Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = biotin acceptor peptide (BAP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1207 KiB  
Communication
Detection of Recombinant Proteins SOX2 and OCT4 Interacting in HEK293T Cells Using Real-Time Quantitative PCR
by Darkhan Kanayev, Diana Abilmazhenova, Ilyas Akhmetollayev, Aliya Sekenova, Vyacheslav Ogay and Arman Kulyyassov
Life 2023, 13(1), 107; https://doi.org/10.3390/life13010107 - 30 Dec 2022
Viewed by 2612
Abstract
In vivo biotinylation using wild-type and mutants of biotin ligases is now widely applied for the study of cellular proteomes. The commercial availability of kits for the highly efficient purification of biotinylated proteins and their excellent compatibility with LC-MS/MS protocols are the main [...] Read more.
In vivo biotinylation using wild-type and mutants of biotin ligases is now widely applied for the study of cellular proteomes. The commercial availability of kits for the highly efficient purification of biotinylated proteins and their excellent compatibility with LC-MS/MS protocols are the main reasons for the choice of biotin ligases. Since they are all enzymes, however, just a very low expression in cells is required for experiments. Therefore, it can be difficult to perform the quantifications of these enzymes in various samples. Traditional methods, such as western blotting, are not always fit for the detection of the expression levels. Therefore, real-time qRT-PCR, a technology that is more sensitive, was used in this study to quantify the expression of BirA fusions. Using this method, we detected high expression levels of BirA fusions in models of interactions of pluripotency transcription factors to carry out their relative quantification. We also found the absence of the competing endogenous proteins SOX2 and OCT4, as well as no cross-reactivity between BAP/BirA and the endogenous biotinylation system in HEK293T cells. Thus, these data indicated that the high level of biotinylation is due to the in vivo interaction of BAP-X and BirA-Y (X,Y = SOX2, OCT4) in the cell rather than their random collision, a big difference in the expression level of BirA fusions across samples or endogenous biotinylation. Full article
(This article belongs to the Special Issue Protein–Protein Interactions in Health and Disease)
Show Figures

Figure 1

14 pages, 1346 KiB  
Article
Generation of Peptides for Highly Efficient Proximity Utilizing Site-Specific Biotinylation in Cells
by Arman Kulyyassov, Yerlan Ramankulov and Vasily Ogryzko
Life 2022, 12(2), 300; https://doi.org/10.3390/life12020300 - 16 Feb 2022
Cited by 3 | Viewed by 3649
Abstract
Protein tags are peptide sequences genetically embedded into a recombinant protein for various purposes, such as affinity purification, Western blotting, and immunofluorescence. Another recent application of peptide tags is in vivo labeling and analysis of protein–protein interactions (PPI) by proteomics methods. One of [...] Read more.
Protein tags are peptide sequences genetically embedded into a recombinant protein for various purposes, such as affinity purification, Western blotting, and immunofluorescence. Another recent application of peptide tags is in vivo labeling and analysis of protein–protein interactions (PPI) by proteomics methods. One of the common workflows involves site-specific in vivo biotinylation of an AviTag-fused protein in the presence of the biotin ligase BirA. However, due to the rapid kinetics of labeling, this tag is not ideal for analysis of PPI. Here we describe the rationale, design, and protocol for the new biotin acceptor peptides BAP1070 and BAP1108 using modular assembling of biotin acceptor fragments, DNA sequencing, transient expression of proteins in cells, and Western blotting methods. These tags were used in the Proximity Utilizing Biotinylation (PUB) method, which is based on coexpression of BAP-X and BirA-Y in mammalian cells, where X or Y are candidate interacting proteins of interest. By changing the sequence of these peptides, a low level of background biotinylation is achieved, which occurs due to random collisions of proteins in cells. Over 100 plasmid constructs, containing genes of transcription factors, histones, gene repressors, and other nuclear proteins were obtained during implementation of projects related to this method. Full article
(This article belongs to the Special Issue Protein–Protein Interactions in Health and Disease)
Show Figures

Figure 1

11 pages, 3185 KiB  
Article
Application of Skyline for Analysis of Protein–Protein Interactions In Vivo
by Arman Kulyyassov
Molecules 2021, 26(23), 7170; https://doi.org/10.3390/molecules26237170 - 26 Nov 2021
Cited by 4 | Viewed by 3447
Abstract
Quantitative and qualitative analyses of cell protein composition using liquid chromatography/tandem mass spectrometry are now standard techniques in biological and clinical research. However, the quantitative analysis of protein–protein interactions (PPIs) in cells is also important since these interactions are the bases of many [...] Read more.
Quantitative and qualitative analyses of cell protein composition using liquid chromatography/tandem mass spectrometry are now standard techniques in biological and clinical research. However, the quantitative analysis of protein–protein interactions (PPIs) in cells is also important since these interactions are the bases of many processes, such as the cell cycle and signaling pathways. This paper describes the application of Skyline software for the identification and quantification of the biotinylated form of the biotin acceptor peptide (BAP) tag, which is a marker of in vivo PPIs. The tag was used in the Proximity Utilizing Biotinylation (PUB) method, which is based on the co-expression of BAP-X and BirA-Y in mammalian cells, where X or Y are interacting proteins of interest. A high level of biotinylation was detected in the model experiments where X and Y were pluripotency transcription factors Sox2 and Oct4, or heterochromatin protein HP1γ. MRM data processed by Skyline were normalized and recalculated. Ratios of biotinylation levels in experiment versus controls were 86 ± 6 (3 h biotinylation time) and 71 ± 5 (9 h biotinylation time) for BAP-Sox2 + BirA-Oct4 and 32 ± 3 (4 h biotinylation time) for BAP-HP1γ + BirA-HP1γ experiments. Skyline can also be applied for the analysis and identification of PPIs from shotgun proteomics data downloaded from publicly available datasets and repositories. Full article
(This article belongs to the Special Issue Chromatography-the Ultimate Analytical Tool)
Show Figures

