Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = borehole video

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12583 KiB  
Article
Quantitative Study of the Weakening Effect of Drilling on the Physical and Mechanical Properties of Coal–Rock Materials
by Lidong Yin, Yin Zhang, Lianpeng Dai, Jiping Zhang, Jiajun Li and Chenchen Yang
Materials 2023, 16(19), 6424; https://doi.org/10.3390/ma16196424 - 27 Sep 2023
Cited by 1 | Viewed by 1231
Abstract
Coal seam drilling is a simple, economical, and effective measure commonly used to prevent and control rock burst. Following rock burst, coal exhibits significant dynamic characteristics under high strain-rate loading. Our purpose was to determine the physical processes associated with impact damage to [...] Read more.
Coal seam drilling is a simple, economical, and effective measure commonly used to prevent and control rock burst. Following rock burst, coal exhibits significant dynamic characteristics under high strain-rate loading. Our purpose was to determine the physical processes associated with impact damage to drilled coal rock, and its mitigation mechanism. An impact test was carried out on prefabricated borehole coal specimens, and the impulse signals of the incident and transmission rods were monitored. The crack initiation, expansion, and penetration of coal specimens were video-recorded to determine the mechanical properties, crack expansion, damage modes, fragmentation, and energy dissipation characteristics of coal specimens containing different boreholes. The dynamic compressive strength of the coal specimens was significantly weakened by boreholes under high strain-rate loading; the dynamic compressive strength and the dynamic modulus of elasticity of coal rock showed a decreasing trend, with increasing numbers of boreholes and a rising and decreasing trend with increasing borehole spacing; the number and spacing of boreholes appeared to be design parameters that could weaken coal–rock material under high strain-rate loading; during the loading of coal and rock, initial cracks appeared and expanded in the tensile stress zone of the borehole side, while secondary cracks, which appeared perpendicular to the main crack, expanded and connected, destroying the specimen. As the number of boreholes increased, the fractal dimension (D) and transmission energy decreased, while the reflection energy increased. As the borehole spacing was increased, D decreased while the reflective energy ratio decreased and increased, and the transmissive energy ratio increased and decreased. Drilling under high strain modifies the mechanical properties of impact damaged coal rock. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

13 pages, 2990 KiB  
Article
Geological Borehole Video Image Stitching Method Based on Local Homography Matrix Offset Optimization
by Zhaopeng Deng, Shengzhi Song, Shuangyang Han, Zeqi Liu, Qiang Wang and Liuyang Jiang
Sensors 2023, 23(2), 632; https://doi.org/10.3390/s23020632 - 5 Jan 2023
Cited by 3 | Viewed by 2417
Abstract
Due to the influence of the shooting environment and inherent image characteristics, there is a large amount of interference in the process of image stitching a geological borehole video. To accurately match the acquired image sequences in the inner part of a borehole, [...] Read more.
Due to the influence of the shooting environment and inherent image characteristics, there is a large amount of interference in the process of image stitching a geological borehole video. To accurately match the acquired image sequences in the inner part of a borehole, this paper presents a new method of stitching an unfolded borehole image, which uses the image generated from the video to construct a large-scale panorama. Firstly, the speeded-up robust feathers (SURF) algorithm is used to extract the image feature points and complete the rough matching. Then, the M-estimator sample consensus (MSAC) algorithm is introduced to remove the mismatched point pairs and obtain the homography matrix. Subsequently, we propose a local homography matrix offset optimization (LHOO) algorithm to obtain the optimal offset. Finally, the above process is cycled frame by frame, and the image sequence is continuously stitched to complete the construction of a cylindrical borehole panorama. The experimental results show that compared with those of the SIFT, Harris, ORB and SURF algorithms, the matching accuracy of our algorithm has been greatly improved. The final test is carried out on 225 consecutive video frames, and the panorama has a good visual effect, and the average time of each frame is 100 ms, which basically meets the requirements of the project. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

