Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = block rubber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5204 KiB  
Article
Evaluation of Polypropylene Reusability Using a Simple Mechanical Model Derived from Injection-Molded Products
by Tetsuo Takayama, Rikuto Takahashi, Nao Konno and Noriyuki Sato
Polymers 2025, 17(15), 2107; https://doi.org/10.3390/polym17152107 - 31 Jul 2025
Viewed by 285
Abstract
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, [...] Read more.
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, conventional mechanical property evaluations of injection-molded products typically require dedicated specimens, which involve additional material and energy costs. As described herein, we propose a simplified mechanical model to derive Poisson’s ratio and critical expansion stress directly from standard uniaxial tensile tests of molded thermoplastics. The method based on the true stress–true strain relationship in the small deformation region was validated using various thermoplastics (PP, POM, PC, and ABS), with results showing good agreement with those of the existing literature. The model was applied further to assess changes in mechanical properties of Homo-PP and Block-PP subjected to repeated extrusion. Both materials exhibited reductions in elastic modulus and critical expansion stress with increasing extrusion cycles, whereas Block-PP showed a slower degradation rate because of thermo-crosslinking in its ethylene–propylene rubber (EPR) phase. DSC and chemiluminescence analyses suggested changes in stereoregularity and radical formation as key factors. This method offers a practical approach for evaluating recycled PP and contributes to high-quality recycling and material design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

14 pages, 2195 KiB  
Article
Experimental and Simulation Analysis on Wet Slip Performance Between Tread Rubber and Road Surface
by Yang Wan, Benlong Su, Guochang Lin, Youshan Wang, Gege Huang and Jian Wu
J. Compos. Sci. 2025, 9(8), 394; https://doi.org/10.3390/jcs9080394 - 25 Jul 2025
Viewed by 339
Abstract
Optimisation of the anti-skid properties of tyres is a significant area of composite applications. For investigating the wet slip friction characteristics, the wet slip friction test of tread rubber and road surface was carried out using the comprehensive tire friction testing machine. The [...] Read more.
Optimisation of the anti-skid properties of tyres is a significant area of composite applications. For investigating the wet slip friction characteristics, the wet slip friction test of tread rubber and road surface was carried out using the comprehensive tire friction testing machine. The wet slip properties of different formulated rubbers under various working conditions such as different slip speeds, water film thicknesses and vertical loads were compared through the test. Subsequently, an orthogonal test programme was designed to investigate the degree of significant influence of each factor on the wet slip performance. A three-dimensional finite element model of tread rubber and road surface with water film was established in order to facilitate analysis of the wet slip properties. The simulation results were utilised to elucidate the pattern of the effects of different loads on the wet slip friction characteristics. Results indicate that the wet slip friction coefficient is subject to decrease in proportion to the magnitude of the vertical load; the friction coefficient of rubber block in wet slip condition exhibits a decline of approximately 26% in comparison with that of dry condition; the factor that exerts the most significant influence on the coefficient of friction is the vertical load, while the water film thickness exerts the least influence. The results obtained can serve as a reference source for the design of tire anti-skid performance enhancement. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

14 pages, 4450 KiB  
Article
Performance Evaluation of Waterborne Epoxy Resin-Reinforced SBS, Waterborne Acrylate or SBR Emulsion for Road
by Hao Fu and Chaohui Wang
Coatings 2025, 15(7), 787; https://doi.org/10.3390/coatings15070787 - 3 Jul 2025
Viewed by 331
Abstract
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of [...] Read more.
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of these waterborne polymers were evaluated. Furthermore, the correlation between the performance indicators of the waterborne polymers was analyzed. Based on Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis, the mechanism of WER-modified SBS and WA was characterized. The results show that adding 10%–15% WER can significantly improve the mechanical properties of the waterborne polymer. The performances of modified SBS and WA are better than that of modified SBR. When the content of WER is 10%, the tensile strength, elongation at break and pull-off strength of WER-modified SBS and WA are 4.80–6.38 MPa, 476.3%–579.6% and 1.62–1.70 MPa, respectively. The mechanical strength and breaking energy of the waterborne polymers show a significant linear correlation with their application properties such as adhesion, bonding and impact resistance. FTIR and TG analyses indicate that WER-modified SBS or WA prepared via emulsion blending undergo primarily physical modifications, enhancing thermal stability while promoting crosslinking and curing. Full article
(This article belongs to the Special Issue Green Asphalt Materials—Surface Engineering and Applications)
Show Figures

