Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = bacterial multidrug efflux pumps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 589 KiB  
Review
Biofilm Formation and the Role of Efflux Pumps in ESKAPE Pathogens
by Trent R. Sorenson, Kira M. Zack and Suresh G. Joshi
Microorganisms 2025, 13(8), 1816; https://doi.org/10.3390/microorganisms13081816 - 4 Aug 2025
Viewed by 70
Abstract
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led [...] Read more.
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led to an increase in the effective costs in health care and a higher risk of mortality in hospitalized patients. These pathogens utilize antimicrobial efflux pump mechanisms and bacterial biofilm-forming capabilities to escape the bactericidal action of antimicrobials. ESKAPE bacteria forming colonies demonstrate increased expression of efflux pump-encoding genes. Efflux pumps not only expel antimicrobial agents but also contribute to biofilm formation by bacteria through (1) transport of molecules and transcription factors involved in biofilm quorum sensing, (2) bacterial fimbriae structure transport for biofilm adhesion to surfaces, and (3) regulation of a transmembrane gradient to survive the difficult conditions of biofilm microenvironments. The synergistic role of these mechanisms complicates treatment outcomes. Given the mechanistic link between biofilms and efflux pumps, therapeutic strategies should focus on targeting anti-biofilm mechanisms alongside efflux pump inactivation with efflux pump inhibitors. This review explores the molecular interplay between efflux pumps and biofilm formation, emphasizing potential therapeutic strategies such as efflux pump inhibitors (EPIs) and biofilm-targeting agents. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

21 pages, 1452 KiB  
Review
Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies
by Anna Duda-Madej, Szymon Viscardi, Hanna Bazan and Jakub Sobieraj
Pharmaceuticals 2025, 18(7), 947; https://doi.org/10.3390/ph18070947 - 24 Jun 2025
Viewed by 976
Abstract
In recent years, one of the most important issues in public health is the rapid growth of antibiotic resistance among pathogens. Multidrug-resistant (MDR) strains (mainly Enterobacteriaceae and non-fermenting bacilli) cause severe infections, against which commonly used pharmaceuticals are ineffective. Therefore, there is an [...] Read more.
In recent years, one of the most important issues in public health is the rapid growth of antibiotic resistance among pathogens. Multidrug-resistant (MDR) strains (mainly Enterobacteriaceae and non-fermenting bacilli) cause severe infections, against which commonly used pharmaceuticals are ineffective. Therefore, there is an urgent need for new treatment options and drugs with innovative mechanisms of action. Natural compounds, especially alkaloids, are showing promising potential in this area. This review focuses on the ability of the isoquinoline alkaloid berberine (BRB) to overcome various resistance mechanisms against conventional antimicrobial agents. BRB has demonstrated significant activity in inhibiting efflux pumps of the RND (Resistance-Nodulation-Cell Division) family, such as MexAB-OprM (P. aeruginosa) and AdeABC (A. baumannii). Moreover, BRB was able to decrease quorum sensing activity in both Gram-positive and Gram-negative pathogens, resulting in reduced biofilm formation and lower bacterial virulence. Additionally, BRB has been identified as a potential inhibitor of FtsZ, a key protein responsible for bacterial cell division. Particularly noteworthy, though requiring further investigation, are reports suggesting that BRB might inhibit β-lactamase enzymes, including NDM, AmpC, and ESβL types. The pleiotropic antibacterial actions of BRB, distinct from the mechanisms of traditional antibiotics, offer hope for breaking bacterial resistance. However, more extensive studies, especially in vivo, are necessary to fully evaluate the clinical potential of BRB and determine its practical applicability in combating antibiotic-resistant infections. Full article
Show Figures

