Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = branched alkyl chain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2502 KB  
Article
Kinetic Parameters at High-Pressure-Limit for Unimolecular Alkene Elimination Reaction Class of Fatty Acid Alkyl Esters (FAAEs)
by Xiaohui Sun, Zhenyu Pei, Zerong Li and Yuanyuan Tian
Molecules 2025, 30(20), 4054; https://doi.org/10.3390/molecules30204054 - 11 Oct 2025
Viewed by 329
Abstract
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and [...] Read more.
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and intricate branched-chain configurations. Thermo-kinetic parameters are essential for constructing a reaction mechanism, which can be used to clarify the chemical nature of combustion for biodiesel fuels. In this paper, the B3LYP method, in conjunction with the 6-311G(d,p) basis set, is used to carry out geometry optimization of the species participating in the reactions. Frequency calculations are further executed at the same level of theory. Additionally, coupled with the 6-311G(d,p) basis set, the B3LYP method acts as the low-level ab initio approach, while the Gaussian-4 (G4) composite method serves as the high-level ab initio approach within the isodesmic reaction correction scheme. The CCSD(T) approach is employed to verify the consistency of the electronic energy ascertained through the G4 method. The isodesmic reaction method (IRM) is used to obtain the energy barriers and reaction enthalpies for unimolecular alkene elimination reaction class of FAAEs. Based on the reaction class transition state theory (RC-TST), high-pressure-limit rate coefficients were computed, with asymmetric Eckart tunneling corrections applied across 500~2000 K temperature range. Rate rules at the high-pressure-limit are obtained through the averaging of rate coefficients from a representative collection of reactions, which incorporate substituent groups and carbon chains with different sizes and lengths. Ultimately, the energy barriers, reaction enthalpies, and rate rules at the high-pressure-limit and kinetic parameters expressed as (A, n, E) are supplied for developing the low-temperature combustion mechanism of biodiesel fuels. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

15 pages, 855 KB  
Article
Comonomer Reactivity Trends in Catalytic Ethene/1-Alkene Copolymerizations to Linear Low-Density Polyethylene
by Gianluigi Galasso, Roberta Cipullo, Vincenzo Busico and Antonio Vittoria
Polymers 2025, 17(17), 2290; https://doi.org/10.3390/polym17172290 - 24 Aug 2025
Viewed by 1113
Abstract
Linear Low-Density Polyethylene (LLDPE) is a versatile polyolefin made by copolymerizing ethene with minor amounts of a 1-alkene. The short side chain branches in the comonomer units partly hinder the ability of the polyethylene main chain to crystallize, thus providing a way to [...] Read more.
Linear Low-Density Polyethylene (LLDPE) is a versatile polyolefin made by copolymerizing ethene with minor amounts of a 1-alkene. The short side chain branches in the comonomer units partly hinder the ability of the polyethylene main chain to crystallize, thus providing a way to fine-tune material properties between the extremes of a thermoplastic and a moderate elastomer. In this function, higher 1-alkenes such as 1-hexene or 1-octene are more effective than shorter homologs like propene or 1-butene, because their alkyl substituents are fully incompatible with the polyethylene lattice. On the other hand, the former comonomers are also more expensive and, above all, poorly reactive with heterogeneous Ziegler–Natta (ZN) catalysts, the workhorses of the polyolefin industry; as a matter of fact, they can only be used with technologically more demanding molecular catalysts. The molecular kinetic factors governing this important and complicated catalytic reactivity are still poorly understood, and perusal of the literature led us to conclude that data reliability is often questionable due to experimental limitations in reaction equipment and protocols, particularly in academic laboratories. In this study, we made use of a state-of-the-art High-Throughput Experimentation workflow to measure the reactivity ratios with ethene of two representative higher 1-alkenes, namely 1-hexene and 1-decene, in the presence of a variety of well-defined molecular catalysts of metallocene and post-metallocene nature comparatively with a typical MgCl2/TiCl4 ZN catalyst for polyethylene application. We found that the two comonomers react almost identically with molecular catalysts, whereas a major decrease in reactivity for 1-decene compared with 1-hexene was observed idiosyncratically for the ZN catalyst. In our opinion, the overall results suggest that in the latter case, surface effects can be dominant over direct comonomer interactions with the coordination sphere of the active metal in dictating the observed molecular kinetic behavior. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 1500 KB  
Article
Structure-Activity Relationships in Alkoxylated Resorcinarenes: Synthesis, Structural Features, and Bacterial Biofilm-Modulating Properties
by Mariusz Urbaniak, Łukasz Lechowicz, Barbara Gawdzik, Maciej Hodorowicz and Ewelina Wielgus
Molecules 2025, 30(15), 3304; https://doi.org/10.3390/molecules30153304 - 7 Aug 2025
Viewed by 730
Abstract
In this study, a series of novel alkoxylated resorcinarenes were synthesized using secondary and tertiary alcohols under mild catalytic conditions involving iminodiacetic acid. Structural characterization, including single-crystal X-ray diffraction, confirmed the successful incorporation of branched alkyl chains and highlighted the influence of substitution [...] Read more.
In this study, a series of novel alkoxylated resorcinarenes were synthesized using secondary and tertiary alcohols under mild catalytic conditions involving iminodiacetic acid. Structural characterization, including single-crystal X-ray diffraction, confirmed the successful incorporation of branched alkyl chains and highlighted the influence of substitution patterns on molecular packing. Notably, detailed mass spectrometric analysis revealed that, under specific conditions, the reaction pathway may shift toward the formation of defined oligomeric species with supramolecular characteristics—an observation that adds a new dimension to the synthetic potential of this system. To complement the chemical analysis, selected derivatives were evaluated for biological activity, focusing on bacterial growth and biofilm formation. Using four clinically relevant strains (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis), we assessed both planktonic proliferation (OD600) and biofilm biomass (crystal violet assay). Compound 2c (2-pentanol derivative) consistently promoted biofilm formation, particularly in S. aureus and B. subtilis, while having limited cytotoxic effects. In contrast, compound 2e and the DMSO control exhibited minimal impact on biofilm development. The results suggest that specific structural features of the alkoxy chains may modulate microbial responses, potentially via membrane stress or quorum sensing interference. This work highlights the dual relevance of alkoxylated resorcinarenes as both supramolecular building blocks and modulators of microbial behavior. Full article
Show Figures

