Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = borocarbonitrides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 7762 KiB  
Review
Borocarbonitrides for Decarbonization: From CO2 Utilization to Renewable Fuel Synthesis
by Carlos A. Castilla-Martinez, Perla C. Meléndez-González and Umit B. Demirci
Nanoenergy Adv. 2025, 5(2), 6; https://doi.org/10.3390/nanoenergyadv5020006 - 9 Apr 2025
Viewed by 744
Abstract
Borocarbonitrides (BCNs), a new class of ternary materials combining boron, carbon, and nitrogen atoms, have emerged as promising candidates in decarbonization technologies due to their unique physicochemical properties. BCNs offer an adjustable atom composition and electronic structure, thermal stability, and potentially a large [...] Read more.
Borocarbonitrides (BCNs), a new class of ternary materials combining boron, carbon, and nitrogen atoms, have emerged as promising candidates in decarbonization technologies due to their unique physicochemical properties. BCNs offer an adjustable atom composition and electronic structure, thermal stability, and potentially a large specific surface area, which are attractive features for efficient interactions with carbon dioxide. These make BCNs suitable for carbon dioxide capture, storage, and catalytic conversion applications. Furthermore, BCNs have the potential to (electro)catalyze the synthesis of green fuels, such as hydrogen, as well as that of other hydrogen carriers such as ammonia. With this review, we examine the recent advances in BCN synthesis methods, characterization, and functional applications while focusing on their role in the decarbonization technologies mentioned above. We aim to highlight the potential of BCNs to drive innovation in sustainable carbon management. Additionally, in the last section of this paper, we discuss the challenges and prospects of BCNs in decarbonization and beyond. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Figure 1

16 pages, 4387 KiB  
Article
Microporous Borocarbonitrides BxCyNz: Synthesis, Characterization, and Promises for CO2 Capture
by Rimeh Mighri, Umit B. Demirci and Johan G. Alauzun
Nanomaterials 2023, 13(4), 734; https://doi.org/10.3390/nano13040734 - 15 Feb 2023
Cited by 18 | Viewed by 2208
Abstract
Porous borocarbonitrides (denoted BCN) were prepared through pyrolysis of the polymer stemmed from dehydrocoupled ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3, EDAB) in the presence of F-127. These materials contain interconnected pores in the nanometer [...] Read more.
Porous borocarbonitrides (denoted BCN) were prepared through pyrolysis of the polymer stemmed from dehydrocoupled ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3, EDAB) in the presence of F-127. These materials contain interconnected pores in the nanometer range with a high specific surface area up to 511 m2 · g−1. Gas adsorption of CO2 demonstrated an interesting uptake (3.23 mmol · g−1 at 0 °C), a high CO2/N2 selectivity as well as a significant recyclability after several adsorption–desorption cycles. For comparison’s sake, a synthesized non-porous BCN as well as a commercial BN sample were studied to investigate the role of porosity and carbon doping factors in CO2 capture. The present work thus tends to demonstrate that the two-step synthesis of microporous BCN adsorbent materials from EDAB using a bottom-up approach (dehydrocoupling followed by pyrolysis at 1100 °C) is relatively simple and interesting. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

12 pages, 2874 KiB  
Article
Borocarbonitride Layers on Titanium Dioxide Nanoribbons for Efficient Photoelectrocatalytic Water Splitting
by Nuria Jiménez-Arévalo, Eduardo Flores, Alessio Giampietri, Marco Sbroscia, Maria Grazia Betti, Carlo Mariani, José R. Ares, Isabel J. Ferrer and Fabrice Leardini
Materials 2021, 14(19), 5490; https://doi.org/10.3390/ma14195490 - 23 Sep 2021
Cited by 6 | Viewed by 2397
Abstract
Heterostructures formed by ultrathin borocarbonitride (BCN) layers grown on TiO2 nanoribbons were investigated as photoanodes for photoelectrochemical water splitting. TiO2 nanoribbons were obtained by thermal oxidation of TiS3 samples. Then, BCN layers were successfully grown by plasma enhanced chemical vapour [...] Read more.
Heterostructures formed by ultrathin borocarbonitride (BCN) layers grown on TiO2 nanoribbons were investigated as photoanodes for photoelectrochemical water splitting. TiO2 nanoribbons were obtained by thermal oxidation of TiS3 samples. Then, BCN layers were successfully grown by plasma enhanced chemical vapour deposition. The structure and the chemical composition of the starting TiS3, the TiO2 nanoribbons and the TiO2-BCN heterostructures were investigated by Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Diffuse reflectance measurements showed a change in the gap from 0.94 eV (TiS3) to 3.3 eV (TiO2) after the thermal annealing of the starting material. Morphological characterizations, such as scanning electron microscopy and optical microscopy, show that the morphology of the samples was not affected by the change in the structure and composition. The obtained TiO2-BCN heterostructures were measured in a photoelectrochemical cell, showing an enhanced density of current under dark conditions and higher photocurrents when compared with TiO2. Finally, using electrochemical impedance spectroscopy, the flat band potential was determined to be equal in both TiO2 and TiO2-BCN samples, whereas the product of the dielectric constant and the density of donors was higher for TiO2-BCN. Full article
Show Figures

Figure 1

12 pages, 1546 KiB  
Article
Synthesis of Ternary Borocarbonitrides by High Temperature Pyrolysis of Ethane 1,2-Diamineborane
by Fabrice Leardini, Lorenzo Massimi, Eduardo Flores-Cuevas, Jose Francisco Fernández, Jose Ramon Ares, Maria Grazia Betti and Carlo Mariani
Materials 2015, 8(9), 5974-5985; https://doi.org/10.3390/ma8095285 - 9 Sep 2015
Cited by 17 | Viewed by 6057
Abstract
Ethane 1,2-diamineborane (EDAB) is an alkyl-containing amine-borane adduct with improved hydrogen desorption properties as compared to ammonia borane. In this work, it is reported the high temperature thermolytic decomposition of EDAB. Thermolysis of EDAB has been investigated by concomitant thermogravimetry-differential thermal analysis-mass spectrometry [...] Read more.
Ethane 1,2-diamineborane (EDAB) is an alkyl-containing amine-borane adduct with improved hydrogen desorption properties as compared to ammonia borane. In this work, it is reported the high temperature thermolytic decomposition of EDAB. Thermolysis of EDAB has been investigated by concomitant thermogravimetry-differential thermal analysis-mass spectrometry experiments. EDAB shows up to four H2 desorption events below 1000 °C. Small fractions of CH4, C2H4 and CO/CO2 are also observed at moderate-high temperatures. The solid-state thermolysis product has been characterized by means of different structural and chemical methods, such as X-ray diffraction, Raman spectroscopy, Scanning electron microscopy, Elemental analysis, and X-ray photoelectron spectroscopy (XPS). The obtained results indicate the formation of a ternary borocarbonitride compound with a poorly-crystalline graphitic-like structure. By contrast, XPS measurements show that the surface is rich in carbon and nitrogen oxides, which is quite different to the bulk of the material. Full article
(This article belongs to the Special Issue Hydrogen Storage Materials)
Show Figures

Figure 1

Back to TopTop