Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = body distortion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8141 KiB  
Review
AI-Driven Aesthetic Rehabilitation in Edentulous Arches: Advancing Symmetry and Smile Design Through Medit SmartX and Scan Ladder
by Adam Brian Nulty
J. Aesthetic Med. 2025, 1(1), 4; https://doi.org/10.3390/jaestheticmed1010004 - 1 Aug 2025
Viewed by 534
Abstract
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in [...] Read more.
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in intraoral scanning accuracy—such as scan distortion, angular deviation, and cross-arch misalignment—and presents how innovations like the Medit SmartX AI-guided workflow and the Scan Ladder system can significantly enhance precision in implant position registration. These technologies mitigate stitching errors by using real-time scan body recognition and auxiliary geometric references, yielding mean RMS trueness values as low as 11–13 µm, comparable to dedicated photogrammetry systems. AI-driven prosthetic design further aligns implant-supported restorations with facial symmetry and smile aesthetics, prioritising predictable midline and occlusal plane control. Early clinical data indicate that such tools can reduce prosthetic misfits to under 20 µm and lower complication rates related to passive fit, while shortening scan times by up to 30% compared to conventional workflows. This is especially valuable for elderly individuals who may not tolerate multiple lengthy adjustments. Additionally, emerging AI applications in design automation, scan validation, and patient-specific workflow adaptation continue to evolve, supporting more efficient and personalised digital prosthodontics. In summary, AI-enhanced scanning and prosthetic workflows do not merely meet functional demands but also elevate aesthetic standards in complex full-arch rehabilitations. The synergy of AI and digital dentistry presents a transformative opportunity to consistently deliver superior precision, passivity, and facial harmony for edentulous implant patients. Full article
Show Figures

Graphical abstract

22 pages, 2420 KiB  
Article
BiEHFFNet: A Water Body Detection Network for SAR Images Based on Bi-Encoder and Hybrid Feature Fusion
by Bin Han, Xin Huang and Feng Xue
Mathematics 2025, 13(15), 2347; https://doi.org/10.3390/math13152347 - 23 Jul 2025
Viewed by 201
Abstract
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder [...] Read more.
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder and hybrid feature fuse network (BiEHFFNet) is proposed for achieving accurate water body detection. First, a bi-encoder structure based on ResNet and Swin Transformer is used to jointly extract local spatial details and global contextual information, enhancing feature representation in complex scenarios. Additionally, the convolutional block attention module (CBAM) is employed to suppress irrelevant information of the output features of each ResNet stage. Second, a cross-attention-based hybrid feature fusion (CABHFF) module is designed to interactively integrate local and global features through cross-attention, followed by channel attention to achieve effective hybrid feature fusion, thus improving the model’s ability to capture water structures. Third, a multi-scale content-aware upsampling (MSCAU) module is designed by integrating atrous spatial pyramid pooling (ASPP) with the Content-Aware ReAssembly of FEatures (CARAFE), aiming to enhance multi-scale contextual learning while alleviating feature distortion caused by upsampling. Finally, a composite loss function combining Dice loss and Active Contour loss is used to provide stronger boundary supervision. Experiments conducted on the ALOS PALSAR dataset demonstrate that the proposed BiEHFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body detection. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods in Remote Sensing)
Show Figures