Figure 1

17 pages, 2670 KiB  
Article
Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes
by Rianyza Gayatri, Erna Yuliwati, Tuty Emilia Agustina, Nor Afifah Khalil, Md Sohrab Hossain, Wirach Taweepreda, Muzafar Zulkifli and Ahmad Naim Ahmad Yahaya
Polymers 2025, 17(12), 1598; https://doi.org/10.3390/polym17121598 - 8 Jun 2025
Viewed by 944
Abstract
Natural rubber skim latex is commonly discarded as waste or turned into skim natural rubber products such as skim crepe and skim blocks. It is challenging to retrieve all residual rubbers in skim latex since it has a very low rubber content and [...] Read more.
Natural rubber skim latex is commonly discarded as waste or turned into skim natural rubber products such as skim crepe and skim blocks. It is challenging to retrieve all residual rubbers in skim latex since it has a very low rubber content and many non-rubber components like protein. Manufacturers conventionally utilize concentrated sulfuric acid as a coagulant. This method generates many effluents and hazardous pollutants that negatively impact the environment. This work presents an innovative method for enhancing the skim latex’s value by employing an ultrafiltration membrane. This study aims to establish a hydrophilic PVDF-TiO2 mixed-matrix membrane. The skim latex was processed through a membrane-based ultrafiltration process, which yielded two products: skim latex concentrate and skim serum. Skim latex deposits that cause fouling on the membrane surface can be identified by SEM-EDX and FTIR analysis. The PVDF–PVP-TiO2 mixed-matrix membrane generated the maximum skim serum flux of 12.72 L/m2h in contrast to the PVDF pure membranes, which showed a lower flux of 8.14 L/m2h. CHNS analysis shows that a greater amount of nitrogen, which is indicative of the protein composition, was successfully extracted by the membrane separation process. These particles may adhere to the membrane surface during filtration, obstructing or decreasing the number of fluid flow channels. The deposition reduces the effective size of membrane pores, leading to a decline in flux rate. The hydrophilic PVDF-TiO2 mixed-matrix membrane developed in this study shows strong potential for application in the latex industry, specifically for treating natural rubber skim latex, a challenging by-product known for its high fouling potential. This innovative ultrafiltration approach offers a promising method to enhance the value of skim latex by enabling more efficient separation and recovery. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

14 pages, 6163 KiB  
Article
Analysis of Bruising Characteristics of Large-Stone Fruits upon Impact Using Finite Element Method—A Case Study of Postharvest Loquats
by Chunxiang Liu, Baiqiu Li and Changsu Xu
Horticulturae 2025, 11(4), 440; https://doi.org/10.3390/horticulturae11040440 - 20 Apr 2025
Cited by 1 | Viewed by 575
Abstract
The bruising of fruits occurs at various stages, including picking, transportation, and sale. For fruits with large kernels that occupy a significant portion of their overall volume, considering the impact of the kernel is crucial in elucidating the mechanisms of bruising and controlling [...] Read more.
The bruising of fruits occurs at various stages, including picking, transportation, and sale. For fruits with large kernels that occupy a significant portion of their overall volume, considering the impact of the kernel is crucial in elucidating the mechanisms of bruising and controlling bruise formation. This study employs reverse engineering to develop a composite finite element model of loquat peel, flesh, and kernels. Bruise formation during collisions is analyzed from the perspectives of contact force, equivalent stress, energy, bruise volume, and bruise susceptibility, aiming to reveal the significant role of the fruit core in the bruise formation process. In this paper, we propose the use of 3D printing technology to accurately quantify bruise measurement for fruits with large kernels. The results showed that the maximum contact force, equivalent stress, and internal energy between loquat and steel/wood were essentially consistent, but all exceeded those observed when using rubber. Due to the blocking of stress transmission by the kernel, the susceptibility of loquats to bruising increases with height before decreasing. This study elucidates the mechanism of bruise formation in fruits with large kernels and provides methods and ideas for the research and precise measurement of complex fruit bruising characteristics. Full article
Show Figures

