Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = biomass torrefaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 13266 KiB  
Article
Emission of Total Volatile Organic Compounds from the Torrefaction Process: Meadow Hay, Rye, and Oat Straw as Renewable Fuels
by Justyna Czerwinska, Szymon Szufa, Hilal Unyay and Grzegorz Wielgosinski
Energies 2025, 18(15), 4154; https://doi.org/10.3390/en18154154 - 5 Aug 2025
Abstract
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat [...] Read more.
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat of combustion of agri-biomass resulting from the torrefaction process. The process was carried out at the following temperatures: 225, 250, 275, and 300 °C. Total VOC emission factors were determined. The reaction kinetics analysis revealed that meadow hay exhibited the most stable thermal behavior with the lowest activation energy. At the same time, rye straw demonstrated higher thermal resistance and complex multi-step degradation characteristics. The authors analyze three types of agricultural biomass: meadow hay, rye straw, and oat straw. The research was divided into five stages: determination of moisture content in the sample, determination of ash content, thermogravimetric analysis, measurement of total VOC emissions from the biomass torrefaction process, and determination of the heat of combustion of the obtained torrefied biomass. Based on the research, it was found that torrefaction of biomass causes the emission of torgas containing VOC in the amount of 2–10 mg/g of torrefied biomass, which can be used energetically, e.g., to support the torrefaction process, and the torrefied biomass shows a higher value of the heat of combustion. Unlike prior studies focused on single feedstocks or limited temperature ranges, this work systematically compares three major crop residues across four torrefaction temperatures and directly couples VOC quantifications. Full article
Show Figures

Figure 1

14 pages, 838 KiB  
Article
Impact of Water Vapor on the Predictive Modeling of Full-Scale Indirectly Heated Biomass Torrefaction System Throughput Capacity
by Chaitanya Bhatraju, Matthew Russell and Martijn Dekker
Energies 2025, 18(15), 3978; https://doi.org/10.3390/en18153978 - 25 Jul 2025
Viewed by 227
Abstract
Biomass torrefaction must be self-sustaining and continuous to be commercially viable, eliminating dependence on additional fuels while achieving industrial-scale production. This study presents a predictive model of a full-scale continuous biomass torrefaction process that explicitly incorporates the radiation absorption properties of torrefaction gas, [...] Read more.
Biomass torrefaction must be self-sustaining and continuous to be commercially viable, eliminating dependence on additional fuels while achieving industrial-scale production. This study presents a predictive model of a full-scale continuous biomass torrefaction process that explicitly incorporates the radiation absorption properties of torrefaction gas, with a focus on water vapor. Previous research, primarily based on lab-scale batch processes, has not adequately addressed scale-up challenges or the dynamic evolution of torrefaction gas. Industrial insights from Perpetual Next confirm that water vapor significantly impacts reactor performance by absorbing heat and reducing radiative flux to the biomass. Simulations show that neglecting water vapor absorption in reactor design can lead to throughput deviations of 10–20%, affecting process stability and efficiency. Industrial-scale validation demonstrates that the model accurately predicts this effect, ensuring realistic energy demand and throughput expectations. By explicitly incorporating water vapor absorption into the radiation balance, the model provides a validated framework for optimizing reactor design and process scale-up. It demonstrates that failing to consider this effect can lead to operational instability and deviations from the intended torrefaction severity, ultimately affecting industrial-scale performance and self-sustaining operation. Full article
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 525
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Effect of Low-Temperature Preheating on the Physicochemical Properties and Energy Quality of Pine Sawdust
by Tingzhou Lei, Yang Mei, Yuanna Li, Yunbo Wang, Suyang Liu and Yantao Yang
Energies 2025, 18(14), 3875; https://doi.org/10.3390/en18143875 - 21 Jul 2025
Cited by 1 | Viewed by 264
Abstract
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and [...] Read more.
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and energy saving and emission reduction, pine sawdust (PS) was taken as the research object, and the physicochemical properties of the PS samples preheated at a low temperature were analyzed by synchronous thermal analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and organic element analyzer (EA). The effect of preheating at a lower temperature on the physicochemical properties of PS was discussed. The results showed that, under the preheating condition of 200 °C, compared with PS, the water content of PS-200 decreased by 3.23%, the volatile content decreased by 3.69%, the fixed carbon increased by 6.81%, the calorific value increased by 6.90%, the equilibrium water content decreases from 7.06% to 4.46%, and the hydrophobicity increases. This research, based on the improvement of the quality of agricultural and forestry waste and the promotion of the strategy of converting waste into energy, has contributed to the advancement of sustainable energy production. Full article
Show Figures