Figure 1

23 pages, 869 KiB  
Article
Cognitive Behavioral Therapy for Muscle Dysmorphia and Anabolic Steroid-Related Psychopathology: A Randomized Controlled Trial
by Metin Çınaroğlu, Eda Yılmazer, Selami Varol Ülker and Gökben Hızlı Sayar
Pharmaceuticals 2025, 18(8), 1081; https://doi.org/10.3390/ph18081081 - 22 Jul 2025
Viewed by 394
Abstract
Background/Objectives: Muscle dysmorphia (MD), a subtype of body dysmorphic disorder, is prevalent among males who engage in the non-medical use of anabolic–androgenic steroids (AASs) and performance-enhancing drugs (PEDs). These individuals often experience severe psychopathology, including mood instability, compulsivity, and a distorted body [...] Read more.
Background/Objectives: Muscle dysmorphia (MD), a subtype of body dysmorphic disorder, is prevalent among males who engage in the non-medical use of anabolic–androgenic steroids (AASs) and performance-enhancing drugs (PEDs). These individuals often experience severe psychopathology, including mood instability, compulsivity, and a distorted body image. Despite its clinical severity, no randomized controlled trials (RCTs) have evaluated structured psychological treatments in this subgroup. This study aimed to assess the efficacy of a manualized cognitive behavioral therapy (CBT) protocol in reducing MD symptoms and associated psychological distress among male steroid users. Results: Participants in the CBT group showed significant reductions in MD symptoms from the baseline to post-treatment (MDDI: p < 0.001, d = 1.12), with gains sustained at follow-up. Large effect sizes were also observed in secondary outcomes including depressive symptoms (PHQ-9: d = 0.98), psychological distress (K10: d = 0.93), disordered eating (EDE-Q: d = 0.74), and exercise addiction (EAI: d = 1.07). No significant changes were observed in the control group. Significant group × time interactions were found for all outcomes (all p < 0.01), indicating CBT’s specific efficacy. Discussion: This study provides the first RCT evidence that CBT significantly reduces both core MD symptoms and steroid-related psychopathology in men engaged in AAS/PED misuse. Improvements extended to mood, body image perception, and compulsive exercise behaviors. These findings support CBT’s transdiagnostic applicability in addressing both the cognitive–behavioral and affective dimensions of MD. Materials and Methods: In this parallel-group, open-label RCT, 59 male gym-goers with DSM-5-TR diagnoses of MD and a history of AAS/PED use were randomized to either a 12-week CBT intervention (n = 30) or a waitlist control group (n = 29). CBT sessions were delivered weekly online and targeted distorted muscularity beliefs, compulsive behaviors, and emotional dysregulation. Primary and secondary outcomes—Muscle Dysmorphic Disorder Inventory (MDDI), PHQ-9, K10, EDE-Q, EAI, and BIG—were assessed at the baseline, post-treatment, and 3-month follow-up. A repeated-measures ANOVA and paired t-tests were used to analyze time × group interactions. Conclusions: CBT offers an effective, scalable intervention for individuals with muscle dysmorphia complicated by anabolic steroid use. It promotes broad psychological improvement and may serve as a first-line treatment option in high-risk male fitness populations. Future studies should examine long-term outcomes and investigate implementation in diverse clinical and cultural contexts. Full article
Show Figures

Graphical abstract

14 pages, 10913 KiB  
Article
Lattice Distortion Effects on Mechanical Properties in Nb-Ti-V-Zr Refractory Medium-Entropy Alloys
by Xiaochang Xie, Ping Yang, Yuefei Jia and Yandong Jia
Materials 2025, 18(14), 3356; https://doi.org/10.3390/ma18143356 - 17 Jul 2025
Viewed by 248
Abstract
Medium-entropy alloys (MEAs) have attracted significant attention due to their unique structure–property relationships. In this study, we examine the effects of lattice distortion on the mechanical properties of Nb-Ti-V-Zr MEAs, focusing on two alloy series: Nb(Ti1.5V)xZr and Nb(TiV)x [...] Read more.
Medium-entropy alloys (MEAs) have attracted significant attention due to their unique structure–property relationships. In this study, we examine the effects of lattice distortion on the mechanical properties of Nb-Ti-V-Zr MEAs, focusing on two alloy series: Nb(Ti1.5V)xZr and Nb(TiV)xZr (x = 1, 2, 3, 4 and 5). Experimental results show that the Nb(TiV)xZr r alloys exhibit greater atomic size mismatches and increased lattice distortion compared to the Nb(Ti1.5V)xZr alloys, leading to higher yield strengths via enhanced solid-solution strengthening. However, excessive lattice distortion does not ensure an optimal strength–ductility balance, as the alloys with the highest distortion demonstrate limited plasticity. Thus, moderate reduction in lattice distortion proves beneficial in achieving an excellent compromise between strength and ductility. These findings offer valuable guidance for leveraging lattice distortion in the design of high-strength, high-ductility, body-centered cubic (BCC) MEAs for extreme environments. Full article
Show Figures