13 pages, 2999 KiB  
Article
A Data-Driven Fine-Management and Control Method of Gas-Extraction Boreholes
by Xiaoyang Cheng and Haitao Sun
Processes 2022, 10(12), 2709; https://doi.org/10.3390/pr10122709 - 15 Dec 2022
Cited by 6 | Viewed by 1703
Abstract
In order to improve the efficiency of gas extraction in coal mines, a data-driven fine-management and control method for gas extraction is proposed. Firstly, the accurate prediction of coal seam thickness and gas content was used to evaluate the gas reserves. Based on [...] Read more.
In order to improve the efficiency of gas extraction in coal mines, a data-driven fine-management and control method for gas extraction is proposed. Firstly, the accurate prediction of coal seam thickness and gas content was used to evaluate the gas reserves. Based on the time relationship between mining activities and gas extraction, the calculation model of borehole distance in different extraction units is established, and the differential borehole design is realized. Then, a drilling video-surveillance system and drilling trajectory measurement device are used to control the drilling process and the construction effect. Finally, the model of extraction data-correction and the identification of failed boreholes is established, then the failed boreholes are repaired. The technology method provided in the paper has realized the fine control of gas-extraction borehole design, construction, measurement, and repair, and formed a more scientific gas-extraction borehole control technology system, which provides new thought for efficient gas extraction. Full article
(This article belongs to the Special Issue Process Safety in Coal Mining)
Show Figures

Figure 1

23 pages, 6118 KiB  
Article
Generating a Cylindrical Panorama from a Forward-Looking Borehole Video for Borehole Condition Analysis
by Zhaopeng Deng, Maoyong Cao, Yushui Geng and Laxmisha Rai
Appl. Sci. 2019, 9(16), 3437; https://doi.org/10.3390/app9163437 - 20 Aug 2019
Cited by 15 | Viewed by 4028
Abstract
Geological exploration plays a fundamental and crucial role in geological engineering. The most frequently used method is to obtain borehole videos using an axial view borehole camera system (AVBCS) in a pre-drilled borehole. This approach to surveying the internal structure of a borehole [...] Read more.
Geological exploration plays a fundamental and crucial role in geological engineering. The most frequently used method is to obtain borehole videos using an axial view borehole camera system (AVBCS) in a pre-drilled borehole. This approach to surveying the internal structure of a borehole is based on the video playback and video screenshot analysis. One of the drawbacks of AVBCS is that it provides only a qualitative description of borehole information with a forward-looking borehole video, but quantitative analysis of the borehole data, such as the width and dip angle of fracture, are unavailable. In this paper, we proposed a new approach to create a whole borehole-wall cylindrical panorama from the borehole video acquired by AVBCS, which provides a possibility for further analysis of borehole information. Firstly, based on the Otsu and region labeling algorithms, a borehole center location algorithm is proposed to extract the borehole center of each video image automatically. Afterwards, based on coordinate mapping (CM), a virtual coordinate graph (VCG) is designed in the unwrapping process of the front view borehole-wall image sequence, generating the corresponding unfolded image sequence and reducing the computational cost. Subsequently, based on the sum of absolute difference (SAD), a projection transformation SAD (PTSAD), which considers the gray level similarity of candidate images, is proposed to achieve the matching of the unfolded image sequence. Finally, an image filtering module is introduced to filter the invalid frames and the remaining frames are stitched into a complete cylindrical panorama. Experiments on two real-world borehole videos demonstrate that the proposed method can generate panoramic borehole-wall unfolded images from videos with satisfying visual effect for follow up geological condition analysis. From the resulting image, borehole information, including the rock mechanical properties, distribution and width of fracture, fault distribution and seam thickness, can be further obtained and analyzed. Full article
(This article belongs to the Special Issue Advanced Intelligent Imaging Technology)
Show Figures

Figure 1

17 pages, 3407 KiB  
Article
Design Parameters of Hot-Water Drilling Systems
by Gang Liu, Pavel Talalay, Rusheng Wang, Yang Yang, Jialin Hong, Da Gong, An Liu and Dayou Fan
Water 2019, 11(2), 289; https://doi.org/10.3390/w11020289 - 7 Feb 2019
Cited by 7 | Viewed by 5903
Abstract
Currently, hot-water drill systems are actively used to observe ocean cavities under ice shelves, detect the effects of climate change on glaciers, retrieve sub-ice seabed samples, study the internal ice structure with video imaging, log temperatures, measure deformations within ice, determine basal sliding [...] Read more.
Currently, hot-water drill systems are actively used to observe ocean cavities under ice shelves, detect the effects of climate change on glaciers, retrieve sub-ice seabed samples, study the internal ice structure with video imaging, log temperatures, measure deformations within ice, determine basal sliding velocity, provide clean access to subglacial lakes, and many other scientific applications. The main parameters of hot-water drilling systems in any configuration are flow rate, delivery pressure, and temperature of the delivered water. The controlled outcome variables are the diameter of the drilled borehole, rate of penetration, power and fuel consumption for ice melting, and refreezing rate of the borehole. The independent variables while drilling are the current/target depth and the temperature of the ice. The paper aims to present a design procedure for hot-water drilling parameters that are necessary to choose appropriate equipment and tools at the planning stage. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

Back to TopTop