Figure 1

14 pages, 3176 KiB  
Article
Comparison of the Characteristics of Hydrochar and Torrefied-Char of Traditional Chinese Medicine Residues
by Zhiqiang Xu, Wenyu Ren, Shiliang Wu and Rui Xiao
Energies 2025, 18(14), 3646; https://doi.org/10.3390/en18143646 - 10 Jul 2025
Viewed by 263
Abstract
With the continuous reduction in fossil energy reserves and the increasingly prominent negative impacts on the environment, the search for sustainable alternative materials has become an urgent task. Biomass-based char has attracted much attention in the field of environmental protection, due to its [...] Read more.
With the continuous reduction in fossil energy reserves and the increasingly prominent negative impacts on the environment, the search for sustainable alternative materials has become an urgent task. Biomass-based char has attracted much attention in the field of environmental protection, due to its wide-ranging and renewable raw materials. Hydrothermal carbonization and torrefaction carbonization, as two important biomass carbonization processes, each have their own advantages. This study focuses on the millions of tons of Chinese medicine residue waste generated in China every year. Four common Chinese medicine residues, Shanyao (Chinese yam), Suoyang (Cynomorium songaricum), Yujin (Curcuma aromatica), and Xueteng (Spatholobus suberectus), were selected and treated by hydrothermal carbonization and torrefaction carbonization processes at temperatures of 240 °C, 260 °C, and 280 °C. Through analysis techniques such as Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy, the changes in the crystal structure, chemical functional groups, and microscopic morphology of the carbonized products were deeply studied, and the carbon yield was measured. The research aims to reveal the carbonization laws of Chinese medicine residues, provide a scientific basis for their efficient resource utilization, and help promote the development of biomass-based carbon materials in the field of environmentally friendly materials, alleviating energy and environmental pressures. Full article
Show Figures