Graphical abstract

27 pages, 7655 KiB  
Article
Subsidy Policy Interactions in Agricultural Supply Chains: An Interdepartmental Coordination Perspective
by Aibo Yao, Lin Jiang, Bingxue Guo and Wei Li
Agriculture 2025, 15(14), 1464; https://doi.org/10.3390/agriculture15141464 - 8 Jul 2025
Viewed by 246
Abstract
The efficacy of government subsidy programs in agriculture is frequently compromised by internal policy conflicts that arise between competing government departments. This challenge is addressed herein, with a focus on the policy environment in China, through the development of a game-theoretic model of [...] Read more.
The efficacy of government subsidy programs in agriculture is frequently compromised by internal policy conflicts that arise between competing government departments. This challenge is addressed herein, with a focus on the policy environment in China, through the development of a game-theoretic model of an agricultural supply chain. This model explicitly incorporates two competing government bodies—the Agriculture and Rural Affairs Department (ARAD) and the Development and Reform Commission (DRC)—each with distinct objectives and performance indicators. Within this framework, the strategic interactions of four subsidy types are analyzed: production and cold-chain subsidies (ARAD), and platform operation and blockchain subsidies (DRC). The findings reveal that department-specific performance indicators can significantly distort the overall effectiveness of subsidies. While individual subsidies may achieve their intended departmental goals, their combined impact is shown to be complex and frequently suboptimal in the absence of higher-level coordination. Notably, a subsidy portfolio combining production and platform operation subsidies is found to consistently yield superior performance in maximizing social welfare. Ultimately, this research contributes a new framework for understanding subsidy policies and provides actionable insights for optimizing interdepartmental coordination to enhance supply chain performance. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

25 pages, 5336 KiB  
Article
A Modified Body Force Model for a Submerged Waterjet
by Dakui Feng, Yongyan Ma, Zichao Cai, Pengwei Yang and Yanlin Zou
J. Mar. Sci. Eng. 2025, 13(7), 1314; https://doi.org/10.3390/jmse13071314 - 8 Jul 2025
Viewed by 261
Abstract
The submerged waterjet exhibits advantages such as uniform inflow, minimal flow distortion, and excellent acoustic performance, making it particularly suitable for high-speed vessels. This study investigates the open-water characteristics of the submerged waterjet and develops a body force model for the submerged waterjet [...] Read more.
The submerged waterjet exhibits advantages such as uniform inflow, minimal flow distortion, and excellent acoustic performance, making it particularly suitable for high-speed vessels. This study investigates the open-water characteristics of the submerged waterjet and develops a body force model for the submerged waterjet propulsion system. First, under uniform inflow conditions, numerical simulations were performed using the body force method by replacing the rotor with a virtual blade and simultaneously replacing both the rotor and stator. The results of the body force model were then compared in detail with those obtained using the sliding mesh method. Second, the influence of the inflow velocity plane position on the results of the body force model was analyzed. The results indicate that the body force method, which replaces both the rotor and stator with a virtual blade, fails to accurately simulate the forces acting on various components of the propeller and the true distribution of the propeller’s flow field. In contrast, the method that replaces only the rotor with a virtual blade produces results for component forces and flow fields that are largely consistent with the results of the sliding mesh method, demonstrating the stability and reliability of the body force model. Additionally, the position of the inflow velocity plane has no significant effect on the model’s computational results. Full article
(This article belongs to the Special Issue Novelties in Marine Propulsion)
Show Figures

Figure 1

19 pages, 2049 KiB  
Review
DSC Perfusion MRI Artefact Reduction Strategies: A Short Overview for Clinicians and Scientific Applications
by Chris W. J. van der Weijden, Ingomar W. Gutmann, Joost F. Somsen, Gert Luurtsema, Tim van der Goot, Fatemeh Arzanforoosh, Miranda C. A. Kramer, Anne M. Buunk, Erik F. J. de Vries, Alexander Rauscher and Anouk van der Hoorn
J. Clin. Med. 2025, 14(13), 4776; https://doi.org/10.3390/jcm14134776 - 6 Jul 2025
Viewed by 465
Abstract
MRI perfusion is used to diagnose and monitor neurological conditions such as brain tumors, stroke, dementia, and traumatic brain injury. Dynamic Susceptibility Contrast (DSC) is the most widely available quantitative MRI technique for perfusion imaging. Even in its most basic implementation, DSC MRI [...] Read more.
MRI perfusion is used to diagnose and monitor neurological conditions such as brain tumors, stroke, dementia, and traumatic brain injury. Dynamic Susceptibility Contrast (DSC) is the most widely available quantitative MRI technique for perfusion imaging. Even in its most basic implementation, DSC MRI provides critical hemodynamic metrics like cerebral blood flow (CBF), blood volume (CBV), mean transit time (MTT), and time between the peak of arterial input and residue function (Tmax), through the dynamic tracking of a gadolinium-based contrast agent. Notwithstanding its high clinical importance and widespread use, the reproducibility and diagnostic reliability are impeded by a lack of standardized pre-processing protocols and quality controls. A comprehensive literature review and the authors’ aggregated experience identified common DSC MRI artefacts and corresponding pre-processing methods. Pre-processing methods to correct for artefacts were evaluated for their practical applicability and validation status. A consensus on the pre-processing was established by a multidisciplinary team of experts. Acquisition-related artefacts include geometric distortions, slice timing misalignment, and physiological noise. Intrinsic artefacts include motion, B1 inhomogeneities, Gibbs ringing, and noise. Motion can be mitigated using rigid-body alignment, but methods for addressing B1 inhomogeneities, Gibbs ringing, and noise remain underexplored for DSC MRI. Pre-processing of DSC MRI is critical for reliable diagnostics and research. While robust methods exist for correcting geometric distortions, motion, and slice timing issues, further validation is needed for methods addressing B1 inhomogeneities, Gibbs ringing, and noise. Implementing adequate mitigation methods for these artefacts could enhance reproducibility and diagnostic accuracy, supporting the growing reliance on DSC MRI in neurological imaging. Finally, we emphasize the crucial importance of pre-scan quality assurance with phantom scans. Full article
(This article belongs to the Special Issue Recent Advancements in Nuclear Medicine and Radiology)
Show Figures

