Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = benzene-polycarboxylic acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2074 KiB  
Article
The Synthesis of Polycarboxylate Dispersants Containing Benzenesulfonic Acid Groups and Their Performance in Promoting Coal Particle Dispersion
by Lin Li, Zhisen Li, Shuo Yang, Chuandong Ma, Wenqi Zhang, Meng He and Xiaofang You
Molecules 2025, 30(12), 2493; https://doi.org/10.3390/molecules30122493 - 6 Jun 2025
Viewed by 408
Abstract
In this study, a polycarboxylate coal–water slurry dispersant (SSPA) containing benzenesulfonic acid groups was synthesized using allyl alcohol polyoxyethylene ether 500, sodium styrenesulfonate, and acrylic acid as raw materials. The effects of SSPA and a commercially available naphthalene-based dispersant (MF) on the slurry [...] Read more.
In this study, a polycarboxylate coal–water slurry dispersant (SSPA) containing benzenesulfonic acid groups was synthesized using allyl alcohol polyoxyethylene ether 500, sodium styrenesulfonate, and acrylic acid as raw materials. The effects of SSPA and a commercially available naphthalene-based dispersant (MF) on the slurry characteristics of low-rank coal were compared, and the maximum solid content of CWS prepared with SSPA reached 65.2%, which was 4% higher than that achieved with MF (61.2%). Unlike the more electronegative MF dispersant, SSPA features long polyether side chains that exert a robust steric hindrance effect, significantly enhancing coal particle dispersion. This results in a decrease in apparent viscosity and an increase in the stability of the CWS formulated with SSPA. Furthermore, adsorption experiments revealed that the adsorption kinetics of both SSPA and MF on coal conformed to the pseudo-second-order kinetic model. SSPA’s adsorption on coal particles followed the Langmuir isothermal adsorption model, and the KL value of 0.0094 for SSPA was greater than that of MF (0.0086). This indicates that SSPA has a stronger affinity for the coal surface. Overall, the superior adsorption efficacy of SSPA is attributed to the benzene ring in its nonpolar group, which facilitates steric hindrance with aromatic structures in coal. Additionally, SSPA improves slurry stability, achieving a penetration rate of 96.7%. Finally, the carboxylic acid groups in SSPA likely engage in electrostatic attraction with cations on the coal surface, enhancing adsorption. Full article
Show Figures

Figure 1

8 pages, 1613 KiB  
Communication
Protein Binding of a Novel Platinum-Based Anticancer Agent BP-C1 Containing a Lignin-Derived Polymeric Ligand
by Elena Fedoros, Sergey Pigarev, Natalya Ivanenko, Megan Westbury and Nikolay Solovyev
Appl. Sci. 2021, 11(22), 11008; https://doi.org/10.3390/app112211008 - 20 Nov 2021
Cited by 1 | Viewed by 2182
Abstract
Platinum (Pt) antineoplastic agents remain indispensable for the treatment of oncological disease. Pt-based drugs are mainly used in the therapy of ovarian cancer and non-small-cell lung carcinoma. A novel platinum-containing antineoplastic agent BP-C1 is a complex of diamminoplatinum with an oxygen-donor polymeric ligand [...] Read more.
Platinum (Pt) antineoplastic agents remain indispensable for the treatment of oncological disease. Pt-based drugs are mainly used in the therapy of ovarian cancer and non-small-cell lung carcinoma. A novel platinum-containing antineoplastic agent BP-C1 is a complex of diamminoplatinum with an oxygen-donor polymeric ligand of benzene-polycarboxylic acids, isolated from natural lignin. The aim of the study was to investigate ex vivo protein binding of BP-C1. Protein binding of BP-C1 was tested using equilibrium dialysis. Pooled blood plasma was used in the study. Control solutions contained the same dosages of BP-C1 in PBS (pH 7.2). Plasma and control solutions were submitted to equilibrium dialysis across a vertical 8 kDa cut-off membrane for 4 h at 37 °C under gentle shaking. Platinum was quantified in dialysis and retained fractions using inductively coupled plasma mass spectrometry after microwave digestion. The dialysis system was tested and validated; this showed no protein saturation with platinum. A medium degree of binding of platinum to macromolecular species of ca. 60% was observed. The study showed the maintenance of a high fraction of free BP-C1 in the bloodstream, facilitating its pharmacological activity. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

15 pages, 3140 KiB  
Article
Stability of Woodchips Biochar and Impact on Soil Carbon Stocks: Results from a Two-Year Field Experiment
by Irene Criscuoli, Maurizio Ventura, Katja Wiedner, Bruno Glaser, Pietro Panzacchi, Christian Ceccon, Maximilian Loesch, Barbara Raifer and Giustino Tonon
Forests 2021, 12(10), 1350; https://doi.org/10.3390/f12101350 - 2 Oct 2021
Cited by 8 | Viewed by 3042
Abstract
Biochar has been shown to improve soil quality and crop yields. Furthermore, thanks to its high carbon content (C) and stable chemical structure, biochar can sequester C in the soil for a long time, mitigating climate change. However, the variability in published biochar [...] Read more.
Biochar has been shown to improve soil quality and crop yields. Furthermore, thanks to its high carbon content (C) and stable chemical structure, biochar can sequester C in the soil for a long time, mitigating climate change. However, the variability in published biochar stability in the soil makes verifying this trait under different environmental and agricultural conditions necessary. Moreover, most of the published literature refers to short-term incubation experiments, which are considered to not adequately represent long-term dynamics under field conditions. This article reports the results of a field experiment carried out in a vineyard near Merano, northern Italy, where the stability of woodchips biochar in soil, its impact on the total soil C stocks as well as on the original soil organic C (priming effect) were studied over two years. Vineyard soil (Dystric Eutrochrept) was amended with biochar (25 and 50 t ha−1) alone or together with compost (45 t ha−1) and compared with unamended control soil. Two methods assessed the stability of biochar in soil: the isotopic mass balance approach and the quantification of Benzene PolyCarboxylic Acids (BPCAs), molecular markers of biochar. The amount of C in the soil organic matter (SOM-C) was determined in the amended plots by subtracting the amount of biochar-C from the total soil organic C stock, and the occurrence of priming effect was verified by comparing SOM-C values at the beginning and at the end of the experiment. Results did not show any significant biochar degradation for both application rates, but results were characterized by a high variation. The application of 50 t ha−1 of biochar significantly increased soil C stock while no effect of biochar on the degradation of SOM-C was observed. Results were confirmed in the case of biochar application together with compost. It can be concluded that the use of woodchips biochar as a soil amendment can increase soil C content in the medium term. However, further analyses are recommended to evaluate the impact of biochar on climate change mitigation in the long term. Full article
(This article belongs to the Special Issue Carbon and Nitrogen Cycles in Fruit Trees and Forest Ecosystems)
Show Figures

Figure 1

16 pages, 2831 KiB  
Article
Terra Preta Properties in Northwestern Amazonia (Colombia)
by Juan Manuel Orozco-Ortiz, Clara Patricia Peña-Venegas, Sara Louise Bauke, Christian Borgemeister, Ramona Mörchen, Eva Lehndorff and Wulf Amelung
Sustainability 2021, 13(13), 7088; https://doi.org/10.3390/su13137088 - 24 Jun 2021
Cited by 6 | Viewed by 4618
Abstract
Whereas many researchers still approach Terra Preta (TP) as a soil category, new evidence suggests that TP refers to a directional grading of soil property changes (i.e., color, pH, nutrients, etc.) within human-made soils, originating from human activities in pre-Columbian times. Currently, most [...] Read more.
Whereas many researchers still approach Terra Preta (TP) as a soil category, new evidence suggests that TP refers to a directional grading of soil property changes (i.e., color, pH, nutrients, etc.) within human-made soils, originating from human activities in pre-Columbian times. Currently, most TP research focuses on the Brazilian part of the Amazon basin, but only little information is available on TP soils in the Colombian Amazon. Here, we sampled four TP and surrounding soils in the Colombian Amazon region at different soil depths and analyzed them for (i) general soil properties such as color, pH and texture, (ii) soil organic carbon and black carbon (BC) contents, the latter using benzene polycarboxylic acids as molecular marker, (iii) phosphorus availability based on sequential fractionation, and (iv) microbial residue contents using amino sugars. Our data from Colombia’s middle Caquetá River and Leticia confirmed that SOC, BC, and total P were present in significantly higher concentrations in the TP areas than the surrounding soils, while pH values and microbial residue contents were unchanged. The enrichment of P forms comprised both easily extractable and stable P pools, which both dominated to a different degree, both in TP and adjacent soils. The different degree of SOC, BC and P enrichment suggests different amounts of waste disposal by the ancient populations at different TP sites, now warranting further research for reconstructing ancient population sizes from TP chemical analyses. Full article
Show Figures

Figure 1

16 pages, 2099 KiB  
Review
Concepts and Misconceptions of Humic Substances as the Stable Part of Soil Organic Matter: A Review
by Jörg Gerke
Agronomy 2018, 8(5), 76; https://doi.org/10.3390/agronomy8050076 - 17 May 2018
Cited by 135 | Viewed by 14101
Abstract
In the last three decades, the concept of soil humic substances has been questioned in two main directions. Misinterpretations of CP MAS13C NMR spectroscopy led to the conclusion that soil organic matter is mainly aliphatic, questioning the theory of polymerization of [...] Read more.
In the last three decades, the concept of soil humic substances has been questioned in two main directions. Misinterpretations of CP MAS13C NMR spectroscopy led to the conclusion that soil organic matter is mainly aliphatic, questioning the theory of polymerization of humic substances from phenolic molecules. Conversely, some critics of humic substances assume that a great proportion of aromatic soil organic carbon originates from fire-affected carbon, often termed as black carbon (BC). However, the determination of BC in soil by two widely applied methods, the benzene polycarboxylic acid marker method and the UV method, is not reliable and seems to strongly overestimate the BC content of soils. The concept of humic substances continues to be relevant today. The polymerization of phenolic molecules that originate from the degradation of lignin or synthesis by microorganisms may lead to humic substances which can incorporate a variety of organic and inorganic molecules and elements. The incorporation, e.g., of triazines or surfactants into the humic matrix, leading to bound residues, illustrates that humic substances are important to explain central reactions in soil. Humic substances are also important to understand the availability of plant nutrients in soil, including P, Fe, and Cu, and they may have a direct effect on the growth of higher plants in soil. Therefore, there are good reasons to reformulate or to further develop the concepts and models of humic substances introduced and developed by M. Schnitzer, W. Flaig, W. Ziechmann, and F.J. Stevenson. Full article
Show Figures

Figure 1

Back to TopTop