Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (622)

Search Parameters:
Keywords = bacteria deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3184 KiB  
Article
Polyphenol-Rich Extract of Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju) Prevents Obesity and Lipid Accumulation Through Restoring Intestinal Microecological Balance
by Xinyu Feng, Jing Huang, Lin Xiang, Fuyuan Zhang, Xinxin Wang, Anran Yan, Yani Pan, Ping Chen, Bizeng Mao and Qiang Chu
Plants 2025, 14(15), 2393; https://doi.org/10.3390/plants14152393 - 2 Aug 2025
Viewed by 224
Abstract
Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju), which has been widely consumed as a herbal tea for over 3000 years, is renowned for its biosafety and diverse bioactivities. This study investigates the impact of polyphenol-rich Hangbaiju extracts (HE) on high-fat diet-induced obesity in mice. [...] Read more.
Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju), which has been widely consumed as a herbal tea for over 3000 years, is renowned for its biosafety and diverse bioactivities. This study investigates the impact of polyphenol-rich Hangbaiju extracts (HE) on high-fat diet-induced obesity in mice. HE contains phenolic acids and flavonoids with anti-obesity properties, such as apigenin, luteolin-7-glucoside, apigenin-7-O-glucoside, kaempferol 3-(6″-acetylglucoside), etc. To establish the obesity model, mice were randomly assigned into four groups (n = 8 per group) and administered with either HE or water for 42 days under high-fat or low-fat dietary conditions. Administration of low (LH) and high (HH) doses of HE both significantly suppressed body weight growth (by 16.28% and 16.24%, respectively) and adipose tissue enlargement in obese mice. HE significantly improved the serum lipid profiles, mainly manifested as decreased levels of triglycerides (28.19% in LH and 19.59% in HH) and increased levels of high-density lipoprotein cholesterol (44.34% in LH and 54.88% in HH), and further attenuated liver lipid deposition. Furthermore, HE significantly decreased the Firmicutes/Bacteroidetes ratio 0.23-fold (LH) and 0.12-fold (HH), indicating an improvement in the microecological balance of the gut. HE administration also elevated the relative abundance of beneficial bacteria (e.g., Allobaculum, norank_f__Muribaculaceae), while suppressing harmful pathogenic proliferation (e.g., Dubosiella, Romboutsia). In conclusion, HE ameliorates obesity and hyperlipidemia through modulating lipid metabolism and restoring the balance of intestinal microecology, thus being promising for obesity therapy. Full article
(This article belongs to the Special Issue Functional Components and Bioactivity of Edible Plants)
Show Figures

Graphical abstract

25 pages, 8725 KiB  
Article
Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria
by Kaloyan Berberov, Nikolina Atanasova, Nikolay Krumov, Boryana Yakimova, Irina Lazarkevich, Stephan Engibarov, Tsvetozara Damyanova, Ivanka Boyadzhieva and Lyudmila Kabaivanova
Mar. Drugs 2025, 23(8), 295; https://doi.org/10.3390/md23080295 - 23 Jul 2025
Viewed by 287
Abstract
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we [...] Read more.
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we describe a new method for high-throughput screening of antimicrobial compounds (AMC) producing halophilic bacteria. Our methodology used a newly designed 3D-printed Petri plate replicator used for drop deposition and colony replication. We employed this device in combination with a modified agar overlay assay to screen more than 7400 bacterial colonies. A total of 54 potential AMC producers were discovered at a success rate of 0.7%. Although 40% of them lost their antibacterial activity during the secondary screening, 22 strains retained inhibitory activity and were able to suppress the growth of one or more safe relatives of the ESKAPE group pathogens. The ethyl acetate extract from the most potent strain, Virgibacillus salarius POTR191, demonstrated moderate antibacterial activity against Enterococcus faecalis, Acinetobacter baumanii, and Staphylococcus epidermidis with minimal inhibitory concentrations of 128 μg/mL, 128 μg/mL, and 512 μg/mL, respectively. We propose that our replica plate assay could be used for target-based antimicrobial screening of various extremophilic bacteria. Full article
Show Figures