Figure 1

20 pages, 4294 KiB  
Article
Design and Initial Validation of an Infrared Beam-Break Fish Counter (‘Fish Tracker’) for Fish Passage Monitoring
by Juan Francisco Fuentes-Pérez, Marina Martínez-Miguel, Ana García-Vega, Francisco Javier Bravo-Córdoba and Francisco Javier Sanz-Ronda
Sensors 2025, 25(13), 4112; https://doi.org/10.3390/s25134112 - 1 Jul 2025
Viewed by 484
Abstract
Effective monitoring of fish passage through river barriers is essential for evaluating fishway performance and supporting adaptive river management. Traditional methods are often invasive, labor-intensive, or too costly to enable widespread implementation across most fishways. Infrared (IR) beam-break counters offer a promising alternative, [...] Read more.
Effective monitoring of fish passage through river barriers is essential for evaluating fishway performance and supporting adaptive river management. Traditional methods are often invasive, labor-intensive, or too costly to enable widespread implementation across most fishways. Infrared (IR) beam-break counters offer a promising alternative, but their adoption has been limited by high costs and a lack of flexibility. We developed and tested a novel, low-cost infrared beam-break counter—FishTracker—based on open-source Raspberry Pi and Arduino platforms. The system detects fish passages by analyzing interruptions in an IR curtain and reconstructing fish silhouettes to estimate movement, direction, speed, and morphometrics under a wide range of turbidity conditions. It also offers remote access capabilities for easy management. Field validation involved controlled tests with dummy fish, experiments with small-bodied live specimens (bleak) under varying turbidity conditions, and verification against synchronized video of free-swimming fish (koi carp). This first version of FishTracker achieved detection rates of 95–100% under controlled conditions and approximately 70% in semi-natural conditions, comparable to commercial counters. Most errors were due to surface distortion caused by partial submersion during the experimental setup, which could be avoided by fully submerging the device. Body length estimation based on passage speed and beam-interruption duration proved consistent, aligning with published allometric models for carps. FishTracker offers a promising and affordable solution for non-invasive fish monitoring in multispecies contexts. Its design, based primarily on open technology, allows for flexible adaptation and broad deployment, particularly in locations where commercial technologies are economically unfeasible. Full article
(This article belongs to the Special Issue Optical Sensors for Industry Applications)
Show Figures

Figure 1

18 pages, 319 KiB  
Review
Beliefs in Right Hemisphere Syndromes: From Denial to Distortion
by Karen G. Langer and Julien Bogousslavsky
Brain Sci. 2025, 15(7), 694; https://doi.org/10.3390/brainsci15070694 - 28 Jun 2025
Viewed by 413
Abstract
Striking belief distortions may accompany various disorders of awareness that are predominantly associated with right hemispheric cerebral dysfunction. Distortions may range on a continuum of pathological severity, from the unawareness of paralysis in anosognosia for hemiplegia, to a more startling disturbance in denial [...] Read more.
Striking belief distortions may accompany various disorders of awareness that are predominantly associated with right hemispheric cerebral dysfunction. Distortions may range on a continuum of pathological severity, from the unawareness of paralysis in anosognosia for hemiplegia, to a more startling disturbance in denial of paralysis where belief may starkly conflict with reality. The patients’ beliefs about their limitations typically represent attempts to make sense of limitations or to impart meaning to incongruous facts. These beliefs are often couched in recollections from past memories or previous experience, and are hard to modify even given new information. Various explanations of unawareness have been suggested, including sensory, cognitive, monitoring and feedback operations, feedforward mechanisms, disconnection theories, and hemispheric asymmetry hypotheses, along with psychological denial, to account for the curious lack of awareness in anosognosia and other awareness disorders. This paper addresses these varying explanations of the puzzling beliefs regarding hemiparesis in anosognosia. Furthermore, using the multi-dimensional nature of unawareness in anosognosia as a model, some startling belief distortions in other right-hemisphere associated clinical syndromes are also explored. Other neurobehavioral disturbances, though perhaps less common, reflect marked psychopathological distortions. Startling disorders of belief are notable in somatic illusions, non-recognition or delusional misattribution of limb ownership (asomatognosia, somatoparaphrenia), or delusional identity (Capgras syndrome) and misidentification phenomena. Difficulty in updating beliefs as a source of unawareness in anosognosia and other awareness disorders has been proposed. Processes of belief development are considered to be patterns of thought, memories, and experience, which coalesce in a sense of the bodily and personal self. A common consequence of such disorders seems to be an altered representation of the self, self-parts, or the external world. Astonishing nonveridical beliefs about the body, about space, or about the self, continue to invite exploration and to stimulate fascination. Full article
(This article belongs to the Special Issue Anosognosia and the Determinants of Self-Awareness)
27 pages, 1668 KiB  
Article
Body Force Modelling of a Multi-Stage High-Pressure Compressor Under Inlet Distortion
by Chiara Crea, Julien Marty, Raphaël Barrier, Sébastien Cochon and Guillaume Dufour
Int. J. Turbomach. Propuls. Power 2025, 10(2), 12; https://doi.org/10.3390/ijtpp10020012 - 17 Jun 2025
Viewed by 425
Abstract
The present work aims to propose a new calibration strategy of the Hall–Thollet Body Force (BF) model to simulate the flow in multi-stage compressors and to capture inlet distortion effects within the machine. Both global (0D) and radial (1D) correction terms are introduced [...] Read more.
The present work aims to propose a new calibration strategy of the Hall–Thollet Body Force (BF) model to simulate the flow in multi-stage compressors and to capture inlet distortion effects within the machine. Both global (0D) and radial (1D) correction terms are introduced and calibrated to improve predictions in multi-stage compressors, accounting for highly interacting, highly loaded blades, falling outside the validity range of the model’s original coefficients. The modified model has been tested on the 3.5-stage high-pressure compressor CREATE, for which experimental data are available. The modified model is then employed to study different patterns of inlet distortion. The results show a very good agreement between Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations and Body Force calculations in terms of performance, key quantities along the radial and circumferential directions and distortion transfer across the compressor. Full article
Show Figures

Figure 1

17 pages, 286 KiB  
Article
Being, Doing, Deciding: Cisheteronormativity, Bodily Autonomy, and Mental Health Support for LGBTQ+ Young People
by Felix McNulty, Elizabeth McDermott, Rachael Eastham, Elizabeth Hughes, Katherine Johnson, Stephanie Davis, Steven Pryjmachuk, Céu Mateus and Olu Jenzen
Youth 2025, 5(2), 53; https://doi.org/10.3390/youth5020053 - 9 Jun 2025
Viewed by 525
Abstract
Cisheteronormativities inform and distort what LGBTQ+ young people’s bodies can be and do, and what choices about the body are possible, profoundly impacting mental health. This article presents findings from a UK study examining ‘what works’ in early intervention mental health support for [...] Read more.
Cisheteronormativities inform and distort what LGBTQ+ young people’s bodies can be and do, and what choices about the body are possible, profoundly impacting mental health. This article presents findings from a UK study examining ‘what works’ in early intervention mental health support for LGBTQ+ youth to examine how these impacts can be addressed. Data were collected across 12 mental health support services via the following: interviews with LGBTQ+ youth aged 12–25, service staff/volunteers, and parents/carers (n = 93); document review; and non-participant observation. In analysis, ‘Body’ was identified as a key principle underpinning effective early intervention mental health support. This article presents three key areas: the ability to name and define the body; the body’s ability to ‘do’; and the ability to make informed decisions about one’s body, life, and future. This article highlights the urgent importance of upholding bodily autonomy for LGBTQ+ youth if efforts to address mental health inequalities are to have any chance at success. Full article
(This article belongs to the Special Issue Resilience, Strength, Empowerment and Thriving of LGTBQIA+ Youth)
21 pages, 9082 KiB  
Article
Multi-Source Pansharpening of Island Sea Areas Based on Hybrid-Scale Regression Optimization
by Dongyang Fu, Jin Ma, Bei Liu and Yan Zhu
Sensors 2025, 25(11), 3530; https://doi.org/10.3390/s25113530 - 4 Jun 2025
Viewed by 843
Abstract
To address the demand for high spatial resolution data in the water color inversion task of multispectral satellite images in island sea areas, a feasible solution is to process through multi-source remote sensing data fusion methods. However, the inherent biases among multi-source sensors [...] Read more.
To address the demand for high spatial resolution data in the water color inversion task of multispectral satellite images in island sea areas, a feasible solution is to process through multi-source remote sensing data fusion methods. However, the inherent biases among multi-source sensors and the spectral distortion caused by the dynamic changes of water bodies in island sea areas restrict the fusion accuracy, necessitating more precise fusion solutions. Therefore, this paper proposes a pansharpening method based on Hybrid-Scale Mutual Information (HSMI). This method effectively enhances the accuracy and consistency of panchromatic sharpening results by integrating mixed-scale information into scale regression. Secondly, it introduces mutual information to quantify the spatial–spectral correlation among multi-source data to balance the fusion representation under mixed scales. Finally, the performance of various popular pansharpening methods was compared and analyzed using the coupled datasets of Sentinel-2 and Sentinel-3 in typical island and reef waters of the South China Sea. The results show that HSMI can enhance the spatial details and edge clarity of islands while better preserving the spectral characteristics of the surrounding sea areas. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