Figure 1

17 pages, 3777 KiB  
Article
Effect of Block Polyether as an Interfacial Dispersant on the Properties of Nanosilica/Natural Rubber Composites
by Ying Liu, Jiahui Mei, Depeng Gong, Yanjun Chen and Chaocan Zhang
Polymers 2025, 17(8), 1091; https://doi.org/10.3390/polym17081091 - 17 Apr 2025
Viewed by 460
Abstract
To enhance the dispersion of silica within a natural rubber (NR) matrix and improve the modification efficiency of the silane coupling agent, a novel interfacial dispersant composed of block polyether with a PEO-PPO-PEO structure is employed in this study. This block polyether, consisting [...] Read more.
To enhance the dispersion of silica within a natural rubber (NR) matrix and improve the modification efficiency of the silane coupling agent, a novel interfacial dispersant composed of block polyether with a PEO-PPO-PEO structure is employed in this study. This block polyether, consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), serves to reduce the surface energy of silica and improve its compatibility with the rubber matrix. Three types of block polyethers with different hydrophilic–lipophilic balance (HLB) values of 8, 13, and 22 are selected to regulate the surface tension of silica. Subsequently, bis[γ-(triethoxysilyl)propyl] tetrasulfide (TESPT) is used to further modify the silica surface, aiming to prepare high-performance rubber composites. The results indicate that the HLB value of the block polyether has a significant influence on the system. Compared with block polyethers having HLB values of 8 and 22, the block polyether with an HLB value of 13 demonstrated superior silica dispersion, leading to enhanced filler–rubber interfacial interactions. Consequently, both the mechanical properties and processability of the NR composites were substantially improved. When the dosage of this block polyether was 1 phr, the composite exhibited a tensile strength of 28.9 MPa and an elongation at break of 523%. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

20 pages, 10269 KiB  
Article
Viscoelasticity of PPA/SBS/SBR Composite Modified Asphalt and Asphalt Mixtures Under Pressure Aging Conditions
by Zongjie Yu, Xinpeng Ling, Ze Fan, Yueming Zhou and Zhu Ma
Polymers 2025, 17(5), 698; https://doi.org/10.3390/polym17050698 - 6 Mar 2025
Cited by 1 | Viewed by 784
Abstract
The viscoelastic behavior of asphalt mixtures is a crucial consideration in the analysis of pavement mechanical responses and structural design. This study aims to elucidate the molecular structure and component evolution trends of polyphosphoric acid (PPA)/styrene butadiene styrene block copolymer (SBS)/styrene butadiene rubber [...] Read more.
The viscoelastic behavior of asphalt mixtures is a crucial consideration in the analysis of pavement mechanical responses and structural design. This study aims to elucidate the molecular structure and component evolution trends of polyphosphoric acid (PPA)/styrene butadiene styrene block copolymer (SBS)/styrene butadiene rubber copolymer (SBR) composite modified asphalt (CMA) under rolling thin film oven test (RTFOT) and pressure aging (PAV) conditions, as well as to analyze the viscoelastic evolution of CMA mixtures. First, accelerated aging was conducted in the laboratory through RTFOT, along with PAV tests for 20 h and 40 h. Next, the microscopic characteristics of the binder at different aging stages were explored using Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) tests. Additionally, fundamental rheological properties and temperature sweep tests were performed to reveal the viscoelastic evolution characteristics of CMA. Ultimately, the viscoelastic properties of CMA mixtures under dynamic loading at different aging stages were clarified. The results indicate that the incorporation of SBS and SBR increased the levels of carbonyl and sulfoxide factors while decreasing the level of long-chain factors, which slowed down the rate of change of large molecule content and reduced the rate of change of LMS by more than 6%, with the rate of change of overall molecular weight distribution narrowing to below 50%. The simultaneous incorporation of SBS and SBR into CMA mixtures enhanced the dynamic modulus in the 25 Hz and −10 °C range by 24.3% (AC-13), 15.4% (AC-16), and reduced the φ by 55.8% (AC-13), 40% (AC-16). This research provides a reference for the application of CMA mixtures in the repair of pavement pothole damage. Full article
Show Figures

Figure 1

19 pages, 5930 KiB  
Article
Development, Experimental Assessment, and Application of a Vacuum-Driven Soft Bending Actuator
by Goran Gregov, Tonia Vuković, Leonardo Gašparić and Matija Pongrac
Appl. Sci. 2025, 15(5), 2557; https://doi.org/10.3390/app15052557 - 27 Feb 2025
Cited by 1 | Viewed by 756
Abstract
This study presents the design, development, and experimental assessment of soft pneumatic actuators for achieving bending motion utilizing vacuum pressure, with their final application to soft robotic grippers. A novel soft actuator design is introduced, satisfying the following design requirements: safe operation without [...] Read more.
This study presents the design, development, and experimental assessment of soft pneumatic actuators for achieving bending motion utilizing vacuum pressure, with their final application to soft robotic grippers. A novel soft actuator design is introduced, satisfying the following design requirements: safe operation without the risk of explosion, the ability to achieve large angular bending while overcoming significant forces, and the use of soft materials that are resistant to material fatigue. A vacuum-driven soft bending actuator (VSBA) was designed, incorporating a cylindrical ribbed bellow geometry and an integrated limiting element within its structure. Two variations of the VSBA were fabricated, each differing in the materials and manufacturing processes employed. The first version employs a cylindrical ribbed bellow made of thermoplastic rubber (TPR), while the other versions utilize heat-shrinkable polymer materials, resulting in an innovative manufacturing process capable of producing actuators in various sizes and shapes. This contributes to the analysis of how actuator geometry affects performance and enables its miniaturization. The performance of the novel VSBAs were experimentally assessed through measuring the bending angle, blocking force, and angular velocity–angle characteristics. The results confirmed a maximum bending angle of 140° corresponding to a bending ratio of 78%, a maximum blocking force of 110 N, and maximum angular velocity of 520°/s at a vacuum pressure of −0.8 bar. Finally, a soft robotic gripper was developed, consisting of three newly designed VSBAs. Experimental assessments demonstrated the gripper’s capability to grasp objects of various shapes, with a maximum holding force of 28 N. Full article
Show Figures

Figure 1

20 pages, 7540 KiB  
Article
Investigation into the Synergistic Effects of Sediment Concentration and Particle Size on the Friction and Wear Properties of Nitrile Butadiene Rubber
by Lun Wang, Xincong Zhou, Qipeng Huang, Xueshen Liu, Zhenjiang Zhou and Shaopeng Xing
J. Mar. Sci. Eng. 2025, 13(1), 33; https://doi.org/10.3390/jmse13010033 - 29 Dec 2024
Cited by 1 | Viewed by 956
Abstract
Nitrile Butadiene Rubber (NBR) is commonly used in ships’ water-lubricated tail bearings. However, sediment in the water significantly affects these bearings’ friction and wear performance. This study investigates NBR test blocks’ friction and wear behavior in conjunction with ZCuSn10Zn2 copper ring friction pairs [...] Read more.
Nitrile Butadiene Rubber (NBR) is commonly used in ships’ water-lubricated tail bearings. However, sediment in the water significantly affects these bearings’ friction and wear performance. This study investigates NBR test blocks’ friction and wear behavior in conjunction with ZCuSn10Zn2 copper ring friction pairs within a sediment-laden water lubrication environment. Two primary factors were considered: sediment particle concentration and sediment particle size. Friction and wear tests were conducted under pure water and sediment-laden conditions using the ZY-1 ring block friction and wear tester. The friction coefficients, wear quantities, and variations in mass concentrations and sediment particle sizes were measured and compared. The surface morphology of the test blocks was analyzed using a laser confocal microscope. The findings indicate that as sediment concentration increases, the particle size’s impact on NBR’s abrasive wear diminishes. The variation in particle size directly influences the number of particles that penetrate the interface between the friction partners and the nature of three-body wear. Conversely, changes in particle concentration primarily affect the extent of wear; specifically, both the wear volume and the average coefficient of friction of the NBR specimens increase with rising sediment concentration. The wear mechanisms observed on the surface of the NBR test blocks are predominantly characterized by micro-cutting, rolling wear, and the coexistence of both wear modes. This study offers valuable insights for the design and optimization of water-lubricated bearings. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 4551 KiB  
Article
Enhancements in Hollow Block Technology: Comprehensive Thermal and Mechanical Characterizations
by Joseph Dgheim, Kevin Rizk, Yassine Cherif, Emmanuel Antczak, Elias Farah and Nemr El Hajj
Energies 2024, 17(23), 6133; https://doi.org/10.3390/en17236133 - 5 Dec 2024
Viewed by 1746
Abstract
This research explores the thermal and mechanical properties enhancement in hollow concrete blocks by incorporating recycled expanded polystyrene (EPS) and crumb rubber (CR). Key thermal properties—including average thermal resistance (R¯), average thermal conductivity (λ¯), and average specific [...] Read more.
This research explores the thermal and mechanical properties enhancement in hollow concrete blocks by incorporating recycled expanded polystyrene (EPS) and crumb rubber (CR). Key thermal properties—including average thermal resistance (R¯), average thermal conductivity (λ¯), and average specific heat (Cp¯)—were analyzed, while mechanical properties were evaluated via compressive strength tests. Findings indicate that the addition of EPS and CR significantly improved thermal resistance, with specific heat and compressive strength remaining within acceptable thresholds. The optimal mixture of 35% EPS and 5% rubber by volume led to a remarkable 49.67% increase in thermal resistance compared to standard hollow blocks while still achieving a compressive strength (σ¯) around 7 MPa. These results classify the blocks as non-load-bearing, highlighting their potential for energy-efficient construction using sustainable materials. This research advances sustainable building materials by providing practical solutions to improve building performance in Lebanon. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 7368 KiB  
Article
Study on the Effect of SBS/HVA/CRM Composite-Modified Asphalt on the Performance of Recycled Asphalt Mixtures
by Haoming Li, Hongkui Wang, Junning Lin, Jiangang Yang and Yuquan Yao
Polymers 2024, 16(22), 3226; https://doi.org/10.3390/polym16223226 - 20 Nov 2024
Cited by 6 | Viewed by 1014
Abstract
To investigate the feasibility of composite modification techniques in improving the performance of recycled asphalt mixtures, in this study, the high-viscosity agent (HVA) and crumb-rubber materials (CRM) were used to modify asphalt with a styrene-butadiene-styrene block copolymer (SBS), in order to prepare SBS-HVA [...] Read more.
To investigate the feasibility of composite modification techniques in improving the performance of recycled asphalt mixtures, in this study, the high-viscosity agent (HVA) and crumb-rubber materials (CRM) were used to modify asphalt with a styrene-butadiene-styrene block copolymer (SBS), in order to prepare SBS-HVA and SBS-CRM composite-modified asphalts. The virgin asphalt mixtures, as well as three asphalt types of recycled asphalt mixtures with 50% reclaimed asphalt pavement (RAP) content, were designed. The optimal asphalt content of the four types of asphalt mixtures was analyzed, and the rutting test, the asphalt bond strength test, the moisture-induced sensitivity test, and the low-temperature cracking resistance test were conducted to investigate the performance of the four types of asphalt mixtures. The results showed that the higher the asphalt kinematic viscosity, the higher the optimum asphalt content of the asphalt mixtures under the same air voids. HVA significantly improves the adhesion between SBS-modified asphalt and aggregate under dry conditions, while SBS-CRM composite-modified asphalt performs similarly to SBS-modified asphalt. Before and after water immersion, the degree of pull-out strength decay between the asphalts and aggregates follows the sequence of SBS-CRM- > SBS- > SBS-HVA-modified asphalts. Additionally, the residual pull-out work follows the sequence of SBS-HVA- > SBS-CRM- > SBS-modified asphalt. SBS-CRM composite-modified asphalt can significantly improve the moisture sensitivity of recycled asphalt mixtures, as well as low-temperature cracking resistance, while SBS-CRM composite-modified asphalt only improves the low-temperature cracking resistance of recycled asphalt mixtures, and does not improve the moisture sensitivity. Based on the results, it is recommended to select the appropriate composite modification method based on the climate and loading conditions, to maximize the value of asphalt, and to achieve sustainable and durable pavement. Full article
(This article belongs to the Special Issue Polymer Modified Asphalt for Sustainable Pavements)
Show Figures

