Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,049)

Search Parameters:
Keywords = bacterial defenses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 318
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

38 pages, 4533 KiB  
Review
A Narrative Review on the Multifaceted Roles of Galectins in Host–Pathogen Interactions During Helicobacter pylori Infection
by Bojan Stojanovic, Natasa Zdravkovic, Marko Petrovic, Ivan Jovanovic, Bojana S. Stojanovic, Milica Dimitrijevic Stojanovic, Jelena Nesic, Milan Paunovic, Ivana Milivojcevic Bevc, Nikola Mirkovic, Mladen Pavlovic, Nenad Zornic, Bojan Milosevic, Danijela Tasic-Uros, Jelena Zivic, Goran Colakovic and Aleksandar Cvetkovic
Int. J. Mol. Sci. 2025, 26(15), 7216; https://doi.org/10.3390/ijms26157216 - 25 Jul 2025
Viewed by 197
Abstract
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly [...] Read more.
Helicobacter pylori infection represents one of the most prevalent and persistent bacterial infections worldwide, closely linked to a spectrum of gastroduodenal diseases, including chronic gastritis, peptic ulceration, and gastric cancer. Recent advances have shed light on the critical role of endogenous lectins, particularly galectins, in modulating host–pathogen interactions within the gastric mucosa. Galectins are β-galactoside-binding proteins with highly conserved structures but diverse biological functions, ranging from regulation of innate and adaptive immunity to modulation of cell signaling, apoptosis, and epithelial integrity. This review provides a comprehensive synthesis of current knowledge on the involvement of key galectin family members—especially Galectin-1, -2, -3, -8, and -9—in the context of H. pylori infection. Their dual roles in enhancing mucosal defense and facilitating bacterial persistence are examined along with their contributions to immune evasion, inflammation, and gastric carcinogenesis. Understanding the interplay between galectins and H. pylori enhances our knowledge of mucosal immunity. This interaction may also reveal potential biomarkers for disease progression and identify novel therapeutic targets. Modulating galectin-mediated pathways could improve outcomes in H. pylori-associated diseases. Full article
(This article belongs to the Special Issue New Insights into Lectins)
Show Figures

Figure 1

15 pages, 1024 KiB  
Review
The Impact of Endocrine Disruptors on the Female Genital Tract Microbiome: A Narrative Review
by Efthalia Moustakli, Themos Grigoriadis, Anastasios Potiris, Eirini Drakaki, Athanasios Zikopoulos, Ismini Anagnostaki, Athanasios Zachariou, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Life 2025, 15(8), 1177; https://doi.org/10.3390/life15081177 - 24 Jul 2025
Viewed by 251
Abstract
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially [...] Read more.
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially the vaginal microbiota, contributes significantly to reproductive health maintenance, defense against infection, and favorable pregnancy outcomes. Disruption of the delicate microbial environment is associated with conditions like bacterial vaginosis, infertility, and preterm birth. Methods: The present narrative review summarizes the existing literature on EDs’ potential for changing the FGT microbiome. We discuss EDs like bisphenol A (BPA), phthalates, and parabens and their potential for disrupting the FGT microbiome through ED-induced hormone perturbations, immune modulation, and epithelial barrier breach, which could lead to microbial dysbiosis. Results: Preliminary evidence suggests that ED exposure–microbial composition changes relationships; however, robust human evidence for EDs’ changes on the FGT microbiome remains scarce. Conclusions: Our review addresses major research gaps and suggests future directions for investigation, such as the necessity for longitudinal and mechanistic studies that combine microbiome, exposome, and endocrine parameters. The relationship between EDs and the FGT microbiome could be critical for enhancing women’s reproductive health and for steering regulatory policies on exposure to environmental chemicals. Full article
Show Figures

