(3), 331; https://doi.org/10.3390/w13030331 - 29 Jan 2021
Cited by 49 | Viewed by 8394
Abstract
Benthic macroinvertebrates are among the most used biological quality elements for assessing the condition of all types of aquatic ecosystems worldwide (i.e., fresh water, transitional, and marine). Current morphology-based assessments have several limitations that may be circumvented by using DNA-based approaches. Here, we [...] Read more.
Benthic macroinvertebrates are among the most used biological quality elements for assessing the condition of all types of aquatic ecosystems worldwide (i.e., fresh water, transitional, and marine). Current morphology-based assessments have several limitations that may be circumvented by using DNA-based approaches. Here, we present a comprehensive review of 90 publications on the use of DNA metabarcoding of benthic macroinvertebrates in aquatic ecosystems bioassessments. Metabarcoding of bulk macrozoobenthos has been preferentially used in fresh waters, whereas in marine waters, environmental DNA (eDNA) from sediment and bulk communities from deployed artificial structures has been favored. DNA extraction has been done predominantly through commercial kits, and cytochrome c oxidase subunit I (COI) has been, by far, the most used marker, occasionally combined with others, namely, the 18S rRNA gene. Current limitations include the lack of standardized protocols and broad-coverage primers, the incompleteness of reference libraries, and the inability to reliably extrapolate abundance data. In addition, morphology versus DNA benchmarking of ecological status and biotic indexes are required to allow general worldwide implementation and higher end-user confidence. The increased sensitivity, high throughput, and faster execution of DNA metabarcoding can provide much higher spatial and temporal data resolution on aquatic ecological status, thereby being more responsive to immediate management needs. Full article
(This article belongs to the Special Issue The Ecological Assessment of Rivers and Estuaries: Present and Future)
Show Figures

Figure 1

Back to TopTop