Graphical abstract

19 pages, 5197 KiB  
Article
Expanded Polystyrene/Tyre Crumbs Composites as Promising Aggregates in Mortar and Concrete
by Karamat Subhani, Krishnamurthy Prasad, Nishar Hameed, Mostafa Nikzad and Nisa V. Salim
Polymers 2024, 16(22), 3207; https://doi.org/10.3390/polym16223207 - 19 Nov 2024
Cited by 1 | Viewed by 1197
Abstract
A composite material comprising expanded polystyrene (EPS), granulated tyre rubber (GTR), and a compatibilizer is demonstrated as a possible replacement for fine and coarse agglomerates in mortar and concrete systems, respectively. Two different polymer blending processes (solvent/low shear blending and melt/high shear blending) [...] Read more.
A composite material comprising expanded polystyrene (EPS), granulated tyre rubber (GTR), and a compatibilizer is demonstrated as a possible replacement for fine and coarse agglomerates in mortar and concrete systems, respectively. Two different polymer blending processes (solvent/low shear blending and melt/high shear blending) are used, and the resulting composite material utilized as aggregate to replace sand and cement for mortar and concrete block development. Critical properties such as workability, compressive and flexural strengths, water absorption, bulk density, and porosity are measured before and after aggregate replacement. The novel composite material led to significant improvements, boosting compressive strength by 7.6% and flexural strength by 18% when sand was replaced and further increasing compressive strength by 22.2% and flexural strength by 5.26% with cement replacement. However, a decrease in compressive and flexural strength was observed when plain EPS and plain GTR were used separately as aggregate replacements. This work proposes a pathway for the successful reincorporation of difficult-to-recycle materials such as EPS and GTR, otherwise destined for landfill, back into the supply chain for the construction industry. Moreover, this research represents the first reported work where the overall properties of mortar have surpassed those of standard mortar when substituted with recycled EPS or GTR. Full article
(This article belongs to the Special Issue Renewable, Degradable, and Recyclable Polymer Composites)
Show Figures

Figure 1

13 pages, 1757 KiB  
Article
Use of Waste Slag and Rubber Particles to Make Mortar for Filling the Joints of Snow-Melting Concrete Pavement
by Wenbo Peng, Zhiyuan Geng, Xueting Zhang, Qi Zeng, Longhai Wei, Li Zhou and Wentao Li
Buildings 2024, 14(10), 3226; https://doi.org/10.3390/buildings14103226 - 11 Oct 2024
Viewed by 1049
Abstract
Waste slag and rubber particles are commonly used to modify concrete, offering benefits such as reduced cement consumption and lower greenhouse gas emissions during cement production. In this study, these two environmentally friendly, sustainable waste materials were proposed for the preparation of mortar [...] Read more.
Waste slag and rubber particles are commonly used to modify concrete, offering benefits such as reduced cement consumption and lower greenhouse gas emissions during cement production. In this study, these two environmentally friendly, sustainable waste materials were proposed for the preparation of mortar intended for snow-melting pavements. A series of experiments were conducted to evaluate the performance of the material and to determine whether its compressive and flexural strengths meet the requirements of pavement specifications. The mortar’s suitability for snow-melting pavements was assessed based on its thermal conductivity, impermeability, and freeze–thaw resistance. The results indicate that slag, when used in different volume fractions, can enhance the compressive and flexural strength of the mortar. Slag also provides excellent thermal conductivity, impermeability, and resistance to freeze–thaw cycles, contributing to the overall performance of snow-melting pavements. When the slag content was 20%, the performance was optimal, with the compressive strength and flexural strength reaching 58.5 MPa and 8.1 MPa, respectively. The strength loss rate under freeze–thaw cycles was 8.03%, the thermal conductivity reached 2.2895 W/(m * K), and the impermeability pressure value reached 0.5 MPa. Conversely, the addition of rubber particles was found to decrease the material’s mechanical and thermal properties. However, when used in small amounts, rubber particles improved the mortar’s impermeability and resistance to freeze–thaw cycles. When the rubber content was 5% by volume, the impermeability pressure value reached 0.5 MPa, which was 166.7% lower than that of ordinary cement mortar. Under freeze–thaw cycles, the strength loss rate of the test block with a rubber content of 25% volume fraction was 9.83% lower than that of ordinary cement mortar. Full article
(This article belongs to the Special Issue Multiphysics Analysis of Construction Materials)
Show Figures