Figure 1

45 pages, 2779 KiB  
Review
Tiny but Mighty: Small RNAs—The Micromanagers of Bacterial Survival, Virulence, and Host–Pathogen Interactions
by Rajdeep Banerjee
Non-Coding RNA 2025, 11(3), 36; https://doi.org/10.3390/ncrna11030036 - 5 May 2025
Cited by 1 | Viewed by 1656
Abstract
Bacterial pathogens have evolved diverse strategies to infect hosts, evade immune responses, and establish successful infections. While the role of transcription factors in bacterial virulence is well documented, emerging evidence highlights the significant contribution of small regulatory RNAs (sRNAs) in bacterial pathogenesis. These [...] Read more.
Bacterial pathogens have evolved diverse strategies to infect hosts, evade immune responses, and establish successful infections. While the role of transcription factors in bacterial virulence is well documented, emerging evidence highlights the significant contribution of small regulatory RNAs (sRNAs) in bacterial pathogenesis. These sRNAs function as posttranscriptional regulators that fine-tune gene expression, enabling bacteria to adapt rapidly to challenging environments. This review explores the multifaceted roles of bacterial sRNAs in host–pathogen interactions. Firstly, it examines how sRNAs regulate pathogenicity by modulating the expression of key virulence factors, including fimbriae, toxins, and secretion systems, followed by discussing the role of sRNAs in bacterial stress response mechanisms that counteract host immune defenses, such as oxidative and envelope stress. Additionally, this review investigates the involvement of sRNAs in antibiotic resistance by regulating efflux pumps, biofilm formation, and membrane modifications, which contribute to multi-drug resistance phenotypes. Lastly, this review highlights how sRNAs contribute to intra- and interspecies communication through quorum sensing, thereby coordinating bacterial behavior in response to environmental cues. Understanding these regulatory networks governed by sRNAs is essential for the development of innovative antimicrobial strategies. This review highlights the growing significance of sRNAs in bacterial pathogenicity and explores their potential as therapeutic targets for the treatment of bacterial infections. Full article
Show Figures

Figure 1

32 pages, 4178 KiB  
Review
The Impact of Plant-Derived Polyphenols on Combating Efflux-Mediated Antibiotic Resistance
by Anna Duda-Madej, Szymon Viscardi, Piotr Niezgódka, Wiktoria Szewczyk and Katarzyna Wińska
Int. J. Mol. Sci. 2025, 26(9), 4030; https://doi.org/10.3390/ijms26094030 - 24 Apr 2025
Cited by 1 | Viewed by 1114
Abstract
The global healthcare system is increasingly challenged by the rising prevalence of multidrug-resistant bacteria and the limited therapeutic options for related infections. Efflux-mediated antibiotic resistance represents a significant obstacle, primarily due to the absence of drugs specifically designed to target bacterial efflux pumps. [...] Read more.
The global healthcare system is increasingly challenged by the rising prevalence of multidrug-resistant bacteria and the limited therapeutic options for related infections. Efflux-mediated antibiotic resistance represents a significant obstacle, primarily due to the absence of drugs specifically designed to target bacterial efflux pumps. Recent research has identified polyphenols, a broad class of plant-derived organic compounds, as potential inhibitors of efflux pump activity. This review consolidates data on the inhibitory properties of eight widely distributed polyphenols: curcumin, quercetin, luteolin, tannic acid, naringenin, epigallocatechin-3-gallate, ellagic acid, and resveratrol. These compounds have demonstrated the capacity to inhibit efflux pumps, either through direct interference with bacterial protein function or by downregulating the expression of genes encoding pump subunits. Importantly, several polyphenols exhibit synergistic interactions with antibiotics, including colistin, ciprofloxacin, and tetracycline. For instance, quercetin has shown inhibitory potency comparable to that of established efflux pump inhibitors such as verapamil and reserpine. These findings suggest that polyphenols represent promising candidates for the development of novel efflux pump inhibitors. However, further research is required to validate their efficacy and safety and facilitate their translation into clinical applications for combating antibiotic resistance. Full article
(This article belongs to the Special Issue Drug Treatment for Bacterial Infections)
Show Figures

Figure 1

30 pages, 8835 KiB  
Article
Colistin-Conjugated Selenium Nanoparticles: A Dual-Action Strategy Against Drug-Resistant Infections and Cancer
by Mais E. Ahmed, Kholoud K. Alzahrani, Nedal M. Fahmy, Hayfa Habes Almutairi, Zainab H. Almansour and Mir Waqas Alam
Pharmaceutics 2025, 17(5), 556; https://doi.org/10.3390/pharmaceutics17050556 - 24 Apr 2025
Cited by 2 | Viewed by 1056
Abstract
Background/Objective: Antimicrobial resistance (AMR) and therapy-resistant cancer cells represent major clinical challenges, necessitating the development of novel therapeutic strategies. This study explores the use of selenium nanoparticles (SeNPs) and colistin-conjugated selenium nanoparticles (Col-SeNPs) as a dual-function nanotherapeutic against multidrug-resistant Pseudomonas aeruginosa, [...] Read more.
Background/Objective: Antimicrobial resistance (AMR) and therapy-resistant cancer cells represent major clinical challenges, necessitating the development of novel therapeutic strategies. This study explores the use of selenium nanoparticles (SeNPs) and colistin-conjugated selenium nanoparticles (Col-SeNPs) as a dual-function nanotherapeutic against multidrug-resistant Pseudomonas aeruginosa, antifungal-drug-resistant Candida spp., and human breast carcinoma (MCF-7) cells. Methods: SeNPs were synthesized and characterized using UV-Vis spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR), confirming their nanoscale morphology, purity, and stability. Results: The antimicrobial activity of SeNPs and Col-SeNPs was assessed based on the minimum inhibitory concentration (MIC) and bacterial viability assays. Col-SeNPs exhibited enhanced antibacterial effects against P. aeruginosa, along with significant downregulation of the mexY efflux pump gene, which is associated with colistin resistance. Additionally, Col-SeNPs demonstrated superior antifungal activity against Candida albicans, C. glabrata, and C. krusei compared to SeNPs alone. The anticancer potential of Col-SeNPs was evaluated in MCF-7 cells using the MTT assay, revealing dose-dependent cytotoxicity through apoptosis and oxidative stress pathways. Although MCF-7 is not inherently drug-resistant, this model was used to explore the potential of Col-SeNPs in overcoming resistance mechanisms commonly encountered in cancer therapy. Conclusions: these findings support the promise of Col-SeNPs as a novel approach for addressing both antimicrobial resistance and cancer treatment challenges. Further in vivo studies, including pharmacokinetics and combination therapies, are warranted to advance clinical translation. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

28 pages, 723 KiB  
Review
Novel Antibacterial Approaches and Therapeutic Strategies
by Gustavo A. Niño-Vega, Jorge A. Ortiz-Ramírez and Everardo López-Romero
Antibiotics 2025, 14(4), 404; https://doi.org/10.3390/antibiotics14040404 - 15 Apr 2025
Viewed by 1901
Abstract
The increase in multidrug-resistant organisms worldwide is a major public health threat driven by antibiotic overuse, horizontal gene transfer (HGT), environmental drivers, and deficient infection control in hospitals. In this article, we discuss these factors and summarize the new drugs and treatment strategies [...] Read more.
The increase in multidrug-resistant organisms worldwide is a major public health threat driven by antibiotic overuse, horizontal gene transfer (HGT), environmental drivers, and deficient infection control in hospitals. In this article, we discuss these factors and summarize the new drugs and treatment strategies suggested to combat the increasing challenges of multidrug-resistant (MDR) bacteria. New treatments recently developed involve targeting key processes involved in bacterial growth, such as riboswitches and proteolysis, and combination therapies to improve efficacy and minimize adverse effects. It also tackles the challenges of the Gram-negative bacterial outer membrane, stressing that novel strategies are needed to evade permeability barriers, efflux pumps, and resistance mechanisms. Other approaches, including phage therapy, AMPs, and AI in drug discovery, are also discussed as potential alternatives. Finally, this review points out the urgency for continued research and development (R&D), industry–academic partnerships, and financial engines to ensure that MDR microbes do not exceed the value of antibacterial therapies. Full article
(This article belongs to the Special Issue Evaluation of Emerging Antimicrobials)
Show Figures

