Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = bifurcated tunnel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5914 KiB  
Article
Numerical Simulation of Surrounding Rock Vibration and Damage Characteristics Induced by Blasting Construction in Bifurcated Small-Spacing Tunnels
by Mingshe Sun, Yantao Wang, Guangwei Dai, Kezhi Song, Xuyang Xie and Kejia Yu
Buildings 2025, 15(15), 2737; https://doi.org/10.3390/buildings15152737 - 3 Aug 2025
Viewed by 177
Abstract
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient [...] Read more.
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient construction of bifurcated tunnels. Based on the Tashan North Road Expressway Tunnel Project, this paper investigated the damage characteristics of the intermediate rock wall in bifurcated tunnels under different blasting construction schemes, using numerical simulation methods to account for the combined effects of in situ stress and blasting loads. The results were validated using comparisons with the measured damage depth of the surrounding rock in the ramp tunnels. The results indicate that the closer the location is to the starting point of the bifurcated tunnel, the thinner the intermediate rock wall and the more severe the damage to the surrounding rock. When the thickness of the intermediate rock wall exceeds 4.2 m, the damage zone does not penetrate through the wall. The damage to the intermediate rock wall exhibits an asymmetric “U”-shaped distribution, with greater damage on the side of the trailing tunnel at the section of the haunch and sidewall, while the opposite is true at the section of the springing. During each excavation step of the ramp and main-line tunnels, the damage to the intermediate rock wall is primarily induced by blasting loads. As construction progresses, the damage to the rock wall increases progressively under the combined effects of blasting loads and the excavation space effect. In the construction of bifurcated tunnels, the greater the distance between the headings of the leading and trailing tunnels is, the less damage will be inflicted on the intermediate rock wall. Constructing the tunnel with a larger cross-sectional area first will cause more damage to the intermediate rock wall. When the bench method is employed, an increase in the bench length leads to a reduction in the damage to the intermediate rock wall. The findings provide valuable insights for the selection of construction schemes and the protection of the intermediate rock wall when applying the bench method in the construction of bifurcated small-spacing tunnels. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 9007 KiB  
Article
Middle Rock Pillar Stability Criteria for a Bifurcated Small Clear-Distance Tunnel
by Jianxiu Wang, Yanxia Long, Ansheng Cao, Tao Cui, Luyu Lin, Yuanbo Gao, Xuezeng Liu and Huboqiang Li
Appl. Sci. 2025, 15(10), 5634; https://doi.org/10.3390/app15105634 - 18 May 2025
Viewed by 422
Abstract
Middle rock pillars (MRPs) play a crucial role in the stability of bifurcated small clear-distance tunnels. Assessing the stability of the MRP is a key challenge in design and construction. This study focuses on the bifurcated small clear-distance section of the Xiamen Haicang [...] Read more.
Middle rock pillars (MRPs) play a crucial role in the stability of bifurcated small clear-distance tunnels. Assessing the stability of the MRP is a key challenge in design and construction. This study focuses on the bifurcated small clear-distance section of the Xiamen Haicang Shugang evacuation channel underground interchange tunnels. The stability criteria for the MRP during both the early design and later construction stages were analyzed by using the strength reduction method (SRM) via numerical simulations. In the design stage, the SRM was applied to determine the stability limit state of the MRP. Relationships between rock mass density, cohesion, and elastic modulus were identified, and these parameters were combined with basic cohesion values for an initial stability assessment. During the construction stage, the full excavation process was analyzed by examining the distribution and changes in the plastic zone of the rock mass. Two key construction stages, a 10 m excavation on the main line upper step and a 10 m excavation on the ramp upper step, were identified as points where the plastic zone of the MRP began to form on the sidewall and the center, respectively. Multiple linear regression was used to determine the displacement, stress, and plasticity criteria for MRP stability. A comprehensive criteria formula incorporating the width–span ratio, tunnel vault settlement, and horizontal clearance convergence was developed, providing technical guidance and a scientific basis for similar projects. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

9 pages, 2190 KiB  
Article
Optimization of Bifurcated Switching by Enhanced Synthetic Antiferromagnetic Layer
by Yihui Sun, Fantao Meng, Junlu Gong, Yang Gao, Ruofei Chen, Lei Zhao, Dinggui Zeng, Ting Fu, Weiming He and Yaohua Wang
Electronics 2024, 13(23), 4771; https://doi.org/10.3390/electronics13234771 - 3 Dec 2024
Viewed by 1001
Abstract
Defects in the free layer are considered to be the main cause of the balloon effect, but there is little insight into the synthetic antiferromagnetic (SAF) layer. To address this shortcoming, in this work, an optimized SAF layer was introduced in the perpendicular [...] Read more.
Defects in the free layer are considered to be the main cause of the balloon effect, but there is little insight into the synthetic antiferromagnetic (SAF) layer. To address this shortcoming, in this work, an optimized SAF layer was introduced in the perpendicular magnetic tunneling junction (pMTJ) stack to eliminate the low-probability bifurcated-switching phenomenon. The results indicated that the Hf field in the film stack improved significantly from ~5700 Oe to ~7500 Oe. A magnetoresistive random access memory (MRAM) test chip was also fabricated with a 300 mm process, resulting in a significantly improved ballooning effect. The results also indicated that the switching voltage decreased by 18.6% and the writing energy decreased by 33.7%. In addition, the low-probability stray field along the x-axis was thought to be the main cause of the ballooning effect, and was experimentally optimized for the first time by enhancing the SAF layer. This work provides a new perspective on spin-flipping dynamics, facilitating a deeper comprehension of the internal mechanism and helping to secure improvements in MRAM performance. Full article
(This article belongs to the Special Issue Advanced CMOS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

22 pages, 6692 KiB  
Article
Thermal Characteristics of Multiple Blockages with Various Sizes in Longitudinal Ventilated Tunnel Fire
by Herui Zhang, Fengqiang Dai, Bin Miao, Zhengfei Wu and Jianchun Ou
Fire 2024, 7(8), 269; https://doi.org/10.3390/fire7080269 - 2 Aug 2024
Viewed by 1146
Abstract
In longitudinal ventilation tunnel fires, the thermal characteristics become more intricate due to the presence of blockages. This phenomenon becomes more complex when multiple blockages occur, which results in a unique interaction between the fire and longitudinal ventilation through gaps between the blockages. [...] Read more.
In longitudinal ventilation tunnel fires, the thermal characteristics become more intricate due to the presence of blockages. This phenomenon becomes more complex when multiple blockages occur, which results in a unique interaction between the fire and longitudinal ventilation through gaps between the blockages. Most of the previous studies have only considered single obstacles or have only performed qualitative analyses and have not obtained predictive models. To fill this research gap, we conducted numerical simulations using the Fire Dynamic Simulator (FDS) to study the effects of vehicular blockages in three lanes and two fire locations. Our study highlights the differences in the flame behavior, maximum temperature rise, and smoke back-layering length in the presence of multiple blockages and reveals that as the ventilation velocity increases, the flame bifurcation angle increases and the smoke back-layering length decreases. Additionally, when the fire is in the side lane, the flame tilts towards the sidewall, leading to higher maximum temperatures compared to those in the middle lane. Based on these findings, we have developed modified formulas that predict the maximum temperature rise, smoke back-layering length, and maximum temperature ratio at different fire locations and blockage rates, which are linearly related. Full article
Show Figures

Figure 1

22 pages, 9411 KiB  
Article
Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization
by M. Mamun Miah, Faisal Alsharif, Md. Ashik Iqbal, J. R. M. Borhan and Mohammad Kanan
Mathematics 2024, 12(13), 1959; https://doi.org/10.3390/math12131959 - 24 Jun 2024
Cited by 3 | Viewed by 1603
Abstract
In this research, we discussed the different chaotic phenomena, sensitivity analysis, and bifurcation analysis of the planer dynamical system by considering the Galilean transformation to the Lonngren wave equation (LWE) and the (2 + 1)-dimensional stochastic Nizhnik–Novikov–Veselov System (SNNVS). These two important equations [...] Read more.
In this research, we discussed the different chaotic phenomena, sensitivity analysis, and bifurcation analysis of the planer dynamical system by considering the Galilean transformation to the Lonngren wave equation (LWE) and the (2 + 1)-dimensional stochastic Nizhnik–Novikov–Veselov System (SNNVS). These two important equations have huge applications in the fields of modern physics, especially in the electric signal in data communication for LWE and the mechanical signal in a tunnel diode for SNNVS. A different chaotic nature with an additional perturbed term was also highlighted. Concerning the theory of the planer dynamical system, the bifurcation analysis incorporating phase portraits of the dynamical systems of the declared equations was performed. Additionally, a sensitivity analysis was used to monitor the sensitivity of the mentioned equations. Also, we extracted new, abundant solitary wave structures with the graphical phenomena of the mentioned nonlinear mathematical models. By conducting an expansion method on the abovementioned equations, we generated three types of soliton structures, which are rational function, trigonometric function, and hyperbolic function. By simulating the 3D, contour, and 2D graphs of these obtained solitons, we scrutinized the behavior of the waves affecting the nonlinear terms. The figures show that the solitary waves obtained from LWE are efficient in analyzing electromagnetic wave signals in the cable lines, and the solitary waves from SNNVS are essential in any stochastic system like a sound wave. Moreover, by taking some values of the parameters, we found some interesting soliton shapes, such as compaction soliton, singular periodic solution, bell-shaped soliton, anti-kink-shaped soliton, one-sided kink-shaped soliton, and some flat kink-shaped solitons, etc. This article will have a great impact on nonlinear science due to the new solitary wave structures with different complex phenomena, sensitivity analysis, and bifurcation analysis. Full article
(This article belongs to the Special Issue Exact Solutions and Numerical Solutions of Differential Equations)
Show Figures

Figure 1

17 pages, 3388 KiB  
Article
Simulation of Fire Evacuation in a Naturally Ventilated Bifurcated Tunnel
by Jianhong Chen, Zekun Hu and Shan Yang
Fire 2024, 7(6), 202; https://doi.org/10.3390/fire7060202 - 16 Jun 2024
Cited by 2 | Viewed by 1411
Abstract
The natural wind velocities in tunnels under different natural conditions are distinct, and the longitudinal ventilation velocity significantly impacts the evacuation environment. This paper examines the evacuation conditions and strategies under varying wind velocities in bifurcated tunnels. Using Fire Dynamics Simulator (FDS) and [...] Read more.
The natural wind velocities in tunnels under different natural conditions are distinct, and the longitudinal ventilation velocity significantly impacts the evacuation environment. This paper examines the evacuation conditions and strategies under varying wind velocities in bifurcated tunnels. Using Fire Dynamics Simulator (FDS) and Pathfinder software, the fire development and evacuation of three distinct longitudinal positions in a bifurcated tunnel are simulated. The simulation results demonstrate that the evacuation conditions for disparate fire sources at varying wind velocities are markedly disparate. In consideration of the construction cost and the maximization of evacuation capacity, the width of the evacuation doors at the three locations should be set to 2 m, 1.5 m, and 1.5 m, respectively. Furthermore, an analysis of the safety of individual personnel through Fractional Effective Dose (FED) revealed that directing evacuees towards the upstream of the fire after the fire is detected can significantly reduce individual personnel injuries while ensuring the overall success of the evacuation. Full article
(This article belongs to the Special Issue Advance in Tunnel Fire Research)
Show Figures

Figure 1

18 pages, 6724 KiB  
Article
CFD Simulations and Phenomenological Modelling of Aerodynamic Stall Hysteresis of NACA 0018 Wing
by Mohamed Sereez, Nikolay Abramov and Mikhail Goman
Aerospace 2024, 11(5), 354; https://doi.org/10.3390/aerospace11050354 - 29 Apr 2024
Viewed by 2201
Abstract
Computational simulations of three-dimensional flow around a NACA 0018 wing with an aspect ratio of AR=5 were carried out by using the Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations with the Shear-Stress Transport turbulence model closure. Simulations were performed to capture aerodynamic [...] Read more.
Computational simulations of three-dimensional flow around a NACA 0018 wing with an aspect ratio of AR=5 were carried out by using the Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations with the Shear-Stress Transport turbulence model closure. Simulations were performed to capture aerodynamic stall hysteresis by using the developed pseudo-transient continuation (PTC) method based on a dual-time step approach in CFD OpenFOAM code. The flow was characterized by incompressible Mach number M=0.12 and moderate Reynolds number Re=0.67×106. The results obtained indicate the presence of noticeable aerodynamic hysteresis in the static dependencies of the force and moment coefficients, as well as the manifestation of bi-stable flow separation patterns, accompanied by the development of asymmetry in the stall zone. The URANS simulation results are in good agreement with the experimental data obtained for the NACA 0018 finite-aspect-ratio wing in the low-speed wind tunnel under the same test conditions. A new phenomenological bifurcation model of aerodynamic stall hysteresis under static and dynamic conditions is formulated and is proven to be able to closely match the experimental data. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics)
Show Figures

Figure 1

16 pages, 4931 KiB  
Article
Experimental Investigation on Fire Smoke Temperature under Forced Ventilation Conditions in a Bifurcated Tunnel with Fires Situated in a Branch Tunnel
by Hanwen Guo, Zhengyuan Yang, Peiyao Zhang, Yunji Gao and Yuchun Zhang
Fire 2023, 6(12), 473; https://doi.org/10.3390/fire6120473 - 17 Dec 2023
Cited by 3 | Viewed by 2339
Abstract
In this work, a number of experiments were conducted in a reduced scale bifurcation tunnel with a ratio of 1:10 to explore the influence of the position of longitudinal fires (placed in branch tunnel) on smoke temperature profile under forced ventilation. Three heat [...] Read more.
In this work, a number of experiments were conducted in a reduced scale bifurcation tunnel with a ratio of 1:10 to explore the influence of the position of longitudinal fires (placed in branch tunnel) on smoke temperature profile under forced ventilation. Three heat release rates, six ventilation velocities, and three fire locations were considered. The main findings are summarized below, as follows: The temperature of smoke downstream of the main tunnel decreases with the rate of ventilation and longitudinal fire location. In contrast, the smoke temperature downstream of the fire source inside the branch tunnel drops with the ventilation velocity; the maximum temperature of the flame under the ceiling of the tunnel rises with longitudinal fire location. The dimensionless longitudinal smoke temperatures downstream of the main tunnel decrease exponentially with longitudinal distance, and the same observation is found in the branch tunnel. The attenuation coefficient k in the main tunnel increases with longitudinal ventilation velocity according to a power law but does not change significantly with longitudinal fire locations. However, the exponential coefficient k′ in the branch tunnel decreases linearly with ventilation velocity, whereas it increases with longitudinal fire location inside the branch tunnel. Lastly, modified models are established for estimating the longitudinal profile of temperatures downstream of the main tunnel and branch tunnel, where the influence of the rate of ventilation and location of the fire are taken into account. Full article
Show Figures

Figure 1

20 pages, 8702 KiB  
Article
Deformation and Stress Law of Surrounding Rock for a Bifurcated Tunnel with a Super-Large Section: A Case Study
by Xiaodong Wu, Yu Li, Min Gong, Haojun Wu and Yifan Wu
Appl. Sci. 2023, 13(23), 12852; https://doi.org/10.3390/app132312852 - 30 Nov 2023
Cited by 6 | Viewed by 1471
Abstract
The construction method of transitioning from a small cross-section to excavating a super-large cross-section tunnel plays a crucial role in the quality of the final super-large cross-section tunnel and the safety of the tunnel structures and workers during the construction process. The Shenzhen [...] Read more.
The construction method of transitioning from a small cross-section to excavating a super-large cross-section tunnel plays a crucial role in the quality of the final super-large cross-section tunnel and the safety of the tunnel structures and workers during the construction process. The Shenzhen Liantang Bifurcated Tunnel, with a maximum cross-sectional area of 428.4 m2, was the largest cross-sectional tunnel constructed in China in 2018, and there are few engineering projects that can serve as references. To enhance construction safety and achieve the transformation from a two-lane tunnel to a five-lane tunnel, this paper proposes two tunneling methods, namely, the reverse top-heading method and the advance climbing method. Moreover, numerical simulation using MIDAS GTS/NX software was adapted to compare and analyze the stress and deformation characteristics of the surrounding rock in the construction stages using the two methods. The simulation shows that the advance climbing method is more suitable for the construction of the Liantang tunnel. Through on-site monitoring and measurement, the data of peripheral rock vault subsidence, peripheral convergence, and pressure of the supporting structure were assessed. The results show that the maximum values of peripheral rock vault subsidence and peripheral convergence displacement are located in the permissible range of road tunnel vault subsidence. This further verifies the reasonableness of the advance climbing method. This paper not only provide a basis for the construction of the Liantang tunnel but also serves as a reference for construction methods and typical cases for similar super-large-section tunnel projects. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 1885 KiB  
Article
Dynamics of Dispersive Measurements of Flux-Qubit States: Energy-Level Splitting Connected to Quantum Wave Mechanics
by Jeong Ryeol Choi
Nanomaterials 2023, 13(17), 2395; https://doi.org/10.3390/nano13172395 - 23 Aug 2023
Viewed by 1670
Abstract
Superconducting flux qubits have many advantages as a storage of quantum information, such as broad range tunability of frequency, small-size fabricability, and high controllability. In the flux qubit–oscillator, qubits are connected to SQUID resonators for the purpose of performing dispersive non-destructive readouts of [...] Read more.
Superconducting flux qubits have many advantages as a storage of quantum information, such as broad range tunability of frequency, small-size fabricability, and high controllability. In the flux qubit–oscillator, qubits are connected to SQUID resonators for the purpose of performing dispersive non-destructive readouts of qubit signals with high fidelity. In this work, we propose a theoretical model for analyzing quantum characteristics of a flux qubit–oscillator on the basis of quantum solutions obtained using a unitary transformation approach. The energy levels of the combined system (qubit + resonator) are analyzed in detail. Equally spaced each energy level of the resonator splits into two parts depending on qubit states. Besides, coupling of the qubit to the resonator brings about an additional modification in the split energy levels. So long as the coupling strength and the tunnel splitting are not zero but finite values, the energy-level splitting of the resonator does not disappear. We conclude that quantum nondemolition dispersive measurements of the qubit states are possible by inducing bifurcation of the resonator states through the coupling. Full article
Show Figures

Figure 1

15 pages, 9708 KiB  
Article
Passive Transonic Shock Control on Bump Flow for Wing Buffet Suppression
by Davide Di Pasquale and Simon Prince
Aerospace 2023, 10(6), 569; https://doi.org/10.3390/aerospace10060569 - 20 Jun 2023
Cited by 2 | Viewed by 3199
Abstract
Since modern transport aircraft cruise at transonic speeds, shock buffet alleviation is one indispensable challenge that civil transport research needs to be addressed. Indeed, in the transonic flow regime shock-induced separation and transonic buffet compromise the flight envelope of an aircraft, and therefore [...] Read more.
Since modern transport aircraft cruise at transonic speeds, shock buffet alleviation is one indispensable challenge that civil transport research needs to be addressed. Indeed, in the transonic flow regime shock-induced separation and transonic buffet compromise the flight envelope of an aircraft, and therefore its operational safety and structural integrity. One possible solution is to control and delay the boundary layer separation. The aim of this work was to study whether sub-boundary layer scale period roughness, which locally increases the boundary layer displacement thickness, can act as a virtual shock bump, with aim of bifurcating the foot of the shock wave to reduce the shock’s adverse effect on the boundary layer in the same way as solid shock bumps are known to act. This passive approach can then enhance the buffet margin, consequently extending the safe flight envelope. An experimental investigation was performed, applying this passive technique on a wind tunnel wall bump model which simulated the flow over the upper surface of an aerofoil. The results, in terms of surface pressure distribution and corresponding shadowgraph flow visualisation, showed that such periodic roughness can, indeed, bifurcate the shock wave and delay shock-induced separations, depending on the orientation of the roughness and its periodicity. A virtual shock bump effect can be produced using the displacement effect of periodic sub-boundary layer scale roughness. Full article
(This article belongs to the Special Issue Transonic Flow)
Show Figures

Figure 1

13 pages, 7158 KiB  
Communication
Operational Stability of Hydropower Plant with Upstream and Downstream Surge Chambers during Small Load Disturbance
by Yi Liu, Xiaodong Yu, Xinlei Guo, Wenlong Zhao and Sheng Chen
Energies 2023, 16(11), 4517; https://doi.org/10.3390/en16114517 - 4 Jun 2023
Cited by 5 | Viewed by 1989
Abstract
A surge chamber is a common pressure reduction facility in a hydropower plant. Owing to large flow inertia in the upstream headrace tunnel and downstream tailrace tunnel, a hydropower plant with upstream and downstream surge chambers (HPUDSC) was adopted. This paper aimed to [...] Read more.
A surge chamber is a common pressure reduction facility in a hydropower plant. Owing to large flow inertia in the upstream headrace tunnel and downstream tailrace tunnel, a hydropower plant with upstream and downstream surge chambers (HPUDSC) was adopted. This paper aimed to investigate the operational stability and nonlinear dynamic behavior of a HPUDSC. Firstly, a nonlinear dynamic model of the HPUDSC system was built. Subsequently, the operational stability and nonlinear dynamic behavior of the HPUDSC system were studied based on Hopf bifurcation theory and numerical simulation. Finally, the influencing factors of stability of the HPUDSC system were investigated. The results indicated the nonlinear HPUDSC system occurred at subcritical Hopf bifurcation, and the stability domain was located above the bifurcation curve, which provided a basis for the tuning of the governor parameters during operation. The dominant factors of stability and dynamic behavior of the HPUDSC system were flow inertia and head loss of the headrace tunnel and the area of the upstream surge chamber. Either increasing the head loss of the headrace tunnel and area of the upstream surge chamber or decreasing the flow inertia of the headrace tunnel could improve the operational stability of the HPUDSC. The proposed conclusions are of crucial engineering value for the stable operation of a HPUDSC. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 9854 KiB  
Article
Calculation Method of Loose Pressure in Surrounding Rock Mass
by Hongjie Gao, Weibin Ma, Wenhao Zou, Jinlong Zhang, Xinyu Li and Jiaqiang Han
Appl. Sci. 2023, 13(10), 6334; https://doi.org/10.3390/app13106334 - 22 May 2023
Cited by 3 | Viewed by 1766
Abstract
With the implementation of the regional coordinated development strategy, traffic flow has grown explosively. The construction of a larger tunnel section becomes an effective way to solve the highway network’s insufficient transport capability problem. Currently, there is little research on the factors influencing [...] Read more.
With the implementation of the regional coordinated development strategy, traffic flow has grown explosively. The construction of a larger tunnel section becomes an effective way to solve the highway network’s insufficient transport capability problem. Currently, there is little research on the factors influencing and methods of calculating the loose pressure in the surrounding rock mass for highway tunnels with super-large cross-sections. Based on the Bifurcation Tunnel, which is one of the sign projects in the past five years, this paper discusses the influencing factors for the range of loose zone in deeply buried tunnels using a combination of a numerical analysis and an orthogonal test. The weight of influencing factors is calculated via an efficiency evaluation method. This paper establishes a limit analysis model of the loose pressure in the surrounding rock mass under a non-linear failure criterion based on the fitted boundary function and upper bound limit analysis method and deduces the correlations of the loose pressure. The distribution law of the loose pressure, obtained via the limit analysis method, is consistent with the pressure-monitoring results, verifying the correctness of the proposed calculation method. This study can provide a calculation basis for the design of a supporting structure and the selection of similar super-section tunnel projects. Full article
(This article belongs to the Special Issue Advances in Tunnel and Underground Construction)
Show Figures

Figure 1

20 pages, 6302 KiB  
Article
Monitoring Method of Large Section Bifurcated Small Clear Distance Tunnel during Information Construction Control
by Jianxiu Wang, Ansheng Cao, Tao Cui, Zhao Wu, Zonghai Li, Lihua Lin, Huboqiang Li and Yanxia Long
Appl. Sci. 2023, 13(6), 3447; https://doi.org/10.3390/app13063447 - 8 Mar 2023
Cited by 3 | Viewed by 1981
Abstract
Constructing a large section bifurcated small clear distance tunnel poses significant challenges due to its large section and small clear distance, complex and overlapping construction steps, unsynchronized excavation and support processes, and disturbance of surrounding rock caused by blasting. Timely and effective construction [...] Read more.
Constructing a large section bifurcated small clear distance tunnel poses significant challenges due to its large section and small clear distance, complex and overlapping construction steps, unsynchronized excavation and support processes, and disturbance of surrounding rock caused by blasting. Timely and effective construction monitoring is crucial to ensure construction safety and quality. However, traditional monitoring methods are unable to fully satisfy requirements and realize real-time monitoring. Therefore, this study proposes an automatic monitoring and control method for a large section bifurcated small clear distance tunnel to leverage the positive role of information construction. Using the Xiamen Haicang Evacuate Channel project as a case study, this paper introduces the tunnel monitoring and layout scheme of monitoring points. The monitoring data were analyzed from different perspectives, including cumulative deformation, deformation rate, cumulative deformation control value, and deformation rate control value. The follow-up excavation and support measures were optimized based on the measurement results. Additionally, an automatic monitoring and control method of the middle rock pillar combined with the criterion of stability of the middle rock pillar was proposed, constructing a working idea and framework for timely feedback and three-dimensional and dynamic monitoring. Site monitoring predicted the danger before construction and provided feedback on construction information to improve the specific construction method of subsequent excavation and support. The proposed automatic monitoring and control method can solve the problem of accidental errors in traditional monitoring methods and enable real-time automatic monitoring. The research results provide valuable experience for constructing a bifurcated small clear distance tunnel. Full article
(This article belongs to the Special Issue Predictive Modeling in Mining and Geotechnical Engineering)
Show Figures

Figure 1

19 pages, 10247 KiB  
Article
Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter
by Hassan Elahi, Marco Eugeni, Federico Fune, Luca Lampani, Franco Mastroddi, Giovanni Paolo Romano and Paolo Gaudenzi
Micromachines 2020, 11(10), 933; https://doi.org/10.3390/mi11100933 - 14 Oct 2020
Cited by 46 | Viewed by 4693
Abstract
In the last few decades, piezoelectric (PZT) materials have played a vital role in the aerospace industry because of their energy harvesting capability. PZT energy harvesters (PEH) absorb the energy from an operational environment and can transform it into useful energy to drive [...] Read more.
In the last few decades, piezoelectric (PZT) materials have played a vital role in the aerospace industry because of their energy harvesting capability. PZT energy harvesters (PEH) absorb the energy from an operational environment and can transform it into useful energy to drive nano/micro-electronic components. In this research work, a PEH based on the flag-flutter mechanism is presented. This mechanism is based on fluid-structure interaction (FSI). The flag is subjected to the axial airflow in the subsonic wind tunnel. The performance evaluation of the harvester and aeroelastic analysis is investigated numerically and experimentally. A novel solution is presented to extract energy from Limit Cycle Oscillations (LCOs) phenomenon by means of PZT transduction. The PZT patch absorbs the flow-induced structural vibrations and transforms it into electrical energy. Furthermore, the optimal resistance and length of the flag is predicted to maximize the energy harvesting. Different configurations of flag i.e., with Aluminium (Al) patch and PZT patch for flutter mode vibration mode are studied numerically and experimentally. The bifurcation diagram is constructed for the experimental campaign for the flutter instability of a cantilevered flag in subsonic wind-tunnel. Moreover, the flutter boundary conditions are analysed for reduced critical velocity and frequency. The designed PZT energy harvester via flag-flutter mechanism is suitable for energy harvesting in aerospace engineering applications to drive wireless sensors. The maximum output power that can be generated from the designed harvester is 6.72 mW and the optimal resistance is predicted to be 0.33 MΩ. Full article
Show Figures

Graphical abstract

Back to TopTop