Figure 1

13 pages, 1723 KiB  
Article
Effects of Trimethylamine Concentrations in Hatching Eggs on Chick Quality in Dwarf Hens
by Xuefeng Shi, Lin Xuan, Jiahui Lai, Caiyun Jiang, Junying Li, Guiyun Xu and Jiangxia Zheng
Animals 2025, 15(14), 2121; https://doi.org/10.3390/ani15142121 - 17 Jul 2025
Viewed by 267
Abstract
Microbial contamination of hatching eggs often leads to reduced hatchability and poor chick quality. As trimethylamine (TMA), a metabolite derived from dietary choline, has antimicrobial properties, increasing yolk TMA contents may increase bacterial resistance to eggs; however, the effects of TMA concentrations on [...] Read more.
Microbial contamination of hatching eggs often leads to reduced hatchability and poor chick quality. As trimethylamine (TMA), a metabolite derived from dietary choline, has antimicrobial properties, increasing yolk TMA contents may increase bacterial resistance to eggs; however, the effects of TMA concentrations on chick quality remain unknown. Hence, this study was conducted to determine the effects of yolk TMA concentrations on the hatchability and chick quality of dwarf hens with different FMO3 genotypes. Hens (n = 140) were divided into control and experimental groups; the latter received choline chloride (2800 mg/kg) to elevate their yolk TMA concentrations. The TMA content, Pasgar score, hatchability, and post-hatching performance were evaluated. The results showed that choline supplementation significantly increased TMA concentrations in hens with AT and TT genotypes. Higher yolk TMA concentrations (≥4 µg/g) correlated with improved Pasgar scores and reduced abnormalities in vitality, navel, and yolk sac absorption. Hatchability peaked at 6.49 µg/g TMA, suggesting a threshold effect. Although the growth rate remained unaffected, chick mortality decreased in the high-TMA group. Therefore, moderate TMA concentrations can enhance egg antimicrobial defenses and improve reproductive performance. This strategy provides a biologically grounded alternative to traditional chemical disinfection in hatcheries. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

19 pages, 4660 KiB  
Article
Replacement of the Genomic Scaffold Improves the Replication Efficiency of Synthetic Klebsiella Phages
by Ivan K. Baykov, Olga M. Kurchenko, Ekaterina E. Mikhaylova, Anna V. Miroshnikova, Vera V. Morozova, Marianna I. Khlebnikova, Artem Yu. Tikunov, Yuliya N. Kozlova and Nina V. Tikunova
Int. J. Mol. Sci. 2025, 26(14), 6824; https://doi.org/10.3390/ijms26146824 - 16 Jul 2025
Viewed by 283
Abstract
In this study, the impact of the genomic scaffold on the properties of bacteriophages was investigated by swapping the genomic scaffolds surrounding the tailspike genes between two Przondovirus phages, KP192 and KP195, which infect Klebsiella pneumoniae with different capsular types. A yeast-based transformation-associated [...] Read more.
In this study, the impact of the genomic scaffold on the properties of bacteriophages was investigated by swapping the genomic scaffolds surrounding the tailspike genes between two Przondovirus phages, KP192 and KP195, which infect Klebsiella pneumoniae with different capsular types. A yeast-based transformation-associated recombination cloning technique and subsequent “rebooting” of synthetic phage genomes in bacteria were used to construct the phages. Using Klebsiella strains with K2, K64, and KL111 capsular types, it was shown that the capsular specificity of the synthetic phages is fully consistent with that of the tailspike proteins (tsp). However, the efficiency of plating and the lytic efficiency of these phages strongly depended on the genomic scaffold used and the Klebsiella strain used. Synthetic phages with swapped genomic scaffolds demonstrated superior reproduction efficiency using a number of strains compared to wild-type phages, indicating that some elements of the swapped genomic scaffold enhance phage replication efficiency, presumably by blocking some of the host anti-phage defense systems. Our findings demonstrate that even in the case of closely related phages, the selection of the genomic scaffold used for tsp gene transplantation can have a profound impact on the efficiency of phage propagation on target bacterial strains. Full article
(This article belongs to the Special Issue Exploring Phage–Host Interactions: Novel Findings and Perspectives)
Show Figures