Graphical abstract

19 pages, 2271 KiB  
Article
Possible Use in Soil Bioremediation of the Bacterial Strain Bacillus Sphaericus NM-1 Capable of Simultaneously Degrading Promethrin and Acetochlor
by Yue Cheng, Qian Fu, Junjia Xu, Xinhua Niu, Lin Liu, Jiaqi Wang, Jingwen Quan, Qingyue Yu, Baoyan Chi, Haitao Li and Rongmei Liu
Microorganisms 2025, 13(7), 1698; https://doi.org/10.3390/microorganisms13071698 - 19 Jul 2025
Viewed by 320
Abstract
Prometryn and acetochlor are herbicides used to control weeds in farmlands and other areas. They enter the soil through direct application, residual accumulation in crops, and atmospheric deposition. The pollution of their residues in the environment has attracted people’s attention. Bioremediation is one [...] Read more.
Prometryn and acetochlor are herbicides used to control weeds in farmlands and other areas. They enter the soil through direct application, residual accumulation in crops, and atmospheric deposition. The pollution of their residues in the environment has attracted people’s attention. Bioremediation is one of the main methods to solve such problems. In this study, the effects of prometryn and acetochlor-degrading strain NM-1 on soil enzymes, soil microbial communities, and physiological indexes of soybean seedlings during soil remediation were studied, and the relationship between them was discussed. The results showed that 81.54% of prometryn (50 mg·L−1) and 89.47% of acetochlor (50 mg·L−1) were degraded within 15 days after NM-1 inoculation in soil. NM-1 positively affected soil enzyme activities and soil microbial communities, and the abundance of beneficial bacteria in soil increased. More importantly, the inoculation of strain NM-1 under prometryn and acetochlor stress significantly increased plant height, root length, root volume, water content, chlorophyll concentration, and root activity of soybean. The results of these studies showed that the NM-1 strain showed significant potential in bioremediation in order to provide technical support for solving the problem of prometryn and acetochlor pollution. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 771 KiB  
Article
Optimization of Bioleaching Conditions Using Acidithiobacillus ferrooxidans at Low Temperatures in a Uranium Mining Environment
by Gaukhar Turysbekova, Yerkin Bektay, Akmurat Altynbek, Dmitriy Berillo, Bauyrzhan Shiderin and Maxat Bektayev
Minerals 2025, 15(7), 727; https://doi.org/10.3390/min15070727 - 11 Jul 2025
Viewed by 298
Abstract
Systematic studies were conducted at one of the uranium deposits in Kazakhstan. Native strains of Acidithiobacillus ferrooxidans bacteria were found in leaching solutions at the deposit. The modeling of iron species in the culturing medium was analyzed using Medusa software v.2.0.5. To intensify [...] Read more.
Systematic studies were conducted at one of the uranium deposits in Kazakhstan. Native strains of Acidithiobacillus ferrooxidans bacteria were found in leaching solutions at the deposit. The modeling of iron species in the culturing medium was analyzed using Medusa software v.2.0.5. To intensify the process, the bacterial strains were propagated in laboratory conditions, and strains available in the laboratory were added. The ability of bacteria to oxidize divalent iron to trivalent iron at 8 °C in laboratory conditions was established, but the oxidation rate was low. It was found that the limiting stage of bioleaching use in deposit conditions is the temperature mode, the content of divalent iron, and oxygen. A biomass volume of 15 L was initially cultivated under laboratory conditions, and subsequently scaled up to 3 m3 in production using three 1 m3 pachucas with air aeration. In addition, pilot tests were carried out directly in production conditions and biomass in the volume of over 30 m3 was produced. The kinetics of the oxidation process of divalent iron to trivalent iron in 1 g/h under production conditions was established. The features of the bioleaching process at the field are shown as follows: since production, the solution contains the main microelements for the nutrition and reproduction of bacteria, and recommendations for the use of bioleaching are proposed. Research has established that under conditions of a shortage of divalent iron in the solution, sulfuric acid is formed due to sulfur-containing substances. It was observed that for the effective conversion of divalent iron to trivalent iron, bacteria of the provided strain and air (oxygen) supply are sufficient. The corresponding recommendations were issued during the work. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

17 pages, 4748 KiB  
Article
Impact of the Gut Microbiota–Metabolite Axis on Intestinal Fatty Acid Absorption in Huainan Pigs
by Jing Wang, Liangying Zhu, Yangyang Wang, Qiang Ma, Xiangzhou Yan, Mingxun Li and Baosong Xing
Microorganisms 2025, 13(7), 1609; https://doi.org/10.3390/microorganisms13071609 - 8 Jul 2025
Viewed by 465
Abstract
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid [...] Read more.
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid absorption, we compared the rectal and colonic microbiota and metabolite profiles of Huainan and Large White pigs using 16S rRNA sequencing and untargeted metabolomics. HN pigs exhibited enriched Lactobacillus johnsonii and Lactobacillus amylovorus, along with a significantly higher Firmicutes/Bacteroidetes ratio. Functional predictions further revealed elevated microbial pathways related to glycolysis, pyruvate metabolism, and ABC transporters in HN pigs. Conversely, LW pigs showed increased abundance of potentially pro-inflammatory bacteria and enriched pathways for lipopolysaccharide (LPS) biosynthesis. Metabolites such as 4-ethyl-2-heptylthiazole and picolinic acid were significantly upregulated in HN pigs and served as robust biomarkers (Area Under the Curve, AUC = 1.0),with perfect discrimination observed in both rectal and colonic samples. Integrative analysis identified 52 co-enriched microbial and metabolic pathways in HN pigs, including short-chain fatty acid (SCFA) production, lipid biosynthesis and transport, amino acid metabolism, ABC transporter activity, and the PPAR signaling pathway, supporting a microbiota–metabolite axis that enhances fatty acid absorption and gut immune balance. These findings provide mechanistic insight into breed-specific fat deposition and offer candidate biomarkers for improving pork quality via precision nutrition and breeding. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

16 pages, 7038 KiB  
Article
Responses of Different Soil Microbial Communities to the Addition of Nitrogen into the Soil of Larix gmelinii var. principis-rupprechtii (Mayr) Pilg. Plantations
by Yanlong Jia, Ziyi Wang, Hongna Cui, Liu Yang, Jinping Lu, Jiaojiao Ma, Zhongqi Xu and Honglin He
Forests 2025, 16(7), 1096; https://doi.org/10.3390/f16071096 - 2 Jul 2025
Viewed by 190
Abstract
The increasing rate of atmospheric nitrogen (N) deposition caused by human activities is a global concern. A rise in N deposition can alter the soil microbial community, as demonstrated by most long-term N addition experiments. Nevertheless, it remains unknown how short-term N addition [...] Read more.
The increasing rate of atmospheric nitrogen (N) deposition caused by human activities is a global concern. A rise in N deposition can alter the soil microbial community, as demonstrated by most long-term N addition experiments. Nevertheless, it remains unknown how short-term N addition influences the early succession of the soil microbial community in forests. In this study, the responses of the soil microbial community to multi-level and short-term (one-year) N addition in the soil of Larix gmelinii var. principis-rupprechtii (Mayr) Pilg. plantations in the Yanshan Mountains were explored. We used high-throughput sequencing technology to analyze the 16S rRNA of bacteria, the ITS gene of fungi, and the nifH functional gene of N-fixing bacteria. The results revealed a decrease in N-fixing functional gene abundance (such as nifH) and a slight rise in fungal and bacterial copy number due to N addition. N addition influenced the N-fixing bacterial community but had no influence on the fungal and bacterial communities in general. It drastically decreased the diversity of N-fixing microbial communities while having little impact on the diversity of fungi and bacteria. The NO3-N concentration exhibited a negative connection with the Shannon–Wiener index of the N-fixing microbial community when it exceeded a specific limit. Actinomycetes and N-fixing bacteria were significantly negatively correlated. The changes in soil NO3-N concentration and abundance of actinomycetes were the main reasons for the decrease in N-fixing microbial community diversity. The results of this study set the groundwork for exploring the initial succession mechanisms of soil microorganisms after N addition. This study offers a scientific theoretical basis for precise management of plantations under N deposition. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 5750 KiB  
Article
Artemisia argyi-Mediated Synthesis of Monodisperse Silver Nanoparticles as Components of Bioactive Nanofibrous Dressings with Dual Antibacterial and Regenerative Functions
by Jiale Wang, Jiawei Guan, Xingyu Ma, Dongyang Zhao, Yongqiang Han, Dongdong Guo, Jialin Bai, Zisheng Guo and Xiaojun Zhang
J. Funct. Biomater. 2025, 16(7), 236; https://doi.org/10.3390/jfb16070236 - 27 Jun 2025
Viewed by 460
Abstract
The effective healing of chronic wounds requires balancing antimicrobial activity with tissue regeneration. In this study, we developed a novel, eco-friendly synthesis method using Artemisia argyi extract to produce silver nanoparticles (AgNPs), addressing toxicity concerns associated with conventional chemical synthesis methods. Through optimization [...] Read more.
The effective healing of chronic wounds requires balancing antimicrobial activity with tissue regeneration. In this study, we developed a novel, eco-friendly synthesis method using Artemisia argyi extract to produce silver nanoparticles (AgNPs), addressing toxicity concerns associated with conventional chemical synthesis methods. Through optimization of multiple synthesis parameters, monodisperse spherical AgNPs with an average diameter of 6.76 ± 0.27 nm were successfully obtained. Plant-derived compounds from Artemisia argyi extract acted as efficient mediators for both reduction and stabilization, yielding nanoparticles with high crystallinity. The synthesized AgNPs exhibited potent antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimum inhibitory concentrations of 8 μg/mL against Escherichia coli and 32 μg/mL against Staphylococcus aureus, while maintaining high biocompatibility with L929 fibroblasts at concentrations ≤ 8 μg/mL. When integrated into polylactic acid/collagen type I (PLA/Col1) nanofibrous matrices, the optimized 0.03% AgNPs/PLA/Col1 dressing significantly accelerated wound healing in a diabetic rat model, achieving 94.62 ± 2.64% wound closure by day 14 compared to 65.81 ± 1.80% observed in untreated controls. Histological analyses revealed a dual-functional mechanism wherein controlled silver ion release provided sustained antibacterial protection, while concurrently promoting tissue regeneration characterized by enhanced collagen deposition, reduced inflammation, and increased neovascularization. This innovative approach effectively addresses critical challenges in diabetic wound care by providing simultaneous antimicrobial and regenerative functions within a single biomaterial platform. Full article
Show Figures

Figure 1

20 pages, 3790 KiB  
Article
Fabrication of CF–NiO Electrodes and Performance Evaluation of Microbial Fuel Cells in the Treatment of Potato Starch Wastewater
by Tianyi Yang, Song Xue, Liming Jiang, Jiuming Lei, Wenjing Li, Yiwei Han, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 760; https://doi.org/10.3390/coatings15070760 - 27 Jun 2025
Viewed by 517
Abstract
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its [...] Read more.
Microbial fuel cells (MFCs) generate electricity through the microbial oxidation of organic waste. However, the inherent electrochemical performance of carbon felt (CF) electrodes is relatively poor and requires enhancement. In this study, nickel oxide (NiO) was successfully loaded onto CF to improve its electrode performance, thereby enhancing the electricity generation capacity of MFCs during the degradation of treated wastewater. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy diffusion spectrometer (EDS) analyses confirmed the successful deposition of NiO on the CF surface. The modification enhanced both the conductivity and capacitance of the electrode and increased the number of microbial attachment sites on the carbon fiber filaments. The prepared CF–NiO electrode was employed as the anode in an MFC, and its electrochemical and energy storage performance were evaluated. The maximum power density of the MFC with the CF–NiO anode reached 0.22 W/m2, compared to 0.08 W/m2 for the unmodified CF anode. Under the C1000-D1000 condition, the charge storage capacity and total charge output of the CF–NiO anode were 1290.03 C/m2 and 14,150.03 C/m2, respectively, which are significantly higher than the 452.9 C/m2 and 6742.67 C/m2 observed for the CF anode. These results indicate notable improvements in both power generation and energy storage performance. High-throughput gene sequencing of the anodic biofilm following MFC acclimation revealed that the CF–NiO anode surface hosted a higher proportion of electroactive bacteria. This suggests that the NiO modification enhances the biodegradation of organic matter and improves electricity generation efficiency. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

14 pages, 5300 KiB  
Article
Synthesis and Antibacterial Evaluation of Silver-Coated Magnetic Iron Oxide/Activated Carbon Nanoparticles Derived from Hibiscus esculentus
by Müslüm Güneş, Erdal Ertaş, Seyhmus Tumur, Parvin Zulfugarova, Fidan Nuriyeva, Taras Kavetskyy, Yuliia Kukhazh, Pavlo Grozdov, Ondrej Šauša, Oleh Smutok, Dashgin Ganbarov and Arnold Kiv
Magnetochemistry 2025, 11(7), 53; https://doi.org/10.3390/magnetochemistry11070053 - 21 Jun 2025
Viewed by 483
Abstract
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon [...] Read more.
The increasing prevalence of antimicrobial resistance alongside the pharmacological limitations and adverse effects associated with conventional antibiotics necessitates the development of novel and efficacious antimicrobial agents. In this study, magnetic iron oxide nanoparticles (MIONPs) were synthesized via a chemical co-precipitation method. Activated carbon (AC) derived from Hibiscus esculentus (HE) fruit was coated onto the nanoparticle surfaces to fabricate MIONPs/HEAC nanocomposites. To augment their antimicrobial properties, silver ions were chemically reduced and deposited onto the MIONPs/HEAC surface, yielding MIONPs/HEAC@Ag nanocomposites. Comprehensive characterization of the synthesized nanocomposites was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and zeta potential analysis. DLS measurements indicated average particle sizes of approximately 122 nm and 164 nm for MIONPs/HEAC and MIONPs/HEAC@Ag, respectively. Saturation magnetization values were determined to be 73.6 emu/g for MIONPs and 65.5 emu/g for MIONPs/HEAC. Antibacterial assays demonstrated that MIONPs/HEAC@Ag exhibited significant inhibitory effects against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923, with inhibition zone diameters of 11.50 mm and 13.00 mm, respectively. In contrast, uncoated MIONPs/HEAC showed negligible antibacterial activity against both bacterial strains. These findings indicate that MIONPs/HEAC@Ag nanocomposites possess considerable potential as antimicrobial agents for biomedical applications, particularly in addressing infections caused by antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