31 pages, 7884 KiB  
Article
Magnetic Pulse Welding of Dissimilar Materials: Weldability Window for AA6082-T6/HC420LA Stacks
by Mario A. Renderos Cartagena, Edurne Iriondo Plaza, Amaia Torregaray Larruscain, Marie B. Touzet-Cortina and Franck A. Girot Mata
Metals 2025, 15(6), 619; https://doi.org/10.3390/met15060619 - 30 May 2025
Viewed by 668
Abstract
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the [...] Read more.
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the need for additional filler materials or fluxes. MPW offers several advantages, such as minimal heat input, no distortion or warping, and excellent joint strength and integrity. The process is highly efficient, with welding times typically ranging from microseconds to milliseconds, making it suitable for high-volume production applications in sectors including automotive, aerospace, electronics, and various other industries where strong and reliable joints are required. It provides a cost-effective solution for joining lightweight materials, reducing weight and improving fuel efficiency in transportation systems. This contribution concerns an application for the automotive sector (body-in-white) and specifically examines the welding of AA6082-T6 aluminum alloy with HC420LA cold-rolled micro-alloyed steel. One of the main aspects for MPW optimization is the determination of the process window that does not depend on the equipment used but rather on the parameters associated with the physical mechanisms of the process. It was demonstrated that process windows based on contact angle versus output voltage diagrams can be of interest for production use for a given component (shock absorbers, suspension struts, chassis components, instrument panel beams, next-generation crash boxes, etc.). The process window based on impact pressures versus impact velocity for different impact angles, in addition to not depending on the equipment, allows highlighting other factors such as the pressure welding threshold for different temperatures in the impact zone, critical transition speeds for straight or wavy interface formation, and the jetting/no jetting effect transition. Experimental results demonstrated that optimal welding conditions are achieved with impact velocities between 900 and 1200 m/s, impact pressures of 3000–4000 MPa, and impact angles ranging from 18–35°. These conditions correspond to optimal technological parameters including gaps of 1.5–2 mm and output voltages between 7.5 and 8.5 kV. Successful welds require mean energy values above 20 kJ and weld specific energy values exceeding 150 kJ/m2. The study establishes critical failure thresholds: welds consistently failed when gap distances exceeded 3 mm, output voltage dropped below 5.5 kV, or impact pressures fell below 2000 MPa. To determine these impact parameters, relationships based on Buckingham’s π theorem provide a viable solution closely aligned with experimental reality. Additionally, shear tests were conducted to determine weld cohesion, enabling the integration of mechanical resistance isovalues into the process window. The findings reveal an inverse relationship between impact angle and weld specific energy, with higher impact velocities producing thicker intermetallic compounds (IMCs), emphasizing the need for careful parameter optimization to balance weld strength and IMC formation. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

22 pages, 2072 KiB  
Article
Does Identifying with Another Face Alter Body Image Disturbance in Women with an Eating Disorder? An Enfacement Illusion Study
by Jade Portingale, David Butler and Isabel Krug
Nutrients 2025, 17(11), 1861; https://doi.org/10.3390/nu17111861 - 29 May 2025
Viewed by 650
Abstract
Background/Objectives: Individuals with eating disorders (EDs) experience stronger body illusions than control participants, suggesting that abnormalities in multisensory integration may underlie distorted body perception in these conditions. These illusions can also temporarily reduce body image disturbance. Given the centrality of the face [...] Read more.
Background/Objectives: Individuals with eating disorders (EDs) experience stronger body illusions than control participants, suggesting that abnormalities in multisensory integration may underlie distorted body perception in these conditions. These illusions can also temporarily reduce body image disturbance. Given the centrality of the face to identity and social functioning—and emerging evidence of face image disturbance in EDs—this study examined, for the first time, whether individuals with EDs exhibit heightened susceptibility to a facial illusion (the enfacement illusion) and whether experiencing this illusion improves face and/or body image. Methods: White Australian female participants (19 with an ED and 24 controls) completed synchronous and asynchronous facial mimicry tasks to induce the enfacement illusion. Susceptibility was assessed via self-report and an objective self-face recognition task, alongside pre- and post-task measures of perceived facial attractiveness, facial adiposity estimation, and head/body dissatisfaction. Results: The illusion was successfully induced across both groups. Contrary to predictions, ED and control participants demonstrated comparable susceptibility, and neither group experienced improvements in face or body image. Notably, participants with EDs experienced increased head dissatisfaction following the illusion. Conclusions: These findings indicate that the multisensory integration processes underlying self-face perception, unlike those underlying body perception, may remain intact in EDs. Participant reflections suggested that the limited therapeutic benefit of the enfacement illusion for EDs may reflect the influence of maladaptive social-evaluative processing biases inadvertently triggered during the illusion. A novel dual-process model is proposed in which distorted self-face perception in EDs may arise from biased social-cognitive processing rather than sensory dysfunction alone. Full article
(This article belongs to the Special Issue Cognitive and Dietary Behaviour Interventions in Eating Disorders)
Show Figures

Figure 1

14 pages, 2069 KiB  
Article
Adipose Tissue Dysfunction Induced by High-Fat Diet Consumption Is Associated with Higher Otoacoustic Emissions Threshold in Mice C57BL/6
by Gonzalo Terreros, Felipe Munoz, Matías Magdalena, Manuel Soto-Donoso, Nairo Torres and Amanda D’Espessailles
Nutrients 2025, 17(11), 1786; https://doi.org/10.3390/nu17111786 - 24 May 2025
Viewed by 630
Abstract
Background/Objectives: Obesity is a risk factor for several diseases; however, less has been researched about how diet-induced obesity may affect the auditory system. In this sense, the purpose of this study was to evaluate the effect of diet-induced obesity on the functionality [...] Read more.
Background/Objectives: Obesity is a risk factor for several diseases; however, less has been researched about how diet-induced obesity may affect the auditory system. In this sense, the purpose of this study was to evaluate the effect of diet-induced obesity on the functionality and integrity of the outer hair cells, a key component of the organ of Corti, inside the cochlea. Furthermore, we hypothesized that adipose tissue (AT) status is associated with impaired outer hair cell auditory amplification in young C57BL/6 mice, contributing to increased vulnerability to hearing damage. Methods: Weaning male C57BL/6J mice (7 weeks old) weighing 22–23 g were divided into two diet groups: (i) a control diet or (ii) a high-fat diet (HFD) for 12 or 16 weeks. Metabolic parameters (body and AT weight, glucose tolerance test), AT dysfunction markers (AT remodeling, adipocyte size, crown-like structures), and outer hair cell function (distortion products otoacoustic emissions (DPOAEs) threshold and amplitudes) and integrity (hair cells cell count) were evaluated. Results: We observed that mice fed an HFD for 16 weeks showed a higher DPOAE threshold against stimuli at 16 KHz and a lower count of outer hair cells in the medial section of the cochlea. These results demonstrate a correlation between body and AT weight specifically at 16 weeks of treatment, the time point at which we observed a marked AT dysfunction. Conclusions: Taken together, our results suggest that obese mice with AT dysfunction have an altered auditory efferent system, characterized by a higher DPOAE threshold and a lower outer hair cell count in the medial section, which may impact signal transduction. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
Show Figures

Figure 1

Back to TopTop