Figure 1

30 pages, 14924 KiB  
Review
Research Progress on the Antibacterial Activity of Natural Flavonoids
by Zhijin Zhang, Mingze Cao, Zixuan Shang, Jing Xu, Xu Chen, Zhen Zhu, Weiwei Wang, Xiaojuan Wei, Xuzheng Zhou, Yubin Bai and Jiyu Zhang
Antibiotics 2025, 14(4), 334; https://doi.org/10.3390/antibiotics14040334 - 22 Mar 2025
Cited by 1 | Viewed by 1942
Abstract
The use of antibiotics has greatly improved the treatment of bacterial infections; however, its abuse and misuse has led to a rapid rise in multidrug-resistant (MDR) bacteria. Therefore, the search for new antimicrobial strategies has become critical. Natural flavonoids, a class of widely [...] Read more.
The use of antibiotics has greatly improved the treatment of bacterial infections; however, its abuse and misuse has led to a rapid rise in multidrug-resistant (MDR) bacteria. Therefore, the search for new antimicrobial strategies has become critical. Natural flavonoids, a class of widely existing phytochemicals, have gained significant research interest for their diverse biological activities and antibacterial effects on various drug-resistant bacteria. This review summarizes the latest research progress on flavonoids, with a particular focus on several flavonoids exhibiting certain antibacterial activity, and explores their antibacterial mechanisms, including disruption of cell membranes and cell walls, inhibition of proteins and nucleic acids, interference with signal transduction, suppression of efflux pump activity, and inhibition of biofilm formation and virulence factor production. Additionally, we have reviewed the synergistic combinations of flavonoids with antibiotics, such as the combination of quercetin with colistin or EGCG with tetracycline, which significantly enhance therapeutic efficacy. Full article
Show Figures

Graphical abstract

39 pages, 3395 KiB  
Review
Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review
by Mostafa E. Elshobary, Nadia K. Badawy, Yara Ashraf, Asmaa A. Zatioun, Hagar H. Masriya, Mohamed M. Ammar, Nourhan A. Mohamed, Sohaila Mourad and Abdelrahman M. Assy
Pharmaceuticals 2025, 18(3), 402; https://doi.org/10.3390/ph18030402 - 12 Mar 2025
Cited by 15 | Viewed by 8907
Abstract
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, [...] Read more.
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, efflux pump overexpression, biofilm formation, target site modifications, and the enzymatic degradation of antibiotics. Specific focus is given to membrane transport systems such as ATP-binding cassette (ABC) transporters, resistance–nodulation–division (RND) efflux pumps, major facilitator superfamily (MFS) transporters, multidrug and toxic compound extrusion (MATE) systems, small multidrug resistance (SMR) families, and proteobacterial antimicrobial compound efflux (PACE) families. Additionally, the review explores the global burden of MDR pathogens and evaluates emerging therapeutic strategies, including quorum quenching (QQ), probiotics, postbiotics, synbiotics, antimicrobial peptides (AMPs), stem cell applications, immunotherapy, antibacterial photodynamic therapy (aPDT), and bacteriophage. Furthermore, this review discusses novel antimicrobial agents, such as animal-venom-derived compounds and nanobiotics, as promising alternatives to conventional antibiotics. The interplay between clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) in bacterial adaptive immunity is analyzed, revealing opportunities for targeted genetic interventions. By synthesizing current advancements and emerging strategies, this review underscores the necessity of interdisciplinary collaboration among biomedical scientists, researchers, and the pharmaceutical industry to drive the development of novel antibacterial agents. Ultimately, this comprehensive analysis provides a roadmap for future research, emphasizing the urgent need for sustainable and cooperative approaches to combat antibiotic resistance and safeguard global health. Full article
Show Figures

Graphical abstract

20 pages, 2107 KiB  
Article
Inhibitory Effect of Antimicrobial Peptides Bac7(17), PAsmr5-17 and PAβN on Bacterial Growth and Biofilm Formation of Multidrug-Resistant Acinetobacter baumannii
by Johanna Rühl-Teichner, Daniela Müller, Ivonne Stamm, Stephan Göttig, Ursula Leidner, Torsten Semmler and Christa Ewers
Microorganisms 2025, 13(3), 639; https://doi.org/10.3390/microorganisms13030639 - 11 Mar 2025
Viewed by 935
Abstract
Acinetobacter (A.) baumannii is a major nosocomial pathogen in human and veterinary medicine. The emergence of certain international clones (ICs), often with multidrug-resistant (MDR) phenotypes and biofilm formation (BF), facilitates its spread in clinical environments. The global rise in antimicrobial resistance [...] Read more.
Acinetobacter (A.) baumannii is a major nosocomial pathogen in human and veterinary medicine. The emergence of certain international clones (ICs), often with multidrug-resistant (MDR) phenotypes and biofilm formation (BF), facilitates its spread in clinical environments. The global rise in antimicrobial resistance demands alternative treatment strategies, such as antimicrobial peptides (AMPs). In this study, 45 human and companion animal MDR-A. baumannii isolates, belonging to the globally spread IC1, IC2 and IC7, were tested for antimicrobial resistance and biofilm-associated genes (BAGs) and their capacity for BF. Of these, 13 were used to test the inhibitory effect of AMPs on bacterial growth (BG) and BF through the application of a crystal violet assay. The two novel AMP variants Bac7(17) (target cell inactivation) and Pasmr5-17 (efflux pump inhibition) and the well-known AMP phenylalanine-arginine-β-naphthylamide (PAβN) were tested at concentrations of 1.95 to 1000 µg/mL. Based on whole-genome sequence data, identical patterns of BAGs were detected within the same IC. AMPs inhibited BG and BF in a dose-dependent manner. Bac7(17) and PAsmr5-17 were highly effective against BG, with growth inhibition (GI) of >99% (62.5 and 125 µg/mL, respectively). PAβN achieved only 95.7% GI at 1000 µg/mL. Similar results were obtained for BF. Differences between the ICs were found for both GI and BF when influenced by AMPs. PAsmr5-17 had hardly any inhibitory effect on the BF of IC1 isolates, but for IC2 and IC7 isolates, 31.25 µg/mL was sufficient. Our data show that the susceptibility of animal MDR-A. baumannii to AMPs most likely resembles that of human isolates, depending on their assignment to a particular IC. Even low concentrations of AMPs had a significant effect on BG. Therefore, AMPs represent a promising alternative in the treatment of MDR-A. baumannii, either as the sole therapy or in combination with antibiotics. Full article
(This article belongs to the Special Issue Therapeutic Potential of Antimicrobial Peptides)
Show Figures

Figure 1

20 pages, 3618 KiB  
Review
Flavonoids as Promising Natural Compounds for Combating Bacterial Infections
by Ying Liu, Jiajia Zhu, Zhenyi Liu, Yan Zhi, Chen Mei and Hongjun Wang
Int. J. Mol. Sci. 2025, 26(6), 2455; https://doi.org/10.3390/ijms26062455 - 10 Mar 2025
Cited by 9 | Viewed by 3141
Abstract
The increasing emergence and dissemination of multidrug-resistant (MDR) bacterial pathogens have intensified the need for new antibiotics and alternative therapeutic strategies. Flavonoids, a diverse group of bioactive natural compounds found in plants, have shown significant promise as antibacterial agents. Flavonoids inhibit bacterial growth [...] Read more.
The increasing emergence and dissemination of multidrug-resistant (MDR) bacterial pathogens have intensified the need for new antibiotics and alternative therapeutic strategies. Flavonoids, a diverse group of bioactive natural compounds found in plants, have shown significant promise as antibacterial agents. Flavonoids inhibit bacterial growth through various mechanisms, including disruption of cell wall synthesis, prevention of biofilm formation, disruption of cell membrane integrity, and inhibition of bacterial efflux pumps. These actions not only reduce bacterial viability but also enhance the efficacy of conventional antibiotics, offering a potential solution to antibiotic resistance. However, challenges such as poor bioavailability limit their clinical application. Recent advances in nanotechnology-based drug delivery systems, chemical modifications, and formulation techniques have shown promise in improving flavonoid bioavailability and therapeutic efficacy. This review evaluates the antibacterial mechanisms of flavonoids, explores their potential synergistic effects with antibiotics, and highlights strategies to overcome bioavailability issues. Our findings underscore the importance of continued research on flavonoids as promising candidates for innovative antibacterial therapies aimed at combating MDR bacterial infections. Full article
Show Figures

Figure 1

12 pages, 450 KiB  
Article
Antimicrobial and Metal Resistance Genes in Bacteria Isolated from Mine Water in Austria
by Jakob Prochaska, Heinz Reitner, Christian Benold, Alfred Stadtschnitzer, Buyantogtokh Choijilsuren, Dmitrij Sofka, Friederike Hilbert and Cátia Pacífico
Antibiotics 2025, 14(3), 262; https://doi.org/10.3390/antibiotics14030262 - 4 Mar 2025
Cited by 1 | Viewed by 1298
Abstract
Background/Objectives: Microbiomes surrounding mining sites have been found to harbor both antibiotic resistance genes and metal resistance genes. Within the “One Health” framework, which spans human, veterinary and environmental health, it is crucial to determine whether bacterial metal resistance (MR) genes can independently [...] Read more.
Background/Objectives: Microbiomes surrounding mining sites have been found to harbor both antibiotic resistance genes and metal resistance genes. Within the “One Health” framework, which spans human, veterinary and environmental health, it is crucial to determine whether bacterial metal resistance (MR) genes can independently trigger antimicrobial resistance (AMR) or if they are linked to AMR genes and co-transferred horizontally. Methods and Results: Bacteria were isolated from an active and an inactive mining site in the alpine region of Austria. Most of the isolated bacteria harbored antimicrobial and metal resistance genes (88%). MALDI-TOF and whole genome sequencing (WGS) revealed that species from the Pseudomonadaceae family were the most identified, accounting for 32.5%. All Pseudomonas spp. carried AMR genes from the mex family, which encode multidrug efflux pumps. β-lactamase production encoded by bla genes were detected as the second most common (26%). The same AMR genes have often been detected within a particular bacterial genus. No tetracycline resistance gene has been identified. Among metal resistance genes, rufB (tellurium resistance) was the most prevalent (33%), followed by recGM (selenium resistance, 30%), copA (copper resistance, 26%), and mgtA (magnesium and cobalt resistance, 26%). Notably, the mer gene family (mercury resistance) was found exclusively in isolates from the inactive mining site (n = 6). In addition, genes associated with both antimicrobial and metal resistance, including arsBM, acrD, and the mer operon, were identified in 19 out of the 43 isolates. Conclusions: Bacteria isolated from mine water harbored both MR and AMR genes. Given the exceptional diversity of bacterial species in these settings, 16S rRNA gene sequence analysis is the recommended method for accurate species identification. Moreover, the presence of multi-drug transporters and transferable resistance genes against critically important antimicrobials such as fluoroquinolones and colistin identified in these environmental bacteria emphasizes the importance of retrieving environmental data within the “One Health” framework. Full article
Show Figures

Figure 1

31 pages, 2169 KiB  
Review
Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications
by Nargish Parvin, Sang Woo Joo and Tapas K. Mandal
Antibiotics 2025, 14(2), 207; https://doi.org/10.3390/antibiotics14020207 - 18 Feb 2025
Cited by 13 | Viewed by 3647
Abstract
The rapid rise of antibiotic resistance has become a global health crisis, necessitating the development of innovative strategies to combat multidrug-resistant (MDR) pathogens. Nanomaterials have emerged as promising tools in this fight, offering unique physicochemical properties that enhance antibiotic efficacy, overcome resistance mechanisms, [...] Read more.
The rapid rise of antibiotic resistance has become a global health crisis, necessitating the development of innovative strategies to combat multidrug-resistant (MDR) pathogens. Nanomaterials have emerged as promising tools in this fight, offering unique physicochemical properties that enhance antibiotic efficacy, overcome resistance mechanisms, and provide alternative therapeutic approaches. This review explores the diverse nanomaterial-based strategies used to combat antibiotic resistance, focusing on their mechanisms of action and practical applications. Nanomaterials such as metal nanoparticles, carbon-based nanomaterials, and polymeric nanostructures exhibit antibacterial properties through various pathways, including the generation of reactive oxygen species (ROS), disruption of bacterial membranes, and enhancement of antibiotic delivery. Additionally, the ability of nanomaterials to bypass traditional resistance mechanisms, such as biofilm formation and efflux pumps, has been demonstrated in numerous studies. This review also discusses the synergistic effects observed when nanomaterials are combined with conventional antibiotics, leading to increased bacterial susceptibility and reduced required dosages. By highlighting the recent advancements and clinical applications of nanomaterial–antibiotic combinations, this paper provides a comprehensive overview of how nanomaterials are reshaping the future of antibacterial therapies. Future research directions and challenges, including toxicity and scalability, are also addressed to guide the development of safer, more effective nanomaterial-based antibacterial treatments. Full article
Show Figures

Figure 1

27 pages, 9267 KiB  
Article
Selective Serotonin Reuptake Inhibitors: Antimicrobial Activity Against ESKAPEE Bacteria and Mechanisms of Action
by Thiago Hideo Endo, Mariana Homem de Mello Santos, Sara Scandorieiro, Bruna Carolina Gonçalves, Eliana Carolina Vespero, Márcia Regina Eches Perugini, Wander Rogério Pavanelli, Gerson Nakazato and Renata Katsuko Takayama Kobayashi
Antibiotics 2025, 14(1), 51; https://doi.org/10.3390/antibiotics14010051 - 8 Jan 2025
Cited by 2 | Viewed by 1655
Abstract
Background: Multidrug-resistant bacteria cause over 700,000 deaths annually, a figure projected to reach 10 million by 2050. Among these bacteria, the ESKAPEE group is notable for its multiple resistance mechanisms. Given the high costs of developing new antimicrobials and the rapid emergence of [...] Read more.
Background: Multidrug-resistant bacteria cause over 700,000 deaths annually, a figure projected to reach 10 million by 2050. Among these bacteria, the ESKAPEE group is notable for its multiple resistance mechanisms. Given the high costs of developing new antimicrobials and the rapid emergence of resistance, drug repositioning offers a promising alternative. Results: This study evaluates the antibacterial activity of sertraline and paroxetine. When tested against clinical and reference strains from the ESKAPEE group, sertraline exhibited minimum inhibitory concentration (MIC) values between 15 and 126 μg/mL, while the MIC values for paroxetine ranged from 60 to 250 μg/mL. Both drugs effectively eradicated bacterial populations within 2 to 24 h and caused morphological changes, such as protrusions and cellular fragmentation, as shown by electron scanning microscopy. Regarding their mechanisms of action as antibacterials, for the first time, increased membrane permeability was detected, as evidenced by heightened dye absorption, along with the increased presence of total proteins and dsDNA in the extracellular medium of Escherichia coli ATCC2 25922 and Staphylococcus aureus ATCC 25923, and oxidative stress was also detected in bacteria treated with sertraline and paroxetine, with reduced efficiency observed in the presence of antioxidants and higher levels of oxygen-reactive species evidenced by their reaction with 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate. The drugs also inhibited bacterial efflux pumps, increasing ethidium bromide accumulation and enhancing tetracycline activity in resistant strains. Conclusions: These findings indicate that sertraline and paroxetine could serve as alternative treatments against multidrug-resistant bacteria, as well as efflux pump inhibitors (EPIs), and they support further development of antimicrobial agents based on these compounds. Full article
(This article belongs to the Special Issue Efflux Pumps in Bacteria: What They Do and How We Can Stop Them)
Show Figures

Figure 1

17 pages, 5675 KiB  
Article
Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction
by Roger Henrique Sousa da Costa, Renata Torres Pessoa, Eduardo dos Santos Silva, Isaac Moura Araujo, Sheila Alves Gonçalves, Janaína Esmeraldo Rocha, Francisco Nascimento Pereira Junior, Naiara Cipriano Oliveira, Victor Moreira de Oliveira, Matheus Nunes da Rocha, Emmanuel Silva Marinho, Natália Kelly Gomes de Carvalho, José Galberto Martins da Costa, Hélcio Silva dos Santos and Irwin Rose Alencar de Menezes
Pharmaceutics 2024, 16(11), 1469; https://doi.org/10.3390/pharmaceutics16111469 - 18 Nov 2024
Cited by 2 | Viewed by 1433
Abstract
Background/Objectives: The work investigates the effect of the estragole complex encapsulated in beta-cyclodextrin (ES/β-CD) in modulating bacterial resistance, specifically in Staphylococcus aureus strains expressing NorA and MepA efflux pumps. Efflux pumps are mechanisms that bacteria use to resist antibiotics by expelling them from [...] Read more.
Background/Objectives: The work investigates the effect of the estragole complex encapsulated in beta-cyclodextrin (ES/β-CD) in modulating bacterial resistance, specifically in Staphylococcus aureus strains expressing NorA and MepA efflux pumps. Efflux pumps are mechanisms that bacteria use to resist antibiotics by expelling them from the cell. Methodology: Several compounds and antibiotics, such as ciprofloxacin and norfloxacin, were used to evaluate the antimicrobial activity and the ability of the ES/β-CD complex to reverse resistance. Methods: The study included scanning electron microscopy assays, minimum inhibitory concentration (MIC) determination, and efflux pump inhibition tests. Results: The ES/β-CD complex did not show significant direct antibacterial activity. However, it modulated the action of norfloxacin, decreasing the MIC when combined with this antibiotic in the 1199B (NorA) strain. These results suggest a potential for synergy but not a direct inhibition of efflux pumps. Conclusion: ES/β-CD can potentiate the efficacy of some antibiotics but does not directly act as an efflux pump inhibitor; it is more of an antibiotic potentiator than a direct solution to bacterial resistance. The molecular docking simulation data suggest its high affinity for forming the ES/β-CD complex. The pharmacokinetic predictions based on MPO suggest that the compound has moderate lipophilicity, highly effective cellular permeability, and low incidence of organic toxicity, pointing to a promising pharmacological principle with controlled daily oral dosing. Conclusions: These results indicate this complex’s possible and relevant association as an adjuvant in antibiotic therapy to reduce multidrug-resistant bacteria; however, new in vivo assays are necessary to confirm this effect. Full article
Show Figures

Figure 1

11 pages, 751 KiB  
Article
Genetic Characterization of Multidrug-Resistant Acinetobacter baumannii and Synergy Assessment of Antimicrobial Combinations
by Aurora Luna-De-Alba, Samantha Flores-Treviño, Adrián Camacho-Ortiz, Juan Francisco Contreras-Cordero and Paola Bocanegra-Ibarias
Antibiotics 2024, 13(11), 1079; https://doi.org/10.3390/antibiotics13111079 - 13 Nov 2024
Cited by 1 | Viewed by 1883
Abstract
Background/Objectives: A. baumannii is a prominent nosocomial pathogen due to its drug-resistant phenotype, representing a public health problem. In this study, the aim was to determine the effect of different antimicrobial combinations against selected multidrug-resistant (MDR) or extensive drug-resistant (XDR) isolates of [...] Read more.
Background/Objectives: A. baumannii is a prominent nosocomial pathogen due to its drug-resistant phenotype, representing a public health problem. In this study, the aim was to determine the effect of different antimicrobial combinations against selected multidrug-resistant (MDR) or extensive drug-resistant (XDR) isolates of A. baumannii. Methods: MDR or XDR A. baumannii isolates were characterized by assessing genes associated with drug resistance, efflux pumps, porin expression, and biofilm formation. The activities of antimicrobial combinations including tigecycline, ampicillin/sulbactam, meropenem, levofloxacin, and colistin were evaluated using checkerboard and time-to-kill assays on isolates with different susceptibility profiles and genetic characteristics. Results: Genetic characterization of MDR/XDR strains (n = 100) included analysis of OXA-24/40 gene carbapenemase (98%), genes encoding aminoglycoside-modifying enzymes (44%), and parC gene mutations (10%). AdeIJK, AdeABC, and AdeFGH efflux pumps were overexpressed in 17–34% of isolates. Omp33-36, OmpA, and CarO membrane porins were under-expressed in 50–76% of isolates; CarO was overexpressed in 22% of isolates. Isolates showed low biofilm production (11%). Synergistic activity was observed with levofloxacin-ampicillin/sulbactam and meropenem-colistin, which were able to inhibit bacterial growth. Conclusions: Genetic characteristics of A. baumannii were highly variable among the strains. Synergistic activity was observed with meropenem-colistin and levofloxacin-ampicillin/sulbactam combinations in the checkerboard method, but not in the time-to-kill assays. These discrepancies among both methods indicate that further studies are needed to determine the best therapeutic combination for treating infections by A. baumannii. Full article
Show Figures

Figure 1

Back to TopTop