Figure 1

29 pages, 1939 KB  
Review
Peroxisomal Alterations in Prostate Cancer: Metabolic Shifts and Clinical Relevance
by Mohamed A. F. Hussein, Celien Lismont, Hongli Li, Ruizhi Chai, Frank Claessens and Marc Fransen
Cancers 2025, 17(13), 2243; https://doi.org/10.3390/cancers17132243 - 4 Jul 2025
Cited by 1 | Viewed by 2397
Abstract
Cancer is hallmarked by uncontrolled cell proliferation and enhanced cell survival, driven by a complex interplay of factors—including genetic and epigenetic changes—that disrupt metabolic and signaling pathways and impair organelle function. While the roles of mitochondria and the endoplasmic reticulum in cancer are [...] Read more.
Cancer is hallmarked by uncontrolled cell proliferation and enhanced cell survival, driven by a complex interplay of factors—including genetic and epigenetic changes—that disrupt metabolic and signaling pathways and impair organelle function. While the roles of mitochondria and the endoplasmic reticulum in cancer are widely recognized, emerging research is now drawing attention to the involvement of peroxisomes in tumor biology. Peroxisomes are essential for lipid metabolism, including fatty acid α- and β-oxidation, the synthesis of docosahexaenoic acid, bile acids, and ether lipids, as well as maintaining redox balance. Despite their critical functions, the role of peroxisomes in oncogenesis remains inadequately explored. Prostate cancer (PCa), the second most common cancer in men worldwide, exhibits a unique metabolic profile compared to other solid tumors. In contrast to the glycolysis-driven Warburg effect, primary PCa relies primarily on lipogenesis and oxidative phosphorylation. Peroxisomes are intricately involved in the metabolic adaptations of PCa, influencing both disease progression and therapy resistance. Key alterations in peroxisomal activity in PCa include the increased oxidation of branched-chain fatty acids, upregulation of α-methylacyl coenzyme A racemase (a prominent PCa biomarker), and downregulation of 1-alkyl-glycerone-3-phosphate synthase and catalase. This review critically examines the role of peroxisomes in PCa metabolism, progression, and therapeutic response, exploring their potential as biomarkers and targets for therapy. We also consider their relationship with androgen receptor signaling. A deeper understanding of peroxisome biology in PCa could pave the way for new therapies to improve patient outcomes. Full article
(This article belongs to the Special Issue Advancements in Molecular Research of Prostate Cancer)
Show Figures

Graphical abstract

39 pages, 1478 KB  
Article
Chemical Profiles of the Volatilome and Fatty Acids of “Suero Costeño” (Fermented Cream)/Raw Milk from Colombia: Promising Criteria for the Autochthonous-Regional Product Identity Designation
by Amner Muñoz-Acevedo, Osnaider J. Castillo, Clara Gutiérrez-Castañeda, Mónica Simanca-Sotelo, Beatriz Álvarez-Badel, Alba Durango-Villadiego, Margarita Arteaga-Márquez, Claudia De Paula, Yenis Pastrana-Puche, Ricardo Andrade-Pizarro, Ilba Burbano-Caicedo and Rubén Godoy
Molecules 2025, 30(12), 2524; https://doi.org/10.3390/molecules30122524 - 9 Jun 2025
Viewed by 1150
Abstract
A traditional dairy product from northern Colombia is suero costeño (SC), typically handmade through artisanal processes involving the natural fermentation of raw cow’s milk (RM); it is characterized by a creamy texture and a distinctive sensory profile, with a sour/salty taste and rancid [...] Read more.
A traditional dairy product from northern Colombia is suero costeño (SC), typically handmade through artisanal processes involving the natural fermentation of raw cow’s milk (RM); it is characterized by a creamy texture and a distinctive sensory profile, with a sour/salty taste and rancid odor. This study aimed to determine the chemical identity (using GC-FID/MSD) of SC and RM samples (from eight locations in the department of Córdoba-Colombia) by analyzing volatile components (trapped by HS-SPME and SDE) and fatty acid content. Consequently, the most notable results were as follows: (a) myristic (7–12%), stearic (12–17%), oleic (13–23%), and palmitic (21–29%) acids were the most abundant constituents [without significant differences among them (p > 0.05)] in both RM and SC fats; these were also expressed as polyunsaturated (2–5%), monounsaturated (26–36%), saturated (59–69%), omega-9 (19–30%), omega-6 (0.5–1.6%), and omega-3 (0.2–1.2%) fatty acids; (b) differences in the composition (p < 0.05) of the volatile fractions were distinguished between RM and SC samples; likewise, the SC samples differed (from each other) in their volatile composition due to the preparation processes applied (processes with raw milk and natural fermentation had less variability); nonetheless, it was possible to determine the volatilome for the artisanal product; and (c) the major components responsible for the chemical identity of SC were ethyl esters (of linear saturated and unsaturated acids, short/medium chains), aliphatic alcohols (linear/branched, short/long chains), aliphatic aldehydes (long chains, >C14), alkyl methyl ketones (long chains, >C11), sesquiterpenes (caryophyllane/humulane types), monoterpenes (mono/bi-cyclics), short-chain fatty acids, and aromatic alcohol/acid, among others. Full article
(This article belongs to the Special Issue Research on Bioactive Compounds in Milk)
Show Figures

Graphical abstract

18 pages, 2433 KB  
Article
Development of 2,1,3-Benzothiadiazole-Based Room-Temperature Fluorescent Nematic Liquid Crystals
by Muhammad Suhail bin Uzair, Yoshimichi Shimomura, Takuya Tanaka, Takashi Kajitani and Gen-ichi Konishi
Molecules 2025, 30(11), 2438; https://doi.org/10.3390/molecules30112438 - 2 Jun 2025
Cited by 2 | Viewed by 2260
Abstract
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized [...] Read more.
Fluorescent liquid crystals (LCs) have attracted considerable interest owing to their unique combination of fluidity, anisotropy, and intrinsic emission. However, most reported fluorescent LCs exhibit high phase transition temperatures and/or smectic phases, limiting their practical applications. To address this, we designed and synthesized a series of 2,1,3-benzothiadiazole (BTD)-based fluorescent nematic liquid crystals incorporating donor (D) or acceptor (A) groups to form D–A–D or D–A–A structures. Most of the synthesized derivatives exhibited supercooled nematic phases at room temperature. They composed various functional groups, such as secondary alkylamine, branched alkyl chain, and trifluoroacetyl groups, which are rarely used in calamitic nematic LCs. Notably, dimethylamine- and carbonyl-substituted derivatives exhibited relatively high fluorescence quantum yields (Φfl) in both solid and mesophase states, demonstrating their potential as efficient fluorescent materials. Our findings underscore the versatility of BTD-based mesogenic skeletons for designing room-temperature fluorescent nematic LCs with various functional groups. These materials offer promising opportunities for next-generation display technologies, optical sensors, and photonic applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Figure 1