Figure 1

20 pages, 4379 KiB  
Article
Endocytic Motif on a Biotin-Tagged HIV-1 Env Modulates the Co-Transfer of Env and Gag during Cell-to-Cell Transmission
by María Inés Barría, Raymond A. Alvarez, Kenneth Law, Deanna L. Wolfson, Thomas Huser and Benjamin K. Chen
Viruses 2021, 13(9), 1729; https://doi.org/10.3390/v13091729 - 31 Aug 2021
Cited by 2 | Viewed by 2937
Abstract
During HIV-1 transmission through T cell virological synapses, the recruitment of the envelope (Env) glycoprotein to the site of cell–cell contact is important for adhesion and for packaging onto nascent virus particles which assemble at the site. Live imaging studies in CD4 T [...] Read more.
During HIV-1 transmission through T cell virological synapses, the recruitment of the envelope (Env) glycoprotein to the site of cell–cell contact is important for adhesion and for packaging onto nascent virus particles which assemble at the site. Live imaging studies in CD4 T cells have captured the rapid recruitment of the viral structural protein Gag to VSs. We explored the role of endocytic trafficking of Env initiated by a membrane proximal tyrosine motif during HIV transfer into target cells and examined the factors that allow Gag and Env to be transferred together across the synapse. To facilitate tracking of Env in live cells, we adapted an Env tagging method and introduced a biotin acceptor peptide (BAP) into the V4 loop of Env gp120, enabling sensitive fluorescent tracking of V4-biotinylated Env. The BAP-tagged and biotinylated HIVs were replication-competent in cell-free and cell-to-cell infection assays. Live cell fluorescent imaging experiments showed rapid internalized cell surface Env on infected cells. Cell–cell transfer experiments conducted with the Env endocytosis mutant (Y712A) showed increased transfer of Env. Paradoxically, this increase in Env transfer was associated with significantly reduced Gag transfer into target cells, when compared to viral transfer associated with WT Env. This Y712A Env mutant also exhibited an altered Gag/biotin Env fluorescence ratio during transfer that correlated with decreased productive cell-to-cell infection. These results may suggest that the internalization of Env into recycling pools plays an important role in the coordinated transfer of Gag and Env across the VS, which optimizes productive infection in target cells. Full article
(This article belongs to the Special Issue HIV Infection and Spread between T Cells)
Show Figures

Figure 1

16 pages, 2161 KiB  
Article
In Vivo Quantitative Estimation of DNA-Dependent Interaction of Sox2 and Oct4 Using BirA-Catalyzed Site-Specific Biotinylation
by Arman Kulyyassov and Vasily Ogryzko
Biomolecules 2020, 10(1), 142; https://doi.org/10.3390/biom10010142 - 16 Jan 2020
Cited by 6 | Viewed by 4613
Abstract
Protein–protein interactions of core pluripotency transcription factors play an important role during cell reprogramming. Cell identity is controlled by a trio of transcription factors: Sox2, Oct4, and Nanog. Thus, methods that help to quantify protein–protein interactions may be useful for understanding the mechanisms [...] Read more.
Protein–protein interactions of core pluripotency transcription factors play an important role during cell reprogramming. Cell identity is controlled by a trio of transcription factors: Sox2, Oct4, and Nanog. Thus, methods that help to quantify protein–protein interactions may be useful for understanding the mechanisms of pluripotency at the molecular level. Here, a detailed protocol for the detection and quantitative analysis of in vivo protein–protein proximity of Sox2 and Oct4 using the proximity-utilizing biotinylation (PUB) method is described. The method is based on the coexpression of two proteins of interest fused to a biotin acceptor peptide (BAP)in one case and a biotin ligase enzyme (BirA) in the other. The proximity between the two proteins leads to more efficient biotinylation of the BAP, which can be either detected by Western blotting or quantified using proteomics approaches, such as a multiple reaction monitoring (MRM) analysis. Coexpression of the fusion proteins BAP-X and BirA-Y revealed strong biotinylation of the target proteins when X and Y were, alternatively, the pluripotency transcription factors Sox2 and Oct4, compared with the negative control where X or Y was green fluorescent protein (GFP), which strongly suggests that Sox2 and Oct4 come in close proximity to each other and interact. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop