Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,265)

Search Parameters:
Keywords = bioactive composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4241 KiB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 (registering DOI) - 19 Jul 2025
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

16 pages, 1211 KiB  
Article
Exploring the Chemical Composition and Antimicrobial Activity of Extracts from the Roots and Aboveground Parts of Limonium gmelini
by Dariya Kassymova, Francesco Cairone, Donatella Ambroselli, Rosa Lanzetta, Bruno Casciaro, Aizhan Zhussupova, Deborah Quaglio, Angela Casillo, Galiya E. Zhusupova, Maria Michela Corsaro, Bruno Botta, Silvia Cammarone, Maria Luisa Mangoni, Cinzia Ingallina and Francesca Ghirga
Molecules 2025, 30(14), 3024; https://doi.org/10.3390/molecules30143024 - 18 Jul 2025
Abstract
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and [...] Read more.
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and polyphenolic compounds extracted from both the roots and aboveground parts of Limonium gmelini. Several methods of extraction, including ultrasound-assisted extraction (UAE), conventional maceration (CM), and supercritical fluid extraction (SFE), were employed to obtain bioactive fractions. Chemical profiling, primarily represented by monosaccharides and polyphenolic compounds, was characterized and analyzed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) techniques. While polyphenol-rich fractions exhibited significant antibacterial activity, particularly against Staphylococcus epidermidis, polysaccharide-rich aqueous fractions showed minimal antibacterial activity. Among the methods, CM and UAE yielded higher polyphenol content, whereas SFE provided more selective extractions. Notably, methanolic SPE fractions derived from the roots were especially enriched in active polyphenols such as gallic acid, myricetin, and naringenin, and they exhibited the highest antibacterial activity against Staphylococcus epidermidis. In contrast, extracts from the aboveground parts showed more moderate activity and a partially different chemical profile. These findings underscore the importance of plant part selection and support the targeted use of root-derived polyphenol-enriched fractions from L. gmelini as promising candidates for the development of natural antibacterial agents. Further investigation is needed to isolate and validate the most active constituents for potential therapeutic applications. Full article
Show Figures

Figure 1

43 pages, 3663 KiB  
Review
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review
by Rashid Dallaev
Polymers 2025, 17(14), 1976; https://doi.org/10.3390/polym17141976 - 18 Jul 2025
Abstract
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled [...] Read more.
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled drug delivery systems. Emphasis is placed on shape-memory polymers (SMPs), conductive polymers, and polymer-based composites that combine tunable degradation, mechanical strength, and bioactivity. The synergy between natural and synthetic polymers—augmented by nanotechnology and additive manufacturing—enables the creation of intelligent scaffolds and implantable devices tailored for specific clinical needs. Key fabrication methods, including electrospinning, freeze-drying, and emulsion-based techniques, are discussed in relation to pore structure and functionalization strategies. Finally, the review highlights emerging trends, including ionic doping, 3D printing, and multifunctional nanocarriers, outlining their roles in the future of regenerative medicine and personalized therapeutics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
35 pages, 1256 KiB  
Review
Unveiling the Molecular Mechanism of Azospirillum in Plant Growth Promotion
by Bikash Ranjan Giri, Sourav Chattaraj, Subhashree Rath, Mousumi Madhusmita Pattnaik, Debasis Mitra and Hrudayanath Thatoi
Bacteria 2025, 4(3), 36; https://doi.org/10.3390/bacteria4030036 - 18 Jul 2025
Abstract
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, [...] Read more.
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, including nitrogen fixation, the production of phytohormones (auxins, cytokinins, indole acetic acid (IAA), and gibberellins), plant growth regulators, siderophore production, phosphate solubilization, and the synthesis of various bioactive molecules, such as flavonoids, hydrogen cyanide (HCN), and catalase. Thus, Azospirillum is involved in plant growth and development. The genus Azospirillum also enhances membrane activity by modifying the composition of membrane phospholipids and fatty acids, thereby ensuring membrane fluidity under water deficiency. It promotes the development of adventitious root systems, increases mineral and water uptake, mitigates environmental stressors (both biotic and abiotic), and exhibits antipathogenic activity. Biological nitrogen fixation (BNF) is the primary mechanism of Azospirillum, which is governed by structural nif genes present in all diazotrophic species. Globally, Azospirillum spp. are widely used as inoculants for commercial crop production. It is considered a non-pathogenic bacterium that can be utilized as a biofertilizer for a variety of crops, particularly cereals and grasses such as rice and wheat, which are economically significant for agriculture. Furthermore, Azospirillum spp. influence gene expression pathways in plants, enhancing their resistance to biotic and abiotic stressors. Advances in genomics and transcriptomics have provided new insights into plant-microbe interactions. This review explored the molecular mechanisms underlying the role of Azospirillum spp. in plant growth. Additionally, BNF phytohormone synthesis, root architecture modification for nutrient uptake and stress tolerance, and immobilization for enhanced crop production are also important. A deeper understanding of the molecular basis of Azospirillum in biofertilizer and biostimulant development, as well as genetically engineered and immobilized strains for improved phosphate solubilization and nitrogen fixation, will contribute to sustainable agricultural practices and help to meet global food security demands. Full article
17 pages, 1035 KiB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

16 pages, 2005 KiB  
Article
Reconstruction of a Genome-Scale Metabolic Model for Aspergillus oryzae Engineered Strain: A Potent Computational Tool for Enhancing Cordycepin Production
by Nachon Raethong, Sukanya Jeennor, Jutamas Anantayanon, Siwaporn Wannawilai, Wanwipa Vongsangnak and Kobkul Laoteng
Int. J. Mol. Sci. 2025, 26(14), 6906; https://doi.org/10.3390/ijms26146906 - 18 Jul 2025
Abstract
Cordycepin, a bioactive adenosine analog, holds promise in pharmaceutical and health product development. However, large-scale production remains constrained by the limitations of natural producers, Cordyceps spp. Herein, we report the reconstruction of the first genome-scale metabolic model (GSMM) for a cordycepin-producing strain of [...] Read more.
Cordycepin, a bioactive adenosine analog, holds promise in pharmaceutical and health product development. However, large-scale production remains constrained by the limitations of natural producers, Cordyceps spp. Herein, we report the reconstruction of the first genome-scale metabolic model (GSMM) for a cordycepin-producing strain of recombinant Aspergillus oryzae. The model, iNR1684, incorporated 1684 genes and 1947 reactions with 93% gene-protein-reaction coverage, which was validated by the experimental biomass composition and growth rate. In silico analyses identified key gene amplification targets in the pentose phosphate and one-carbon metabolism pathways, indicating that folate metabolism is crucial for enhancing cordycepin production. Nutrient optimization simulations revealed that chitosan, D-glucosamine, and L-aspartate preferentially supported cordycepin biosynthesis. Additionally, a carbon-to-nitrogen ratio of 11.6:1 was identified and experimentally validated to maximize production, higher than that reported for Cordyceps militaris. These findings correspond to a faster growth rate, enhanced carbon assimilation, and broader substrate utilization by A. oryzae. This study demonstrates the significant role of GSMM in uncovering rational engineering strategies and provides a quantitative framework for precision fermentation, offering scalable and sustainable solutions for industrial cordycepin production. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

24 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 97
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