Figure 1

13 pages, 737 KiB  
Article
Atmospheric Carbon Dioxide Modifies the Antimicrobial Activity and Oxidative Stress Generated by Ciprofloxacin in Escherichia coli
by Viviana Cano Aristizábal, Elia Soledad Mendoza Ocampo, Melisa de los Ángeles Quinteros, María Gabriela Paraje and Paulina Laura Páez
Pathogens 2025, 14(7), 689; https://doi.org/10.3390/pathogens14070689 - 14 Jul 2025
Viewed by 338
Abstract
The accelerated increase in atmospheric CO2 concentration is one of the most pressing problems at present. It is possible that this increase causes slight modifications in intracellular CO2. The aim of this work was to determine whether CO2 at [...] Read more.
The accelerated increase in atmospheric CO2 concentration is one of the most pressing problems at present. It is possible that this increase causes slight modifications in intracellular CO2. The aim of this work was to determine whether CO2 at different concentrations can affect the oxidative damage caused by ciprofloxacin (CIP) in Escherichia coli and to evaluate the possible implications of this effect for human health. To identify the effects of CO2 on the action of CIP, reactive oxygen (ROS) and reactive nitrogen (RNS) species were measured at two different CO2 concentrations while monitoring the bacterial antioxidant response. These assays showed that CO2 led to a decrease in ROS formation relative to that under atmospheric conditions (ACs), while it had the opposite effect on RNS formation, which increased relative to that under ACs. Under CO2 conditions, antioxidant defenses were less activated, with superoxide dismutase, catalase, and ferric reducing assay potency decreasing compared to those under ACs; however, reduced glutathione exhibited the opposite behavior. In the presence of CO2, the activity of CIP against E. coli was reduced relative to that under ACs. In conclusion, CO2 interferes with the action of CIP in bacterial cells, generating changes in oxidative stress. Full article
Show Figures

Figure 1

13 pages, 13698 KiB  
Article
Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini)
by María de Lourdes Ramírez-Ahuja, Kenzy I. Peña-Carrillo, Mayra A. Gómez-Govea, Mariana Lizbeth Jiménez-Martínez, Gerardo de Jesús Trujillo-Rodríguez, Marisol Espinoza-Ruiz, Antonio Guzmán Velasco, Adriana E. Flores, José Ignacio González-Rojas, Diana Reséndez-Pérez and Iram Pablo Rodríguez-Sánchez
Microorganisms 2025, 13(7), 1645; https://doi.org/10.3390/microorganisms13071645 - 11 Jul 2025
Viewed by 379
Abstract
Bacterial symbionts play an important role in insect survival by contributing to key metabolic and defensive functions. While stingless bees are known to harbor diverse microbial communities, their core bacterial symbionts remain poorly characterized. In this study, we analyzed the gut microbiota of [...] Read more.
Bacterial symbionts play an important role in insect survival by contributing to key metabolic and defensive functions. While stingless bees are known to harbor diverse microbial communities, their core bacterial symbionts remain poorly characterized. In this study, we analyzed the gut microbiota of sixteen stingless bee species collected from different regions of Mexico using 16S rRNA gene sequencing on the Illumina® MiSeq™ platform. Our results revealed that Proteobacteria, Firmicutes, and Actinobacteria are the most abundant bacterial phyla across species. Among the dominant genera, lactic acid bacteria, such as Lactobacillus spp., Bifidobacterium, and Fructobacillus spp., were the most prevalent. These bacteria are responsible for developing biochemical functions in metabolic processes like lactic fermentation and the biotransformation of complex organic compounds into molecules that are more easily assimilated by bees. This study offers a novel perspective on the diversity and predicted composition of gut microbiota in Mexican stingless bees. By highlighting differences in microbial communities among species with different feeding habits, our results emphasize the importance of preserving microbial biodiversity in these pollinators. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