Figure 1

16 pages, 5606 KiB  
Article
Synergistic Effects of Liquid Rubber and Thermoplastic Particles for Toughening Epoxy Resin
by Zhaodi Wang, Yuanchang Lai, Peiwen Xu, Junchi Ma, Yahong Xu and Xin Yang
Polymers 2024, 16(19), 2775; https://doi.org/10.3390/polym16192775 - 30 Sep 2024
Cited by 4 | Viewed by 1892
Abstract
This study aims to investigate the toughening effects of rubber and thermoplastic particles on epoxy resin (EP), and to understand the mechanism underlying their synergistic effect. For this purpose, three EP systems were prepared using diglycidyl ether of bisphenol-A (DGEBA) epoxy resin (E-54) [...] Read more.
This study aims to investigate the toughening effects of rubber and thermoplastic particles on epoxy resin (EP), and to understand the mechanism underlying their synergistic effect. For this purpose, three EP systems were prepared using diglycidyl ether of bisphenol-A (DGEBA) epoxy resin (E-54) and 4,4-Diamino diphenyl methane (Ag-80) as matrix resin, 4,4-diaminodiphenyl sulfone (DDS) as a curing agent, and phenolphthalein poly (aryl ether ketone) particles (PEK-C) and carboxyl-terminated butyl liquid rubber (CTBN) as toughening agents. These systems are classified as an EP/PEK-C toughening system, EP/CTBN toughening system, and EP/PEK-C/CTBN synergistic toughening system. The curing behavior, thermal properties, mechanical properties, and phase structure of the synergistic-toughened EP systems were comprehensively investigated. The results showed that PEK-C did not react with EP, while CTBN reacted with EP to form a flexible block polymer. The impact toughness of EP toughened by PEK-C/CTBN was improved obviously without significantly increasing viscosity or decreasing thermal stability, flexural strength, and modulus, and the synergistic toughening effect was significantly higher than that of the single toughening system. The notable improvement in toughness is believed to be due to the synergistic energy dissipation effect of PEK-C/CTBN. Full article
(This article belongs to the Special Issue Damage and Failure Analysis of Polymer-Based Composites)
Show Figures

Figure 1

16 pages, 3882 KiB  
Article
Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins
by Jakub Czakaj, Daria Pakuła, Julia Głowacka, Bogna Sztorch and Robert E. Przekop
J. Compos. Sci. 2024, 8(10), 384; https://doi.org/10.3390/jcs8100384 - 24 Sep 2024
Cited by 2 | Viewed by 3260
Abstract
Polyoxymethylene (POM), polypropylene (PP), and poly(methyl methacrylate) (PMMA) have been blended with adhesive-grade ethylene vinyl acetate (EVA), propylene elastomer (VMX), isobutylene–isoprene rubber (IIR) and an acrylic block copolymer (MMA-nBA-MMA). The blends were prepared using a two-roll mill and injection molding. The mechanical properties [...] Read more.
Polyoxymethylene (POM), polypropylene (PP), and poly(methyl methacrylate) (PMMA) have been blended with adhesive-grade ethylene vinyl acetate (EVA), propylene elastomer (VMX), isobutylene–isoprene rubber (IIR) and an acrylic block copolymer (MMA-nBA-MMA). The blends were prepared using a two-roll mill and injection molding. The mechanical properties of the blends, such as tensile strength, tensile modulus, elongation at maximum load, and impact resistance, were investigated. The water contact angle, melt flow rate (MFR), and differential scanning calorimetry were ascertained to evaluate the blends. The blend samples exhibited the following properties: all POM/EVA blends showed reduced crystallinity compared to neat POM; the 80% PMMA/20% MMA-nBA-MMA blend showed improved impact resistance by 243% compared to the neat PMMA. An antiplasticization effect was observed for POM/EVA 1% blends and PMMA/EVA 1% blends, with MFR reduced by 1% and 3%, respectively. The MFR of the PP/IIR 1% blend increased by 5%, then decreased below the MFR near the polymer for the remaining IIR concentrations. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

Back to TopTop