Figure 1

18 pages, 4473 KiB  
Article
Comparison of Dry and Wet Torrefaction for Biochar Production from Olive Leaves and Olive Pomace
by Rafail Isemin, Alexander Mikhalev, Sergey Kuzmin, Mathieu Brulé, Tarik Ainane, Oleg Milovanov, Dmitry Klimov and Kirill Milovanov
Processes 2025, 13(7), 2155; https://doi.org/10.3390/pr13072155 - 7 Jul 2025
Cited by 1 | Viewed by 384
Abstract
This work investigated the effect of experimental conditions of dry and wet torrefaction on the properties of olive leaves and olive pomace. Torrefaction improved the fuel properties of olive waste. According to Van Krevelen parameters (O/C and H/C ratios), torrefied biomass, tested as [...] Read more.
This work investigated the effect of experimental conditions of dry and wet torrefaction on the properties of olive leaves and olive pomace. Torrefaction improved the fuel properties of olive waste. According to Van Krevelen parameters (O/C and H/C ratios), torrefied biomass, tested as solid biofuel, achieved a similar quality threshold to lignite. For example, dry torrefaction conducted at 230 °C for 80 min reduced the O/C and H/C ratios of olive leaves from 0.51 and 1.51 for raw biomass to 0.25 and 1.17 for torrefied biomass, respectively. Under the same conditions, the O/C and H/C ratios of olive pomace were also reduced from 0.34 and 1.60 to 0.27 and 1.36, respectively. Calorific values of raw olive leaves and olive pomace amounted to 18.0 and 23.2 MJ/kg, respectively. Following dry torrefaction and biomass conversion into biochar, calorific values of olive leaves and olive pomace increased by 24% and 14% up to 22.2 and 26.3 MJ/kg through dry torrefaction, compared with 17% and 23% increments up to 21.1 and 28.5 MJ/kg through wet torrefaction, respectively. Interestingly, biomass processing through wet torrefaction performed in a fluidized bed powered by superheated steam could be completed 8- to 12-fold more rapidly than dry torrefaction. SEM analysis indicated a breakdown of the surface structure of olive waste following the torrefaction process. According to the Brunauer–Emmett–Teller (BET) method, total pore surface areas of biochar obtained from wet torrefaction of olive pomace and olive leaves amounted to 3.6 m2/g and 0.8 m2/g, with total pore volumes amounting to 0.0225 cm3/g and 0.0103 cm3/g, respectively. Maximal contents of 5-hydroxymethylfurfural and furfural in liquid by-products from dry torrefaction amounted to 1930 and 1880 mg/1 kg, respectively. Alternately, in liquid by-products from wet torrefaction, concentrations of these high-value compounds remained very low. Full article
(This article belongs to the Special Issue Biomass Pretreatment for Thermochemical Conversion)
Show Figures

Figure 1

18 pages, 2562 KiB  
Article
Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass
by Kanageswari Singara veloo, Anthony Lau and Shahab Sokhansanj
Energies 2025, 18(13), 3464; https://doi.org/10.3390/en18133464 - 1 Jul 2025
Cited by 1 | Viewed by 308
Abstract
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet [...] Read more.
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet production without external binders or changes to die conditions remain scarce. This paper investigated the production of fuel pellets from torrefied biomass without using external binders or adjusting pelletization parameters. Experiments were conducted using a mild torrefaction temperature (230 °C and 250 °C) and shorter residence time (10, 15, and 30 min). The torrefied materials were then subjected to pelletization using a single-pellet press; and the influence of torrefaction on the mechanical durability, hydrophobicity, and fuel characteristics of the pellets was examined. Results indicated that the mass loss ranging from 10 to 20% among the mild torrefaction treatments was less than the typical extent of mass loss due to severe torrefaction. Pellets made from torrefied biomass (torrefied pellets) had improvement in the hydrophobicity (moisture resistance) when compared to pellets made from untreated biomass (untreated pellets). Improved hydrophobicity is important for storage and transportation of pellets that are exposed to humid environmental conditions, as it reduces the risk of pellet degradation and spoilage. Thermogravimetric analysis of the pyrolysis and combustion behaviour of torrefied pellets indicated the improvement of fuel characteristics in terms of a much higher comprehensive pyrolysis index and greater thermal stability compared to untreated pellets, as evidenced by the prolonged burnout time and reduced combustion characteristics index. Residence time had a more significant impact on pellet durability than temperature, but the durability of the torrefied pellets was lower than that of the untreated pellets. Further research is required to explore the feasibility of producing binder-free durable pellets under mild torrefaction conditions. Overall, the study demonstrated that mild torrefaction could enhance the fuel quality and moisture resistance of biomass pellets, offering promising advantages for energy applications, despite some trade-offs in mechanical durability. Full article
Show Figures

Figure 1

21 pages, 2754 KiB  
Article
Repurposing Torrefied Biomass as a Novel Feedstock for Microbial Bioprocessing—A Proof-of-Concept of Low-Cost Biosurfactant Production
by Anjana Hari, Vahur Rooni, Udayakumar Veerabagu, Shiplu Sarker, Alar Konist and Timo Kikas
Polymers 2025, 17(13), 1808; https://doi.org/10.3390/polym17131808 - 29 Jun 2025
Viewed by 397
Abstract
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a [...] Read more.
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a low-value final product as well as the dead end of the biomass value chain. Herein, we demonstrate the proof-of-concept for the utilisation of torrefaction as a pretreatment to convert low-value wood waste into biosurfactants, a high-value specialty biochemical. Wood waste was torrefied at 225 °C, 250 °C, 275 °C, and 300 °C and physicochemically characterised using proximate and ultimate analyses, FTIR, XRD, TGA–DTG, and SEM–EDX to assess its suitability as fermentation feedstock. Aspen waste torrefied at temperatures less than 250 °C was directly utilised by Burkholderia thailandensis DSM 13276 via semi-solid-state fermentation to yield biosurfactants, and 225 °C was selected for further experiments as it resulted in the production of biosurfactants which reduced the surface tension of the production medium to 36.8 mN/m and had an emulsification index of 64.1%. Tension and emulsification activities decreased with the increase in torrefaction temperature. The biosurfactant derived from torrefaction at 225 °C formed highly stable emulsions with diesel oil (lasting >40 days), in addition to low interfacial tension, suggesting potential applications in diesel bioremediation. This integrated, chemical-free strategy offers an alternative application for torrefied wood waste as well as a feasible solution for the cost-effective chemical-free production of biosurfactants, incorporating circular economy principles. Full article
Show Figures

Graphical abstract

23 pages, 5766 KiB  
Article
Modeling of Global and Individual Kinetic Parameters in Wheat Straw Torrefaction: Particle Swarm Optimization and Its Impact on Elemental Composition Prediction
by Ismael Urbina-Salas, David Granados-Lieberman, Martín Valtierra-Rodríguez, Claudia Adriana Ramírez-Valdespino and David Aarón Rodríguez-Alejandro
Algorithms 2025, 18(5), 283; https://doi.org/10.3390/a18050283 - 13 May 2025
Viewed by 462
Abstract
With the growing demand for sustainable energy solutions, biomass torrefaction has emerged as a crucial technology for converting agricultural waste into high-value biofuels. This work develops dual kinetic modeling using global and individual parameters combined using particle swarm optimization (PSO) to predict energy [...] Read more.
With the growing demand for sustainable energy solutions, biomass torrefaction has emerged as a crucial technology for converting agricultural waste into high-value biofuels. This work develops dual kinetic modeling using global and individual parameters combined using particle swarm optimization (PSO) to predict energy densification based on elemental composition (CHNO) and high heating values (HHVs). The global parameters are calculated from experiments conducted at 250 °C, 275 °C, and 300 °C, and the individual parameters are obtained by adjusting experimental points at each temperature. A two-step kinetic model was used and optimized to achieve exceptional adjustment accuracy (98.073–99.999%). The experiments were carried out in an inert atmosphere of nitrogen with a heating rate of 20 °C/min and a 100 min residence time. The results obtained demonstrate a crucial trade-off: while individual parameters provide superior accuracy (an average fit of 99.516%) for predicting degradation by weight loss, global parameters offer better predictions for elemental composition, with average errors of 2.129% (carbon), 1.038% (hydrogen), 9.540% (nitrogen), and 3.997% (oxygen). Furthermore, it has been found that by determining the kinetic parameters at a torrefaction temperature higher than the maximum peak observed in the derivative thermogravimetric (DTG) curve (275 °C), it is possible to predict the behavior of the process within the 250–325 °C range with an R-squared value corresponding to an error lower than 3%. This approach significantly reduces the number of required experiments from twelve to only four by relying on a single isothermal condition for parameter estimation. Full article
(This article belongs to the Special Issue Artificial Intelligence Algorithms in Sustainability)
Show Figures

Figure 1

18 pages, 3170 KiB  
Article
Optimized Torrefaction of Corn Straw in a Screw Reactor: Energy Balance Analysis and Biochar Production Enhancement
by Yulu Wang, Jiyou Mu, Xin Zhang, Xueqiang Ding, Mingmin Zheng and Tiankuo Guo
Processes 2025, 13(5), 1302; https://doi.org/10.3390/pr13051302 - 24 Apr 2025
Cited by 1 | Viewed by 602
Abstract
Torrefaction is a promising pretreatment method to enhance the physical and chemical properties of corn straw for bioenergy applications. In this study, torrefaction experiments were conducted in a continuous screw reactor under varying temperatures and feed rates. The quality of the resulting biochar [...] Read more.
Torrefaction is a promising pretreatment method to enhance the physical and chemical properties of corn straw for bioenergy applications. In this study, torrefaction experiments were conducted in a continuous screw reactor under varying temperatures and feed rates. The quality of the resulting biochar was assessed using color difference analysis, with a defined threshold to determine product qualification (i.e., compliance rate). Results showed that the compliance rate dropped from 78% to 61% as the feed rate increased from 0.5 kg/h to 1.5 kg/h. To address this, process parameters were optimized. Increasing the flow of the hot carrier gas significantly improved product quality: at a carrier gas temperature of 550 °C, a flow rate of 9.4 kg/h, and a feed rate of 1 kg/h, the compliance rate reached 81%. An energy balance was established through proximate and ultimate analyses and measurements of the higher heating value (HHV). Under optimized conditions, the mass yield (MY) and energy yield (EY) were 58.84% and 66.48%, respectively. Maintaining the carrier gas temperature above 550 °C ensured a stable and self-sustaining torrefaction process. These findings provide practical insights for the design and operation of energy-efficient, continuous biomass torrefaction systems, contributing to the advancement of sustainable biochar production at industrial scales. Full article
Show Figures

Figure 1

16 pages, 3520 KiB  
Article
Grindability Features of Torrefied Biomass
by Mateusz Tymoszuk, Joanna Wnorowska and Sylwester Kalisz
Energies 2025, 18(7), 1824; https://doi.org/10.3390/en18071824 - 4 Apr 2025
Cited by 1 | Viewed by 564
Abstract
Economic and legal conditions of the European power industry enforce higher participation of biomass in the thermal energy mix per power unit, due to the necessity of carbon dioxide emission reduction. One of the most important features dictating the suitability of biomass fuel [...] Read more.
Economic and legal conditions of the European power industry enforce higher participation of biomass in the thermal energy mix per power unit, due to the necessity of carbon dioxide emission reduction. One of the most important features dictating the suitability of biomass fuel for utilization in pulverized fuel-fired boilers is its grindability. The grindability of biomass is a difficult parameter to estimate due to its non-uniform morphology and inhomogeneous character. Milling and co-milling of large amounts of biomass can deteriorate the mill output and make it difficult to ensure the proper particle size distribution of the pulverized fuel fed into the combustion chamber. The main objective was to determine whether torrefaction pre-treatments could increase the grindability features of various types of biomass. Investigations of raw and torrefied biomass grindability were performed with the use of a modified Hardgrove Index for alder chips, palm kernel shells, and willow chips. Additionally, semi-industrial scale milling tests were performed, which allowed for the evaluation of torrefied biomass suitability for continuous grinding installations equipped with vertical spindle mills. According to the analysis, an increase in the biomass grindability index after the torrefaction process was shown. Additionally, it was noted that for milling low-density materials (e.g., torrefied biomass), changes in the construction of the industrial mill classifier may be necessary for the proper grinding circuit operation. Full article
(This article belongs to the Special Issue Energy from Agricultural and Forestry Biomass Waste)
Show Figures

Figure 1

16 pages, 6315 KiB  
Article
Potential of Cellulose After Oxidative Torrefaction for Fuel Enhancement and Utilization: Properties and Pyrolysis Characteristics
by Lingzhi Zhu, Kehui Cen, Xiayu Ni, Mian Liu and Dengyu Chen
Coatings 2025, 15(4), 407; https://doi.org/10.3390/coatings15040407 - 29 Mar 2025
Viewed by 494
Abstract
This study explored the properties and pyrolysis characteristics of oxidatively torrefied cellulose to enhance biomass utilization and conversion. Cellulose was torrefied at 200–300 °C with oxygen concentrations of 0%–15%. The carbon content in cellulose could reach up to 53.06%, while the oxygen content [...] Read more.
This study explored the properties and pyrolysis characteristics of oxidatively torrefied cellulose to enhance biomass utilization and conversion. Cellulose was torrefied at 200–300 °C with oxygen concentrations of 0%–15%. The carbon content in cellulose could reach up to 53.06%, while the oxygen content decreased to 41.53% under the conditions of 300 °C and a 15% oxygen concentration. Meanwhile, its higher heating value (HHV) increased from 15.22 to 16.95 MJ/kg, improving the energy density and fuel quality. Both the carbon yield (CY) and energy yield (EY) of cellulose decreased noticeably with increasing oxygen concentrations at 300 °C, reaching minimum values of 46.33% and 51.05%, respectively, which were lower than the 64.5% and 71.85% observed under non-oxidative torrefaction. FTIR and XRD showed that higher temperatures and oxygen concentrations accelerated cellulose bond breaking and crystallinity disruption, enhancing thermochemical conversion. Oxidative torrefaction lowered the pyrolysis initiation temperature, with the most evident effect occurring at a 5% oxygen concentration of 300 °C. Increased oxygen concentrations altered pyrolysis products, with anhydrosugars rising then falling, and more furans, aromatics, and phenols produced. This study demonstrates that oxidative torrefaction effectively enhances the energy density of cellulose, showing promising potential for biomass utilization as a renewable fuel. Full article
(This article belongs to the Special Issue Advanced Coatings for Fuel Cells)
Show Figures

Figure 1

15 pages, 8680 KiB  
Article
Cu(II) and Ni(II) Adsorption on Torrefied Wood Waste Biomass
by Marjana Simonič, Darko Goričanec, Aleksandra Petrovič, Ilda Silić and Danijela Urbancl
Metals 2025, 15(3), 304; https://doi.org/10.3390/met15030304 - 11 Mar 2025
Viewed by 550
Abstract
The aim of the research was to study the torrefaction processes of wood biomass, compare the product characteristics at different torrefaction temperatures, and assess both moisture adsorption on raw and torrefied samples, as well as metal (Cu(II) and Ni(II)) adsorption on torrefied biomass. [...] Read more.
The aim of the research was to study the torrefaction processes of wood biomass, compare the product characteristics at different torrefaction temperatures, and assess both moisture adsorption on raw and torrefied samples, as well as metal (Cu(II) and Ni(II)) adsorption on torrefied biomass. The novelty of the research was to investigate whether the presence of adsorbed metals in torrefied biomass significantly affects the energetic properties of the torrefied biomass, compared to torrefied biomass without metals. First, wood samples were torrefied at temperatures of 250 °C, 350 °C, and 400 °C. Following torrefaction, thermogravimetric analysis (TGA) was performed to evaluate mass loss and thermal stability. Next, changes in surface functional groups were examined, and higher heating values (HHV) were measured to assess the energy content. The results showed that torrefaction significantly increased the hydrophobicity of the biomass, leading to reduced moisture adsorption and enhanced material properties. Additionally, the adsorption of Cu(II) and Ni(II) ions on torrefied biomass was investigated. The results showed that the adsorption efficiency for Cu(II) was higher, reaching 62.4%, compared to Ni(II) at 21.2%. The adsorption process followed a pseudo-second-order kinetic model, which indicated that chemisorption was the dominant mechanism. Full article
Show Figures

Figure 1

19 pages, 3623 KiB  
Article
Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing
by Andreja Škorjanc, Sven Gruber, Klemen Rola, Darko Goričanec and Danijela Urbancl
Processes 2025, 13(1), 208; https://doi.org/10.3390/pr13010208 - 13 Jan 2025
Cited by 2 | Viewed by 979
Abstract
Most organic waste from food production is still not used for energy production. From the perspective of energy production, one option is to valorise the properties of organic waste. The fruit juice industry is growing rapidly and generates large amounts of waste. One [...] Read more.
Most organic waste from food production is still not used for energy production. From the perspective of energy production, one option is to valorise the properties of organic waste. The fruit juice industry is growing rapidly and generates large amounts of waste. One of the main wastes in food and fruit juice processing is peach pits and apple peels. The aim of this study was to analyse the influence of torrefaction temperature on the properties of food waste, namely apple peels, peach pits and pea shells, in order to improve their energy value and determine their potential for further use and valorisation as a renewable energy source. The aim was to analyse the influence of different torrefaction temperatures on the heating value (HHV), mass yield (MY) and energy yield (EY) in order to better understand the behavior of the thermal properties of individual selected samples. The torrefaction process was carried out at temperatures of 250 °C, 350 °C and 450 °C. The obtained biomass was compared with dried biomass. For apple peels, HHV after torrefaction was (28 kJ/kg), MY decreased by (66–34%), while EY fell by (97–83%). Peach pits, despite a higher HHV after torrefaction (18 kJ/kg), achieved low MY (38–89%) and EY (59–99%), which reduces their efficiency in biochar production. Pea peels had EY (82–97%) and a lower HHV after torrefaction (11 kJ/kg), but their high ash content limits their wider use. The results confirm that, with increasing temperature, MY and EY for all selected biomasses decrease, which is a consequence of the degradation of hemicellulose and cellulose and the loss of volatile compounds. In most cases, increasing the torrefaction temperature improved the resistance to moisture adsorption, as this is related to the thermal process that causes structural changes. The results showed that the torrefaction process improved the hydrophobic properties of the biomass samples. Temperature was seen to have a great impact on mass energy efficiency. Apple peels generally had the highest mass and energy yield. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

16 pages, 2201 KiB  
Article
Life Cycle Assessment of Torrefied Residual Biomass Co-Firing in Coal-Fired Power Plants: Aspects of Carbon Dioxide Emission
by Kyungil Cho and Yongwoon Lee
Energies 2024, 17(23), 6165; https://doi.org/10.3390/en17236165 - 6 Dec 2024
Cited by 1 | Viewed by 1298
Abstract
This study investigates the carbon dioxide (CO2) emission characteristics of using torrefied biomass (residual wood and wood chip) as co-firing materials in coal-fired power plants, based on life cycle assessment techniques. We quantify the greenhouse gas (GHG) mitigation potential of substituting [...] Read more.
This study investigates the carbon dioxide (CO2) emission characteristics of using torrefied biomass (residual wood and wood chip) as co-firing materials in coal-fired power plants, based on life cycle assessment techniques. We quantify the greenhouse gas (GHG) mitigation potential of substituting coal with biomass under different torrefaction temperatures, biomass types, and co-firing ratios. Results indicate that higher co-firing ratios significantly reduce CO2 emissions. Torrefaction at 270 °C was identified as optimal, balancing high energy yield and minimized emissions, while 310 °C torrefaction showed limited mitigation benefits due to lower mass yields and higher carbon content. Pelletization and torrefaction enhanced biomass properties, but the energy intensity of these processes affected the overall emission balance. This study underscores the potential of biomass to replace imported coal and contribute to carbon neutrality, while highlighting the importance of optimizing biomass processing conditions. Future work should focus on refining torrefaction parameters and assessing other biomass characteristics to enhance operational efficiency in coal-fired power plants. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

Back to TopTop