18 pages, 426 KiB  
Article
Exploratory Study on Microbiota and Immune Responses to Short-Term L. paracasei CNCM I-1518 Consumption in Healthy Adults
by Fernando Rivero-Pino, Maria José Castro, Paz Redondo del Río, Eloina Gutierrez, Agustín Mayo-Iscar, Mercedes Nocito and Alfredo Corell
Nutrients 2025, 17(14), 2287; https://doi.org/10.3390/nu17142287 - 10 Jul 2025
Viewed by 632
Abstract
Background/Objectives: The gut microbiota and immune system are interconnected, with targeted nutritional interventions offering potential to modulate immune function. This study aimed to evaluate the short-term immunomodulatory effects of Lacticaseibacillus paracasei subspecies paracasei CNCM I-1518 (L. paracasei CNCM I-1518) in healthy adults. [...] Read more.
Background/Objectives: The gut microbiota and immune system are interconnected, with targeted nutritional interventions offering potential to modulate immune function. This study aimed to evaluate the short-term immunomodulatory effects of Lacticaseibacillus paracasei subspecies paracasei CNCM I-1518 (L. paracasei CNCM I-1518) in healthy adults. Methods: A 15-day dietary intervention was conducted involving healthy adults. Nutritional status, dietary habits, and systemic immune biomarkers were assessed, alongside changes in gut microbiota composition. Results: The results revealed significant effects on both cellular and humoral immunity. Cellular immunity was enhanced through increased circulating B lymphocytes, absolute monocyte counts, and leukocyte numbers, alongside reduced eosinophil levels, potentially mitigating allergic responses. Humoral immunity was improved by elevated serum IgG1, IgG2, and IgG4 levels, enhancing defenses against pathogenic antigens, and increased serum complement proteins C3 and C4, supporting innate immunity. Microbiota analysis showed a reduction in Clostridium and the Clostridium/Escherichia coli ratio, with a notable increase in the Lactobacillus/Clostridium ratio, highlighting the strain’s ability to reshape intestinal bacterial balance. Conclusions: A short-term intake of L. paracasei CNCM I-1518 can simultaneously modulate immune function and gut microbiota composition, supporting its potential as a targeted dietary intervention to promote immune health. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

13 pages, 2625 KiB  
Article
Cold Shock Proteins Balance Biofilm-Associated Antibiotic Resistance and Oxidative Vulnerability in Mycobacteria
by Jiachen Zheng, Linzhao He, Yizhang Wei, Jie Lu, Xiaolin Liu and Weihui Li
Microorganisms 2025, 13(7), 1597; https://doi.org/10.3390/microorganisms13071597 - 7 Jul 2025
Viewed by 346
Abstract
Cold Shock Proteins (Csps) are multifunctional regulators critical for bacterial stress adaptation. While Csps are known to regulate biofilm formation and low-temperature growth in some species, their roles in mycobacteria remain unclear. Here, we explored the functions of three Csps (CspA1, CspA2, and [...] Read more.
Cold Shock Proteins (Csps) are multifunctional regulators critical for bacterial stress adaptation. While Csps are known to regulate biofilm formation and low-temperature growth in some species, their roles in mycobacteria remain unclear. Here, we explored the functions of three Csps (CspA1, CspA2, and CspB) in Mycobacterium smegmatis. We found that CspA1 promotes biofilm formation and isoniazid (INH) resistance but negatively affects oxidative stress resistance. In contrast, CspB promotes biofilm formation, whereas CspA2 appears functionally redundant in this process. Notably, CspB and CspA2 do not contribute redundantly to oxidative stress resistance. Proteomic analysis revealed that CspA1 significantly modulates the expression of key metabolic and stress-response proteins, including WhiB3 and KatG. Our findings establish CspA1 as a key regulatory factor in mycobacteria, linking metabolic adaptation to biofilm-associated drug resistance and oxidative defense. Full article
Show Figures

Figure 1

19 pages, 5267 KiB  
Article
Microbial Biocontrol Agents Engineer Plant Biometrics and Host Response Against Xanthomonas oryzae pv. oryzae in Rice
by Popy Bora, Sanjay Kumar Chetia, Anwesha Sharma, Shenaz Sultana Ahmed, Pranamika Sharma, Ashok Bhattacharyya, Rupam Borgohain, Mrinal Saikia, Parinda Barua, Milon Jyoti Konwar, Shabrin Sultana Ahmed, Abhisek Rath, Mehjebin Rahman, Bishal Saikia, Trishna Taye, Naseema Rahman, Parveen Khan, Mayuri Baruah, Rituraj Sakia and Arunima Bharali
Microbiol. Res. 2025, 16(7), 151; https://doi.org/10.3390/microbiolres16070151 - 4 Jul 2025
Viewed by 320
Abstract
Plant-beneficial microbes are a perennial ally in an agroecosystems, providing multiple benefits to crop plants. The present study explored the potential of two microbial biocontrol agents (MBCAs), viz., Trichoderma asperellum and Pseudomonas fluorescens, against the bacterial blight pathogen of rice, Xanthomonas oryzae [...] Read more.
Plant-beneficial microbes are a perennial ally in an agroecosystems, providing multiple benefits to crop plants. The present study explored the potential of two microbial biocontrol agents (MBCAs), viz., Trichoderma asperellum and Pseudomonas fluorescens, against the bacterial blight pathogen of rice, Xanthomonas oryzae pv. oryzae. In vitro, MBCAs resulted in significant inhibition of X. oryzae pv. oryzae, as evidenced through the distortion of pathogen cell morphology and formation of a pathogen biofilm. Pot studies on the effect of MBCAs in rice showed increased germination, increased vigor index of seedlings, increased tiller numbers, a 10.29% reduction in percentage disease incidence (PDI), and low disease severity following individual inoculation. Activity of plant defense enzymes also increased with MBCA treatment (phenylalanine ammonia-lyase, 2.7-fold increase; peroxidase and polyphenol oxidase, 5-fold increase), establishing the priming effect of MBCAs on host defense. The quantitative polymerase chain reaction data revealed that pathogenesis-related genes (OsPR1a, OsPR1b, and OsPR10a) and X. oryzae pv. oryzae resistance genes (Xa1 and Xa26) were upregulated 4- to 14-fold in MBCA-treated rice plants over control plants. These results provide insights into the phenological, physiological, and molecular responses of rice crops treated with MBCAs in the presence of X. oryzae pv. oryzae and could be used to develop an effective field management strategy. Full article
Show Figures