23 pages, 12241 KB  
Article
Biodiesel Isomerization Using Sulfated Tin(IV) Oxide as a Superacid Catalyst to Improve Cold Flow Properties
by Yano Surya Pradana, I Gusti Bagus Ngurah Makertihartha, Tirto Prakoso, Tatang Hernas Soerawidjaja and Antonius Indarto
Technologies 2025, 13(5), 203; https://doi.org/10.3390/technologies13050203 - 16 May 2025
Cited by 1 | Viewed by 991
Abstract
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended [...] Read more.
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended to substitute petroleum diesel. Nevertheless, implementation of pure biodiesel is not recommended for conventional diesel engines. It holds poor values of cold flow properties, as the effect of high saturated FAAE content contributes to this constraint. Several processes have been proposed to enhance cold flow properties of biodiesel, but this work focuses on the skeletal isomerization process. This process rearranges the skeletal carbon chain of straight-chain FAAE into branched isomeric products to lower the melting point, related to the good cold flow behavior. This method specifically requires an acid catalyst to elevate the isomerization reaction rate. And then, sulfated tin(IV) oxide emerged as a solid superacid catalyst due to its superiority in acidity. The results of biodiesel isomerization over this catalyst and its modification with iron had not satisfied the expectation of high isomerization yield and significant CFP improvement. However, they emphasized that the skeletal isomers demonstrated minimum impact on biodiesel oxidation stability. They also affirmed the role of an acid catalyst in the reaction mechanism in terms of protonation, isomerization, and deprotonation. Furthermore, the metal promotion was theoretically necessary to boost the catalytic activity of this material. It initiated the dehydrogenation of linear hydrocarbon before protonation and terminated the isomerization by hydrogenating the branched carbon chain after deprotonation. Finally, the overall findings indicated promising prospects for further enhancement of catalyst performance and reusability. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Graphical abstract

15 pages, 2536 KB  
Article
α-Alkylation of Aliphatic Ketones with Alcohols: Base Type as an Influential Descriptor
by Rasika Mane, Li Hui, Ander Centeno-Pedrazo, Alexandre Goguet, Nancy Artioli and Haresh Manyar
Catalysts 2024, 14(7), 463; https://doi.org/10.3390/catal14070463 - 19 Jul 2024
Cited by 1 | Viewed by 1772
Abstract
Current global challenges associated with energy security and climate emergency, caused by the combustion of fossil fuels (e.g., jet fuel and diesel), necessitate the accelerated development and deployment of sustainable fuels derived from renewable biomass-based chemical feedstocks. This study focuses on the production [...] Read more.
Current global challenges associated with energy security and climate emergency, caused by the combustion of fossil fuels (e.g., jet fuel and diesel), necessitate the accelerated development and deployment of sustainable fuels derived from renewable biomass-based chemical feedstocks. This study focuses on the production of long-chain (straight and branched) ketones by direct α-alkylation of short chain ketones using both homogenous and solid base catalysts in water. Thus, produced long-chain ketones are fuel precursors and can subsequently be hydrogenated to long-chain alkanes suitable for blending in aviation and liquid transportation fuels. Herein, we report a thorough investigation of the catalytic activity of Pd in combination with, (i) homogenous and solid base additives; (ii) screening of different supports using NaOH as a base additive, and (iii) a comparative study of the Ni and Pd metals supported on layered double oxides (LDOs) in α-alkylation of 2-butanone with 1-propanol as an exemplar process. Among these systems, 5%Pd/BaSO4 with NaOH as a base showed the best results, giving 94% 2-butanone conversion and 84% selectivity to alkylated ketones. These results demonstrated that both metal and base sites are necessary for the selective conversion of 2-butanone to alkylated ketones. Additionally, amongst the solid base additives, Pd/C with 5% Ba/hydrotalcite showed the best result with 51% 2-butanone conversion and 36% selectivity to the alkylated ketones. Further, the screening of heterogenous acid-base catalysts 2.5%Ni/Ba1.2Mg3Al1 exhibited an adequate catalytic activity (21%) and ketone selectivity (47%). Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

14 pages, 2744 KB  
Article
Synthesis and Properties of Photocurable Polymers Derived from the Polyesters of Glycerol and Aliphatic Dicarboxylic Acids
by Rui Hu, Weipeng Yao, Yingjuan Fu, Fuyuan Lu and Xiaoqian Chen
Polymers 2024, 16(9), 1278; https://doi.org/10.3390/polym16091278 - 2 May 2024
Cited by 1 | Viewed by 2287
Abstract
The rapid development of 3D printing technology and the emerging applications of shape memory elastomer have greatly stimulated the research of photocurable polymers. In this work, glycerol (Gly) was polycondensed with sebacic, dodecanedioic, or tetradecanedioic acids to provide precursor polyesters with hydroxyl or [...] Read more.
The rapid development of 3D printing technology and the emerging applications of shape memory elastomer have greatly stimulated the research of photocurable polymers. In this work, glycerol (Gly) was polycondensed with sebacic, dodecanedioic, or tetradecanedioic acids to provide precursor polyesters with hydroxyl or carboxyl terminal groups, which were further chemically functionalized by acryloyl chloride to introduce sufficient, photocurable, and unsaturated double bonds. The chemical structures of the acrylated polyesters were characterized by FT IR and NMR spectroscopies. The photoinitiated crosslinking behavior of the acrylated polyesters under ultraviolet irradiation without the addition of any photoinitiator was investigated. The results showed that the precursor polyesters that had a greater number of terminated hydroxyls and a less branched structure obtained a relatively high acetylation degree. A longer chain of aliphatic dicarboxylic acids (ADCAs) and higher ADCA proportion lead to a relatively lower photopolymerization rate of acrylated polyesters. However, the photocured elastomers with a higher ADCA proportion or longer-chain ADCAs resulted in better mechanical properties and a lower degradation rate. The glass transition temperature (Tg) of the elastomer increased with the alkyl chain length of the ADCAs, and a higher Gly proportion resulted in a lower Tg of the elastomer due to its higher crosslinking density. Thermal gravimetric analysis (TGA) showed that the chain length of the ADCAs and the molar ratio of Gly to ADCAs had less of an effect on the thermal stability of the elastomer. As the physicochemical properties can be adjusted by choosing the alkyl chain length of the ADCAs, as well as changing the ratio of Gly:ADCA, the photocurable polyesters are expected to be applied in multiple fields. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

29 pages, 10104 KB  
Article
The Effects of Multistage Fuel-Oxidation Chemistry, Soot Radiation, and Real Gas Properties on the Operation Process of Compression Ignition Engines
by Valentin Y. Basevich, Sergey M. Frolov, Vladislav S. Ivanov, Fedor S. Frolov and Ilya V. Semenov
Eng 2023, 4(4), 2682-2710; https://doi.org/10.3390/eng4040153 - 23 Oct 2023
Cited by 1 | Viewed by 1979
Abstract
The objectives of the study are to reveal the influence of multistage fuel-oxidation chemistry, thermal radiation of soot during the combustion of a small (submillimeter size) fuel droplet, and real gas effects on the operation process of compression ignition engines. The use of [...] Read more.
The objectives of the study are to reveal the influence of multistage fuel-oxidation chemistry, thermal radiation of soot during the combustion of a small (submillimeter size) fuel droplet, and real gas effects on the operation process of compression ignition engines. The use of the multistage oxidation chemistry of iso-octane in the zero-dimensional approximation reveals the appearance of different combinations of cool, blue, and hot flames at different compression ratios and provides a kinetic interpretation of these phenomena that affect the heat release function. Cool flames are caused by the decomposition of alkyl hydroperoxide, during which a very reactive radical, OH, is formed. Blue flames are caused by the decomposition of H2O2 with the formation of OH. Hot flames are caused by the chain branching reaction between atomic hydrogen and molecular oxygen with the formation of OH and O. So-called “double” cool flames correspond to the sequential appearance of a separated cool flame and a low-intensity blue flame rather than two successive cool flames. The use of a one-dimensional model of fuel droplet heating, evaporation, autoignition, and combustion at temperatures and pressures relevant to compression ignition engines shows that the thermal radiation of soot during the combustion of small (submillimeter size) droplets is insignificant and can be neglected. The use of real gas caloric and thermal equations of state of the matter in a three-dimensional simulation of the operation process in a diesel engine demonstrates the significant effect of real gas properties on the engine pressure diagram and on the NO and soot emissions: real gas effects reduce the maximum pressure and mass-averaged temperature in the combustion chamber by about 6 and 9%, respectively, increases the autoignition delay time by a 1.6 crank angle degree, increase the maximum heat release rate by 20%, and reduce the yields of NO and soot by a factor of 2 and 4, respectively. Full article
Show Figures

Figure 1

17 pages, 6694 KB  
Article
The Effect of Temperature on Molecular Structure of Medium-Rank Coal via Fourier Transform Infrared Spectroscopy
by Meng Wu, Yong Qin, Yunhu Qin, Naicen Xu and Lele Feng
Materials 2023, 16(20), 6746; https://doi.org/10.3390/ma16206746 - 18 Oct 2023
Cited by 7 | Viewed by 2188
Abstract
Fourier transform infrared spectroscopy (FTIR) was used to study the molecular structure of four medium- and low-temperature heat-treated medium-rank coals. The FTIR spectral parameters, which consist of CH2/CH3, aromaticity (fa), aromatic carbon rate (fC [...] Read more.
Fourier transform infrared spectroscopy (FTIR) was used to study the molecular structure of four medium- and low-temperature heat-treated medium-rank coals. The FTIR spectral parameters, which consist of CH2/CH3, aromaticity (fa), aromatic carbon rate (fC), aromatic hydrogen rate (fH), oxygen-containing (C–O) rate (IR), organic matter maturity (M), and the degree of aromatic condensation (Dc), indicate different characteristics, including changes in the aromatic hydrocarbon structure, fatty hydrocarbon structure, hydroxyl structure, and oxygen-containing functional groups of medium-rank coal. The results show that with the increase in heat treatment temperature, the sulfur content in coal gradually decreases, but the C/H ratio gradually increases. Meanwhile, the content of kaolinite and pyrite in coal gradually decreases, whereas the content of dolomite and hematite gradually increases. With the increase in heat treatment temperature, the relative content of ether oxygen hydroxyl groups in the hydroxyl structure significantly decreases, but the relative content of self-associated hydroxyl groups increases. The relative content of alkyl ether (C–O) in oxygen-containing functional groups gradually increases, whereas the relative content of aromatic nucleus C=C vibration presents a trend of first increasing and then decreasing. In addition, –CH2– is the majority in the structure of fatty hydrocarbons, and the absorption peak intensity of asymmetric –CH3 stretching vibration increases with the increase in heat-treated temperature. The structure of aromatic hydrocarbons mainly consists of four substituted benzene rings (except for R-303.15 K), in which the relative content of the trisubstituted benzene ring decreases with the increase in heat treatment temperature. With the increase in the heat-treated temperature of medium-rank coal, Dc, fH, fC, and fa show a trend of first increasing and then decreasing, M and IR reveal a trend of first decreasing and then increasing, and CH2/CH3 present a gradually decreasing trend. In conclusion, during the increase in the heat treatment temperature of medium-rank coal, the length of the fatty side chains in the fatty hydrocarbon structure becomes shorter, the number of branch chains continuously increases, and the maturity and condensation degree of organic matter first increases and then decreases. On this basis, further research on the effect of coal gasification suggests combining various technologies such as 13C NMR, XRD, and TG-MS to obtain semi-quantitative structural information of molecules in coal from different perspectives. Full article
Show Figures

Figure 1

11 pages, 6967 KB  
Article
Side-Chain Labeling Strategy for Forming Self-Sorted Columnar Liquid Crystals from Binary Discotic Systems
by Tsuneaki Sakurai, Kenichi Kato and Masaki Shimizu
Crystals 2023, 13(10), 1473; https://doi.org/10.3390/cryst13101473 - 10 Oct 2023
Cited by 2 | Viewed by 2633
Abstract
The spontaneous formation of self-sorted columnar structures of electron-donating and accepting π-conjugated molecules is attractive for photoconducting and photovoltaic properties. However, the simple mixing of donor–acceptor discotic molecules usually results in the formation of mixed-stacked or alternating-stacked columns. As a new strategy for [...] Read more.
The spontaneous formation of self-sorted columnar structures of electron-donating and accepting π-conjugated molecules is attractive for photoconducting and photovoltaic properties. However, the simple mixing of donor–acceptor discotic molecules usually results in the formation of mixed-stacked or alternating-stacked columns. As a new strategy for overcoming this problem, here, we report the “side-chain labeling” approach using binary discotic systems and realize the preferential formation of such self-sorted columnar structures in a thermodynamically stable phase. The demonstrated key strategy involves the use of hydrophobic and hydrophilic side chains. The prepared blend is composed of liquid crystalline phthalocyanine with branched alkyl chains (H2Pc) and perylenediimide (PDI) carrying alkyl chains at one side and triethyleneglycol (TEG) chains at the other side (PDIC12/TEG). To avoid the thermodynamically unfavorable contact among hydrophobic and hydrophilic chains, PDIC12/TEG self-assembles to stack up on top of each other and H2Pc as well, forming a homo-stacked pair of columns (self-sort). Importantly, H2Pc and PDIC12/TEG in the blend are macroscopically miscible and uniform, and mesoscopically segregated. The columnar liquid crystalline microdomains of H2Pc and PDIC12/TEG are homeotropically aligned in a glass sandwiched cell. The “labeling” strategy demonstrated here is potentially applicable to any binary discotic system and enables the preferential formation of self-sorted columnar structures. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan)
Show Figures

Figure 1

19 pages, 4060 KB  
Article
Untargeted Multiomics Approach Coupling Lipidomics and Metabolomics Profiling Reveals New Insights in Diabetic Retinopathy
by Patricia Ancel, Jean Charles Martin, Elisa Doukbi, Marie Houssays, Pierre Gascon, Maud Righini, Frédéric Matonti, Ljubica Svilar, Marie Valmori, Catherine Tardivel, Nicolas Venteclef, Jean Baptiste Julla, Jean François Gautier, Noémie Resseguier, Anne Dutour and Bénédicte Gaborit
Int. J. Mol. Sci. 2023, 24(15), 12053; https://doi.org/10.3390/ijms241512053 - 27 Jul 2023
Cited by 23 | Viewed by 4249
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) which is the main cause of vision loss in the working-age population. Currently known risk factors such as age, disease duration, and hemoglobin A1c lack sufficient efficiency to distinguish patients with early [...] Read more.
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) which is the main cause of vision loss in the working-age population. Currently known risk factors such as age, disease duration, and hemoglobin A1c lack sufficient efficiency to distinguish patients with early stages of DR. A total of 194 plasma samples were collected from patients with type 2 DM and DR (moderate to proliferative (PDR) or control (no or mild DR) matched for age, gender, diabetes duration, HbA1c, and hypertension. Untargeted lipidomic and metabolomic approaches were performed. Partial-least square methods were used to analyze the datasets. Levels of 69 metabolites and 85 lipid species were found to be significantly different in the plasma of DR patients versus controls. Metabolite set enrichment analysis indicated that pathways such as metabolism of branched-chain amino acids (methylglutaryl carnitine p = 0.004), the kynurenine pathway (tryptophan p < 0.001), and microbiota metabolism (p-Cresol sulfate p = 0.004) were among the most enriched deregulated pathways in the DR group. Moreover, Glucose-6-phosphate (p = 0.001) and N-methyl-glutamate (p < 0.001) were upregulated in DR. Subgroup analyses identified a specific signature associated with PDR, macular oedema, and DR associated with chronic kidney disease. Phosphatidylcholines (PCs) were dysregulated, with an increase of alkyl-PCs (PC O-42:5 p < 0.001) in DR, while non-ether PCs (PC 14:0–16:1, p < 0.001; PC 18:2–14:0, p < 0.001) were decreased in the DR group. Through an unbiased multiomics approach, we identified metabolites and lipid species that interestingly discriminate patients with or without DR. These features could be a research basis to identify new potential plasma biomarkers to promote 3P medicine. Full article
Show Figures

Figure 1

18 pages, 3956 KB  
Article
Profiling and Isolation of Ten Rare Branched-Chain Alkylresorcinols in Quinoa
by Tim Hammerschick and Walter Vetter
Molecules 2023, 28(13), 5220; https://doi.org/10.3390/molecules28135220 - 5 Jul 2023
Cited by 2 | Viewed by 1740
Abstract
Alkylresorcinols (∑ARs) are bioactive lipid compounds predominantly found in cereals. These amphiphilic compounds exist in a high structural diversity and can be divided into two main groups, i.e., 5-alkylresorcinols (ARs) and 2-methyl-5-alkylresorcinols (mARs). The pseudocereal quinoa has a very unique AR profile, consisting [...] Read more.
Alkylresorcinols (∑ARs) are bioactive lipid compounds predominantly found in cereals. These amphiphilic compounds exist in a high structural diversity and can be divided into two main groups, i.e., 5-alkylresorcinols (ARs) and 2-methyl-5-alkylresorcinols (mARs). The pseudocereal quinoa has a very unique AR profile, consisting not only of straight-chain alkyl chains but also iso- and anteiso-branched isomers. Here, we describe a method for the isolation of such methyl-branched ARs and mARs from quinoa. The enrichment of the ∑AR fraction from the lipid extracts by centrifugal partition chromatography (CPC) was followed by ∑AR profiling using countercurrent chromatography (CCC) and GC/MS analysis of CCC fractions. A total of 112 ∑ARs could be detected, 63 of which had not been previously described in quinoa. Due to this high number of ∑ARs, the direct isolation of individual ARs was not possible using conventional CCC. Instead, the more powerful heart-cut mode was applied to enrich the target compounds. A final purification step—the separation of CCC-co-eluting mARs from ARs —was performed via silver ion chromatography. Altogether, ten rare branched-chain ∑ARs (five iso-branched mARs and five anteiso-branched ARs, including mAR19:0-i and AR20:0-a) were isolated with purities up to 98% in the double-digit mg range. Full article
Show Figures

Graphical abstract

14 pages, 2475 KB  
Article
The Influence of the Side Chain Structure on the Photostability of Low Band Gap Polymers
by Sven Bölke, Tina Keller, Florian Trilling, Michael Forster, Ullrich Scherf, Thomas Chassé and Heiko Peisert
Molecules 2023, 28(9), 3858; https://doi.org/10.3390/molecules28093858 - 3 May 2023
Cited by 1 | Viewed by 2269
Abstract
Side chains play an important role in the photo-oxidation process of low band gap (LBG) polymers. For example, it has been shown that their photostability can be increased by the introduction of aromatic-oxy-alkyl links. We studied the photostability of prototypical LBG polymers with [...] Read more.
Side chains play an important role in the photo-oxidation process of low band gap (LBG) polymers. For example, it has been shown that their photostability can be increased by the introduction of aromatic-oxy-alkyl links. We studied the photostability of prototypical LBG polymers with alkyl and oxyalkyl side chains during irradiation with white light (AM 1.5 conditions) in dry air using UV/vis and IR spectroscopy. Though its degradation kinetics were distinctly affected by the presence or absence of oxygen in the structure of the side chains, in particular cases, the stability was more affected by the presence of linear or branched side chains. Moreover, we showed that the exact position of the alkyl/oxyalkyl side chain at the polymer backbone could be crucial. Although minor effects of chemical modifications on the electronic parameters (ionization potential and gap) were observed, the molecular orientation, determined by polarization modulation-infrared reflection-absorption spectroscopy (PMIRRAS), could be affected. The aggregation and crystallinity of these polymers may distinctly affect their stability. Full article
Show Figures

Graphical abstract

Back to TopTop