18 pages, 3246 KiB  
Article
Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation
by Ziming Huang, Miao Li, Zhiqin He, Xiliang Yan, Yinbao Wu, Peiqiang Mu, Jun Jiang, Xu Wang and Yan Wang
Animals 2025, 15(14), 2101; https://doi.org/10.3390/ani15142101 - 16 Jul 2025
Viewed by 160
Abstract
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation [...] Read more.
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation tests. Rosemary extract and licorice extract exhibited better deodorizing effects, with fractions of rosemary extract below 100 Da demonstrating the most effective deodorizing performance. Based on these findings, subsequent feeding trials were conducted using rosemary extract and its fractions below 100 Da. In the feeding trial, adult British Shorthair cats were divided into three groups (Control Check, RE, and RE100) and housed in a controlled-environment respiration chamber for 30 days. Measurements included odor emissions, fecal and blood physicochemical parameters, immune parameters, microbiota composition based on 16S rRNA sequencing, and metabolome analysis. The results of the feeding trial indicated that rosemary extract significantly reduced ammonia and hydrogen sulfide emissions (46.84%, 41.64%), while fractions below 100 Da of rosemary extract achieved even greater reductions (55.62%, 53.87%). Rosemary extract regulated the intestinal microbial community, significantly increasing the relative abundance of the intestinal probiotic Bifidobacterium (p < 0.05) and reducing the population of sulfate-reducing bacteria (p < 0.05). It also significantly reduced urease and uricase activities (p < 0.05) to reduce ammonia production and inhibited the degradation of sulfur-containing proteins and sulfate reduction to reduce hydrogen sulfide emissions. Furthermore, rosemary extract significantly enhanced the immune function of British Shorthair cats (p < 0.05). This study suggests that rosemary extract, particularly its fractions below 100 Da, is a highly promising pet deodorizer. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

22 pages, 3439 KiB  
Article
Metabolomics Analysis Reveals the Influence Mechanism of Different Growth Years on the Growth, Metabolism and Accumulation of Medicinal Components of Bupleurum scorzonerifolium Willd. (Apiaceae)
by Jialin Sun, Jianhao Wu, Weinan Li, Xiubo Liu and Wei Ma
Biology 2025, 14(7), 864; https://doi.org/10.3390/biology14070864 - 16 Jul 2025
Viewed by 81
Abstract
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is [...] Read more.
Bupleurum scorzonerifolium Willd. is a perennial herbaceous plant of the genus Bupleurum in the Apiaceae family. Also known as red Bupleurum, it is mainly distributed in Northeast China, North China and other regions and is a commonly used medicinal plant. It is difficult for the wild plant resources of Bupleurum scorzonerifolium Willd. to meet the market demand. In artificial cultivation, there are problems such as a low yield per plant, low quality, weakened stress resistance and variety degradation. The contents of bioactive components and metabolites in traditional Chinese medicinal materials vary significantly across different growth years. The growth duration directly impacts their quality and clinical efficacy. Therefore, determining the optimal growth period is one of the crucial factors in ensuring the quality of traditional Chinese medicinal materials. In this study, Gas Chromatography–Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC) were comprehensively applied to analyze the metabolically differential substances in different parts of Bupleurum scorzonerifolium Willd. By comparing the compositions and content differences of chemical components in different growth years and different parts, the chemical components with significant differences were accurately screened out. In order to further explore the dynamic change characteristics and internal laws of metabolites, a metabolic network was constructed for a visual analysis and, finally, to see the optimal growth years of Bupleurum scorzonerifolium Willd. This result showed that with the accumulation of the growth cycle, the height, root width, fresh mass and saikosaponins content of Bupleurum scorzonerifolium Willd. increased year by year. Except for sodium and calcium elements in the main shoot, the other elements were significantly reduced. In addition, 59 primary metabolites were identified by GC-MS, with the accumulation of the growth cycle, the contents of organic acids, sugars, alcohols and amino acids gradually decreased, while the contents of alkyl, glycosides and other substances gradually increased. There were 53 positive correlations and 18 negative correlations in the triennial Bupleurum scorzonerifolium Willd. grid, all of which were positively correlated with saikosaponins. Therefore, the triennial Bupleurum scorzonerifolium Willd. was considered to be the suitable growth year. It not only provided a new idea and method for the quality evaluation of Bupleurum scorzonerifolium Willd., but also provided a scientific basis for the quality control of Chinese herbs. Full article
Show Figures

Figure 1

29 pages, 2840 KiB  
Review
Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species
by Asta Judžentienė
Molecules 2025, 30(14), 2989; https://doi.org/10.3390/molecules30142989 - 16 Jul 2025
Viewed by 99
Abstract
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various [...] Read more.
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various fleabanes species and to evaluate the variability of their biological activities. Up to June 2025, this review provides an updated overview of 105 literature sources (published during last 25 years) related to 14 Erigeron sp. (native, naturalized, or invasive) which have been investigated extensively and are of the greatest significance. It summarizes the compositional variability of the EOs and their pharmacological and toxic effects, such as anti-inflammatory, anticancer, antiproliferative, skin regeneration, antioxidant, antifungal, antibacterial, insecticidal, larvicidal, repellent, and allelopathic activity. The EOs of each Erigeron species were characterized, and a chemical structure of 43 major constituents is presented herein. The most characteristic and prevalent compounds were found to be limonene, δ-3-carene, matricaria ester, lachnophyllum ester, germacrene D, β-caryophyllene, β-farnesene, α-bergamotene, allo-aromadendrene, etc., in the EOs from the E. acris, E. annuus, E. bonariensis, E. canadensis, E. floribundus E. mucronatus, and E. speciosus plants. Major constituents, such as borneol, bornyl acetate, modhephen-8-β-ol, cis-arteannuic alcohol, β-caryophyllene, and τ-cadinol, were found in the oils of E. graveolens (Inula graveolens). A paucity of data concerning E. incanus EOs was revealed, with the prevalence of 3-hydroxy-4-methoxy cinammic acid and thymol acetate noted in the oils. The EOs from E. multiradiatus and E. sublyratus were comprised mainly of matricaria and lachnophyllum esters. The available data on EOs of E. ramosus is limited, but the main constituents are known to be α-humulene, 1,8-cineole, eugenol, and globulol. The EOs containing appreciable amounts of matricaria and lachnophyllum esters exhibited strong anticancer, anti-inflammatory, antimicrobial, larvicidal, and repellent activities. Repellence is also related to borneol, bornyl acetate, caryophyllene derivatives, τ-cadinol, modhephen-8-β-ol, and cis-arteannuic alcohol. Cytotoxicity was determined due to the presence of limonene, δ-3-carene, α- and β-farnesene, (E)-β-ocimene, ledene oxide, sesquiphellandrene, and dendrolasin in the fleabanes EOs. Skin regeneration and antifungal properties were related to germacrene D; and anti-inflammatory effects were determined due to high amounts of limonene (E)-β-ocimene, lachnophyllum ester, and germacrene D. The antimicrobial properties of the oils were conditioned by appreciable quantities of limonene, β-pinene, 1,8-cineole, carvacrol, thymol acetae, β-eudesmol, 2,6,7,7α-tetrahydro-1,5-dimethyl-1H-indene-3-carboxaldehyde, caryophyllene and its oxide, allo-aromadendrene, α-humulene, farnesene, carvacrol, and eugenol. This review provides a foundation for further studies on volatile secondary metabolites to explore the potential sources of new biologically active compounds in Erigeron sp. Full article
(This article belongs to the Collection Featured Reviews in Natural Products Chemistry)
Show Figures

Graphical abstract

17 pages, 1609 KiB  
Article
Green Macroalgae Biomass Upcycling as a Sustainable Resource for Value-Added Applications
by Ana Terra de Medeiros Felipe, Alliny Samara Lopes de Lima, Emanuelle Maria de Oliveira Paiva, Roberto Bruno Lucena da Cunha, Addison Ribeiro de Almeida, Francisco Ayrton Senna Domingos Pinheiro, Leandro De Santis Ferreira, Marcia Regina da Silva Pedrini, Katia Nicolau Matsui and Roberta Targino Hoskin
Appl. Sci. 2025, 15(14), 7927; https://doi.org/10.3390/app15147927 - 16 Jul 2025
Viewed by 118
Abstract
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of [...] Read more.
As the global demand for eco-friendly food ingredients grows, marine macroalgae emerge as a valuable resource for multiple applications using a circular bioeconomy approach. In this study, green macroalgae Ulva flexuosa, naturally accumulated in aquaculture ponds as a residual biomass (by-product) of shrimp and oyster farming, were investigated regarding their bioactivity, chemical composition, and antioxidant properties. The use of aquaculture by-products as raw materials not only reduces waste accumulation but also makes better use of natural resources and adds value to underutilized biomass, contributing to sustainable production systems. For this, a comprehensive approach including the evaluation of its composition and environmentally friendly extraction of bioactive compounds was conducted and discussed. Green macroalgae exhibited high fiber (37.63% dry weight, DW) and mineral (30.45% DW) contents. Among the identified compounds, palmitic acid and linoleic acid (ω-6) were identified in the highest concentrations. Pigment analysis revealed a high concentration of chlorophylls (73.95 mg/g) and carotenoids (17.75 mg/g). To evaluate the bioactivity of Ulva flexuosa, ultrasound-assisted solid–liquid extraction was performed using water, ethanol, and methanol. Methanolic extracts showed the highest flavonoid content (59.33 mg QE/100 g), while aqueous extracts had the highest total phenolic content (41.50 mg GAE/100 g). Ethanolic and methanolic extracts had the most potent DPPH scavenging activity, whereas aqueous and ethanolic extracts performed best at the ABTS assay. Overall, we show the upcycling of Ulva flexuosa, an underexplored aquaculture by-product, as a sustainable and sensible strategy for multiple value-added applications. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

21 pages, 830 KiB  
Review
A Review of Chemical and Physical Analysis, Processing, and Repurposing of Brewers’ Spent Grain
by Joshua M. Henkin, Kalidas Mainali, Brajendra K. Sharma, Madhav P. Yadav, Helen Ngo and Majher I. Sarker
Biomass 2025, 5(3), 42; https://doi.org/10.3390/biomass5030042 - 16 Jul 2025
Viewed by 251
Abstract
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While [...] Read more.
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While its perishability limits direct use in food systems, BSG is often repurposed as livestock feed. Recent advances in bioprocessing and extraction technologies have expanded their use across different sectors. This review explores the composition of crude BSG and evaluates innovative valorization methods, including recovering bioactive compounds with pharmaceutical and nutraceutical value, and converting them into biofuels such as biogas, biodiesel, and bioethanol. Special focus is given to methods involving enzymatic hydrolysis, fermentation, and chemical extraction to isolate proteins, peptides, amino acids, sugars, and polyphenols. By analyzing emerging applications and industrial scalability challenges, this review highlights BSG’s growing role within circular economy models and its potential to promote sustainable innovations in both the brewing industry and the wider bioeconomy. Full article
Show Figures

Figure 1

24 pages, 1190 KiB  
Review
An Overview of Buckwheat—A Superfood with Applicability in Human Health and Food Packaging
by Alexandra Andreea Lițoiu, Adriana Păucean, Claudiu Lung, Alexandru Zmuncilă and Maria Simona Chiș
Plants 2025, 14(14), 2200; https://doi.org/10.3390/plants14142200 - 16 Jul 2025
Viewed by 552
Abstract
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, [...] Read more.
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, dietary fiber, lipids, starch, vitamins, and minerals) of the buckwheat principal species, Fagopyrum esculentum Moench (common buckwheat) and Fagopyrum tataricum (L.) Gaertn (Tartary buckwheat). Other bioactive compounds, including flavonoids (e.g., rutin, quercetin), phenolic acids, and anthocyanins, were emphasized, together with their influence on human health. These constituents confer a broad range of biological activities such as anti-inflammatory, antimicrobial, antidiabetic, antihypertensive, and hypoglycemic effects. Moreover, buckwheat is inherently gluten-free, making it a valuable alternative in formulations targeting gluten-sensitive populations. Finally, the review addresses the possibility of using starch buckwheat as a raw material in starch-based films. Further research is needed to elucidate the potential of buckwheat starch as a viable material for the development of biodegradable food packaging films. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Figure 1

22 pages, 1765 KiB  
Review
Polyphenols as Antiviral Agents: Their Potential Against a Range of Virus Types
by Nurten Coşkun, Ranya Demir, Ahmet Alperen Canbolat, Sümeyye Sarıtaş, Burcu Pekdemir, Mikhael Bechelany and Sercan Karav
Nutrients 2025, 17(14), 2325; https://doi.org/10.3390/nu17142325 - 16 Jul 2025
Viewed by 313
Abstract
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, [...] Read more.
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, and lignans. Polyphenols mainly possess inhibition of viral replication, interference with viral protein synthesis, and modulation of immune responses, providing significant antiviral effects against several viruses, including herpes simplex virus, hepatitis C virus, and influenza. They are crucial for medical compounds in diverse, versatile treatments, namely in diabetes, cardiovascular disorders, cancer, and neurodegenerative problems. Plants are the primary source of bioactive molecules, which are valued for their anti-inflammatory, antioxidant, anticancer, and antiviral activities. Especially, polyphenols are extracted as the most abundant bioactive compounds of plants. Moreover, viral infections are one of the major factors in illnesses and diseases, along with bacteria and fungi. Numerous in vitro and in vivo studies report antiviral activity against SARS-CoV-2, Mayaro virus, dengue virus, herpesvirus, and influenza A virus, though clinical validation remains limited. Additionally, inhibition of viral entry, interference with viral replication, modulation of host immune response, and direct virucidal effects were examined. Full article
Show Figures

Figure 1

20 pages, 2048 KiB  
Article
Effect of Tm-2a, Sw-5 and Ty-1 Gene Introduction on the Agronomic Performance and Metabolic Profile of Traditional Muchamiel-Type Tomato Varieties
by Alicia Sánchez, Juana Cava, Virginia Hernández, Pilar Flores, Santiago García-Martínez, Pedro Carbonell, Elena Sánchez, Nuria López, Elia Molina, José Fenoll and Pilar Hellín
Horticulturae 2025, 11(7), 838; https://doi.org/10.3390/horticulturae11070838 - 15 Jul 2025
Viewed by 181
Abstract
The introduction of virus resistance genes into traditional tomato varieties offers a strategy to preserve genetic diversity and enhance commercial viability. However, the homozygous presence of these genes has been associated with negative effects on yield and fruit quality. This two-year study evaluated [...] Read more.
The introduction of virus resistance genes into traditional tomato varieties offers a strategy to preserve genetic diversity and enhance commercial viability. However, the homozygous presence of these genes has been associated with negative effects on yield and fruit quality. This two-year study evaluated the impact of introducing the Tm-2a, Sw-5 and Ty-1 genes, which are associated with resistance to ToMV, TSWV and TYLCV, respectively, on the agronomic yield, fruit characteristics and metabolic profile of Muchamiel-type cultivars. Four hybrids were obtained by crossing two breeding lines carrying the resistance genes in homozygosis (UMH1139 and UMH1200) with two traditional susceptible varieties (MC1 and MC2). Hybrids matched or exceeded the agronomic performance of their parents. Fruit morphology of the hybrids was similar to traditional parents. The presence of Ty-1 correlated with reduced organic acid concentration, though hybrids exhibited higher levels than the homozygous line, UMH1200. No negative effects on soluble sugars or secondary metabolites were observed. Genotypes carrying resistance genes, breeding lines and hybrids exhibited higher flavonoid contents, suggesting a potential role in virus response. Hybrids maintained or improved the bioactive profile of traditional varieties. These findings support the development of Muchamiel-type hybrids that combine the presence of virus resistance genes in heterozygosity with the desirable traits of traditional tomatoes. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Graphical abstract

Back to TopTop