Figure 1

29 pages, 512 KiB  
Review
Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina
by Snježana Mirković, Milica Martinović, Vanja M. Tadić, Ivana Nešić, Aleksandra Stolić Jovanović and Ana Žugić
Antibiotics 2025, 14(7), 677; https://doi.org/10.3390/antibiotics14070677 - 3 Jul 2025
Viewed by 934
Abstract
Essential oils are lipophilic secondary metabolites produced in various parts of aromatic plants and stored in specialized secretory structures. They play a vital role in plant defense, offering protection against microorganisms and herbivores. These oils are known for a wide range of biological [...] Read more.
Essential oils are lipophilic secondary metabolites produced in various parts of aromatic plants and stored in specialized secretory structures. They play a vital role in plant defense, offering protection against microorganisms and herbivores. These oils are known for a wide range of biological activities, including antibacterial, anti-inflammatory, antitumor, analgesic, antioxidant, and immunomodulatory effects. Given the increasing interest in natural alternatives to synthetic drugs, this review explored the therapeutic relevance of Pinus-derived essential oils as promising candidates in modern phytotherapy. Species of the genus Pinus have been widely investigated for their phytochemical composition and biological potential, with a focus on their medicinal and pharmaceutical applications. This review aimed to assess the biological properties of Pinus species commonly used in traditional medicine. In this paper, thorough insight into the chemical composition, as well as into the antimicrobial and antioxidant activities of essential oils obtained from the different parts of Pinus species, was given. Although recognized for their antimicrobial activity against a wide range of bacterial strains, including both Gram-positive and Gram-negative bacteria, the practical application of Pinus essential oils is often limited by their physicochemical instability and volatility. Therefore, this review highlighted the advances in formulation strategies, particularly encapsulation techniques, as the possible direction of future research concerning essential oils. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Efficacy of Essential Oils)
Show Figures

Figure 1

13 pages, 1063 KiB  
Article
CRISPR/Cas9-Mediated Knockout of OsbZIP76 Reveals Its Role in ABA-Associated Immune Signaling in Rice
by Yu-Jin Jung, Jin-Young Kim, Yong-Gu Cho and Kwon Kyoo Kang
Int. J. Mol. Sci. 2025, 26(13), 6374; https://doi.org/10.3390/ijms26136374 - 2 Jul 2025
Viewed by 341
Abstract
The basic leucine zipper (bZIP) transcription factors are involved in a wide range of physiological processes in plants, including hormone signaling, stress responses, and growth and development regulation. They play a key role in abscisic acid (ABA)-mediated immune regulation. However, the immune-related function [...] Read more.
The basic leucine zipper (bZIP) transcription factors are involved in a wide range of physiological processes in plants, including hormone signaling, stress responses, and growth and development regulation. They play a key role in abscisic acid (ABA)-mediated immune regulation. However, the immune-related function of OsbZIP76 in rice remains poorly understood. In this study, we generated OsbZIP76 knockout (KO) lines using CRISPR/Cas9-mediated genome editing and examined their phenotypic responses to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and the fungal pathogen Magnaporthe oryzae. The KO lines showed increased susceptibility to both pathogens compared to wild-type (WT) plants. Furthermore, qRT-PCR analysis revealed that, upon pathogen infection, the expression of pathogenesis-related genes such as PR1a, PR5, and NPR1 was significantly suppressed in the KO lines. ABA treatment experiments showed that KO lines were hypersensitive to exogenous ABA, indicating a role for OsbZIP76 in ABA perception and signaling. Notably, the expression of the OsbZIP76 gene itself was strongly induced by both ABA treatment and pathogen infection, supporting its role as a positive regulator in ABA-associated immune signaling. Overall, this study demonstrates that OsbZIP76 functions as an important immune regulator by integrating defense gene expression with ABA signaling, providing new insights into the molecular crosstalk between hormonal signaling and pathogen defense mechanisms. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 456 KiB  
Review
Clinical and Epidemiological Features and Antimicrobial Susceptibility Patterns of Chryseobacterium Species: A Scoping Review
by Chienhsiu Huang
Medicina 2025, 61(7), 1197; https://doi.org/10.3390/medicina61071197 - 30 Jun 2025
Viewed by 356
Abstract
Background and Objectives: Infections with Chryseobacterium species are rare, and the susceptibility patterns of these species to antimicrobial agents are unclear. Therefore, the aim of this study was to explore the clinical and epidemiological features and antimicrobial susceptibility patterns of Chryseobacterium species by [...] Read more.
Background and Objectives: Infections with Chryseobacterium species are rare, and the susceptibility patterns of these species to antimicrobial agents are unclear. Therefore, the aim of this study was to explore the clinical and epidemiological features and antimicrobial susceptibility patterns of Chryseobacterium species by reviewing previous research on the antibiograms of Chryseobacterium species and the illnesses caused by Chryseobacterium species. Materials and Methods: A comprehensive search of the PubMed and Web of Science databases was conducted for all studies that investigated antimicrobial susceptibility patterns of Chryseobacterium species published between January 1990 and February 2025. An extensive review of the infection incidences, isolation sites, clinical characteristics, and antimicrobial susceptibility patterns for infections caused by Chryseobacterium species was performed. Results: Several studies have revealed that the incidence of Chryseobacterium species infections is increasing, particularly in patients with comorbid conditions, mainly cardiovascular disease, diabetes mellitus, and malignancy. Most patients were elderly individuals, and most related illnesses were acquired in hospitals. The number of patients who received inappropriate antimicrobial therapy outnumbered the number of those who died. Antibiotics had little effect on Chryseobacterium species infection outcomes. Sixteen studies were included in the current scoping review. The susceptibility rates of Chryseobacterium indologenes to piperacillin/tazobactam (2.9–100%), ciprofloxacin (4.34–85%), levofloxacin (8.69–100%), trimethoprim/sulfamethoxazole (33.3–100%), imipenem (0–33.3%), meropenem (0–38.8%), minocycline (30.4–100%), ceftazidime (0–100%), and cefepime (0–100%) varied. The susceptibility rates of Chryseobacterium gleum to piperacillin/tazobactam (0–33%), ciprofloxacin (21.4–40%), levofloxacin (59.5%), trimethoprim/sulfamethoxazole (57.1–93.3%), imipenem (0–2.4%), meropenem (0%), minocycline (83.3–100%), ceftazidime (0–23.8%), and cefepime (0–19.0%) varied. Conclusions: Morbidity and mortality due to the increasing incidence of Chryseobacterium species infections have considerably increased. Underlying immunological defenses and other clinical factors may influence the prognosis of Chryseobacterium species infection. Rather than bacterial virulence characteristics, host factors mostly affect patient outcomes. Most isolates of Chryseobacterium indologenes are susceptible to minocycline and trimethoprim/sulfamethoxazole. For the treatment of these infections, professional knowledge and therapeutic expertise must be integrated. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

16 pages, 301 KiB  
Article
Molecular Characterization of Vancomycin-Resistant Enterococcus spp. from Clinical Samples and Identification of a Novel Sequence Type in Mexico
by Raúl Alejandro Atriano Briano, Nallely S. Badillo-Larios, Perla Niño-Moreno, Luis Fernando Pérez-González and Edgar A. Turrubiartes-Martínez
Antibiotics 2025, 14(7), 663; https://doi.org/10.3390/antibiotics14070663 - 30 Jun 2025
Viewed by 459
Abstract
Background:Enterococcus spp. is the third leading cause of healthcare-associated infections in the American continent, often because of the virulence factors that protect the bacterium against host defenses and facilitate tissue attachment and genetic material exchange. In addition, vancomycin, considered a last-resort treatment, [...] Read more.
Background:Enterococcus spp. is the third leading cause of healthcare-associated infections in the American continent, often because of the virulence factors that protect the bacterium against host defenses and facilitate tissue attachment and genetic material exchange. In addition, vancomycin, considered a last-resort treatment, has shown reduced efficacy in Enterococcus spp. strains. However, the relationship between bacterial resistance and virulence factors remains unclear. This study intends to evaluate the prevalence of glycopeptide-resistant genotypes and virulence factors in Enterococcus spp. strains. Methods: Over six months, 159 Enterococcus spp. strains causing nosocomial infections were analyzed. Multiplex PCR was performed to identify species, glycopeptide-resistant genotypes, and 12 virulence factors. Results: The most abundant species identified were Enterococcus faecalis and E. faecium. Vancomycin resistance was observed in 10.7% of the isolates, and the vanA genotype was present in 47% of resistant samples. The main virulence factors detected were acm (54%), which is related to cell adhesion; gel E (66%), a metalloproteinase linked to tissue damage; and the sex pheromones cpd (64%) and ccf (84%), which are involved in horizontal gene transfer. A significant association was found between the prevalence of acm, ccf, and cpd in VRE isolates, indicating the potential dissemination of genes to emerging strains via horizontal gene transfer. In addition, a new E. faecium, which displayed five virulence factors and harbored the vanA sequence type, was identified and registered as ST2700. Conclusions:Enterococcus faecalis and E. faecium are clinically critical due to multidrug resistance and virulence factors like acm, which aids host colonization. Genes ccf and cpd promote resistance spread via horizontal transfer, while the emerging ST2700 strain requires urgent monitoring to curb its virulent, drug-resistant spread. Full article
13 pages, 2255 KiB  
Article
Solid-Phase Oligosaccharide Synthesis with Highly Complexed Peptidoglycan Fragments
by Yuichiro Kadonaga, Ning Wang, Atsushi Shimoyama, Yukari Fujimoto and Koichi Fukase
Molecules 2025, 30(13), 2787; https://doi.org/10.3390/molecules30132787 - 28 Jun 2025
Viewed by 417
Abstract
Peptidoglycan (PGN) is a component of bacterial cell walls; its fragments are recognized by the cytoplasmic receptors Nod1 and Nod2, thereby promoting the production of inflammatory cytokines and antibodies. To further elucidate these biological defense mechanisms, a large and stable supply of the [...] Read more.
Peptidoglycan (PGN) is a component of bacterial cell walls; its fragments are recognized by the cytoplasmic receptors Nod1 and Nod2, thereby promoting the production of inflammatory cytokines and antibodies. To further elucidate these biological defense mechanisms, a large and stable supply of the PGN fragments via chemical synthesis is essential. However, the synthesis and purification of long PGN fragments are quite challenging due to their low solubility. In this study, we efficiently synthesized PGN fragments via solid-phase oligosaccharide synthesis (SPOS). Using the JandaJel™ Wang resin (JJ-Wang), an octasaccharide glycan chain of PGN was constructed by repeating glycosylation reactions to elongate β-1,4-linked disaccharide units composed of MurNAc and GlcNAc. To enhance reactivity, glycosylation was performed in a mixed solvent comprising C4F9OEt/CH2Cl2/THF with the intention of promoting substrate concentration onto the solid support through the fluorophobic effect, affording the PGN octasaccharide in a 19% overall yield (10 steps). Subsequently, after deprotection of the O-Fmoc, N-Troc, and ethyl ester groups, N- and O-acetylation proceeded smoothly, owing to the high swelling property of JJ-Wang. Peptide condensation with L-Ala-D-isoGln(OBn) and carboxylic acids was also achieved. Finally, cleavage of the PGN fragment from the resin with TFA afforded the desired octasaccharide with dipeptides in a 2.3% overall yield (15 steps). Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop