Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = borosiloxane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4839 KB  
Review
Polyborosiloxanes (PBS): Evolution of Approaches to the Synthesis and the Prospects of Their Application
by Fedor V. Drozdov, Elizaveta A. Manokhina, Tran D. Vu and Aziz M. Muzafarov
Polymers 2022, 14(22), 4824; https://doi.org/10.3390/polym14224824 - 9 Nov 2022
Cited by 19 | Viewed by 7331
Abstract
The mini-review deals with borosiloxanes as a class of organoelement compounds that comprise Si-O-B bonds, including individual compounds and polymeric structures. The borosiloxanes first synthesized in the 1950s using simple methods demonstrated very unusual properties but were hydrolytically unstable. However, in recent times, [...] Read more.
The mini-review deals with borosiloxanes as a class of organoelement compounds that comprise Si-O-B bonds, including individual compounds and polymeric structures. The borosiloxanes first synthesized in the 1950s using simple methods demonstrated very unusual properties but were hydrolytically unstable. However, in recent times, synthetic methods have changed significantly, which made it possible to synthesize borosiloxanes that are resistant to external factors, including atmospheric moisture. Borosiloxanes became important due to their unique properties. For example, borosiloxane liquids acquire a thixotropic behavior due to donor-acceptor interchain interactions. In addition, borosiloxanes are used to produce flame-retardant ceramics. An analysis of the literature sources shows that no review has yet been completed on the topic of borosiloxanes. Therefore, we decided that even a brief outlook of this area would be useful for researchers in this and related fields. Thus, the review shows the evolution of the synthesis methods and covers the studies on the properties of these unique molecules, the latest achievements in this field, and the prospects for their application. Full article
(This article belongs to the Collection Progress in Polymer Applications)
Show Figures

Figure 1

18 pages, 4821 KB  
Article
Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles
by Denis N. Chausov, Veronika V. Smirnova, Dmitriy E. Burmistrov, Ruslan M. Sarimov, Alexander D. Kurilov, Maxim E. Astashev, Oleg V. Uvarov, Mikhail V. Dubinin, Valery A. Kozlov, Maria V. Vedunova, Maksim B. Rebezov, Anastasia A. Semenova, Andrey B. Lisitsyn and Sergey V. Gudkov
Materials 2022, 15(2), 527; https://doi.org/10.3390/ma15020527 - 11 Jan 2022
Cited by 18 | Viewed by 3222
Abstract
Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of [...] Read more.
Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol. Full article
Show Figures

Figure 1

19 pages, 3189 KB  
Article
Novel Biocompatible with Animal Cells Composite Material Based on Organosilicon Polymers and Fullerenes with Light-Induced Bacteriostatic Properties
by Sergey V. Gudkov, Alexander V. Simakin, Ruslan M. Sarimov, Alexander D. Kurilov and Denis N. Chausov
Nanomaterials 2021, 11(11), 2804; https://doi.org/10.3390/nano11112804 - 22 Oct 2021
Cited by 14 | Viewed by 2854
Abstract
A technology for producing a nanocomposite based on the borsiloxane polymer and chemically unmodified fullerenes has been developed. Nanocomposites containing 0.001, 0.01, and 0.1 wt% fullerene molecules have been created. It has been shown that the nanocomposite with any content of fullerene molecules [...] Read more.
A technology for producing a nanocomposite based on the borsiloxane polymer and chemically unmodified fullerenes has been developed. Nanocomposites containing 0.001, 0.01, and 0.1 wt% fullerene molecules have been created. It has been shown that the nanocomposite with any content of fullerene molecules did not lose the main rheological properties of borsiloxane and is capable of structural self-healing. The resulting nanomaterial is capable of generating reactive oxygen species (ROS) such as hydrogen peroxide and hydroxyl radicals in light. The rate of ROS generation increases with an increase in the concentration of fullerene molecules. In the absence of light, the nanocomposite exhibits antioxidant properties. The severity of antioxidant properties is also associated with the concentration of fullerene molecules in the polymer. It has been shown that the nanocomposite upon exposure to visible light leads to the formation of long-lived reactive protein species, and is also the reason for the appearance of such a key biomarker of oxidative stress as 8-oxoguanine in DNA. The intensity of the process increases with an increase in the concentration of fullerene molecules. In the dark, the polymer exhibits weak protective properties. It was found that under the action of light, the nanocomposite exhibits significant bacteriostatic properties, and the severity of these properties depends on the concentration of fullerene molecules. Moreover, it was found that bacterial cells adhere to the surfaces of the nanocomposite, and the nanocomposite can detach bacterial cells not only from the surfaces, but also from wetted substrates. The ability to capture bacterial cells is primarily associated with the properties of the polymer; they are weakly affected by both visible light and fullerene molecules. The nanocomposite is non-toxic to eukaryotic cells, the surface of the nanocomposite is suitable for eukaryotic cells for colonization. Due to the combination of self-healing properties, low cytotoxicity, and the presence of bacteriostatic properties, the nanocomposite can be used as a reusable dry disinfectant, as well as a material used in prosthetics. Full article
(This article belongs to the Special Issue Polymer Nanocomposites: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

18 pages, 2912 KB  
Article
New Organosilicon Composite Based on Borosiloxane and Zinc Oxide Nanoparticles Inhibits Bacterial Growth, but Does Not Have a Toxic Effect on the Development of Animal Eukaryotic Cells
by Denis N. Chausov, Dmitriy E. Burmistrov, Alexander D. Kurilov, Nikolai F. Bunkin, Maxim E. Astashev, Alexander V. Simakin, Maria V. Vedunova and Sergey V. Gudkov
Materials 2021, 14(21), 6281; https://doi.org/10.3390/ma14216281 - 21 Oct 2021
Cited by 15 | Viewed by 3149
Abstract
The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived [...] Read more.
The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived oxidized forms of biomolecules has been studied. All variants of the composites significantly inhibited the division of E. coli bacteria and caused them to detach from the substrate. It was revealed that the surfaces of a composite material based on borosiloxane and ZnO NPs do not inhibit the growth and division of mammalians cells. It is shown in the work that the positive effect of the incorporation of ZnO NPs into borosiloxane can reach 100% or more, provided that the viscoelastic properties of borosiloxane with nanoparticles are retained. Full article
(This article belongs to the Special Issue Advances in Polymeric Biomedical Materials)
Show Figures

Graphical abstract

Back to TopTop