20 pages, 12281 KiB  
Article
Investigation of Surface Properties and Antibacterial Activity of 3D-Printed Polyamide 12-Based Samples Coated by a Plasma SiOxCyHz Amorphous Thin Film Approved for Food Contact
by Mario Nicotra, Raphael Palucci Rosa, Valentina Trovato, Giuseppe Rosace, Roberto Canton, Anna Rita Loschi, Stefano Rea, Mahmoud Alagawany, Carla Sabia and Alessandro Di Cerbo
Polymers 2025, 17(12), 1678; https://doi.org/10.3390/polym17121678 - 17 Jun 2025
Viewed by 474
Abstract
Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand [...] Read more.
Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand for innovative antimicrobial surfaces. This study assessed the effectiveness of a nanosized deposited SiOxCyHz coating approved for food contact on 3D-printed polyamide 12 (PA12) disk substrates, aiming at providing antimicrobial and anti-biofilm functionality to mechanical components and packaging material in the food supply chain. The coating was applied using plasma-enhanced chemical vapor deposition (PECVD) and characterized through Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angle measurements. Coated PA12 samples exhibited significantly enhanced hydrophobicity, with an average water contact angle of 112.9°, thus improving antibacterial performance by markedly reducing bacterial adhesion. Microbiological assays revealed a significant (p < 0.001) bactericidal activity (up to 4 logarithms after 4 h, ≥99.99%) against Gram-positive and Gram-negative bacteria, including notable foodborne pathogens such as L. monocytogenes, S. aureus, E. coli, and S. typhimurium. SiOxCyHz-coated PA12 surfaces exhibited strong antibacterial activity, representing a promising approach for coating additive-manufactured components and equipment for packaging production in the food and pharmaceutical supply chain able to enhance safety, extend product shelf life, and reduce reliance on chemical sanitizers. Full article
Show Figures

Figure 1

18 pages, 1816 KiB  
Article
Interactive Effects of Precipitation and Nitrogen on Soil Microbial Communities in a Desert Ecosystem
by Qianqian Dong, Zhanquan Ji, Hui Wang, Wan Duan, Wenli Cao, Wenshuo Li and Yangyang Jia
Microorganisms 2025, 13(6), 1393; https://doi.org/10.3390/microorganisms13061393 - 14 Jun 2025
Viewed by 440
Abstract
Increased precipitation and nitrogen (N) deposition critically influence ecological processes and stability in desert ecosystems. Studying how the soil microbial community responds to these climatic changes will improve our understanding of the impacts of climate changes on arid environments. Therefore, we conducted a [...] Read more.
Increased precipitation and nitrogen (N) deposition critically influence ecological processes and stability in desert ecosystems. Studying how the soil microbial community responds to these climatic changes will improve our understanding of the impacts of climate changes on arid environments. Therefore, we conducted a field experiment in the Gurbantunggut Desert, applying phospholipid fatty acid (PLFA) analysis to assess the responses of soil microbial community to climate change. We found that in years with normal precipitation, increased precipitation promoted soil bacterial growth, whereas in drought years, increased N deposition promoted soil bacterial growth more effectively. Although soil microbial diversity did not change significantly overall, it decreased with increasing N deposition. Random forest analysis and linear regression analysis indicated that soil pH and microbial biomass carbon (MBC) were the main drivers for the changes in soil microbial community. Structural equation modeling (SEM) further revealed that increased precipitation increased soil Gram-positive bacteria (G+) by raising soil MBC, while decreasing soil Actinomycetes (Act), fungi, and Dark Septate Endophyte (DSE). In contrast, increased N deposition affected soil microbial community by altering soil pH and MBC. Our results highlight the synergistic effects of increased precipitation and N deposition on soil microbial community structure. Further research should pay more attention to the effects of climate changes on soil microbial communities with long-term monitoring to confirm our findings across different ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 4206 KiB  
Article
Fluorescent Hyperbranched Polymers and Cotton Fabrics Treated with Them as Innovative Agents for Antimicrobial Photodynamic Therapy and Self-Disinfecting Textiles
by Desislava Staneva, Paula Bosch, Petar Grozdanov, Ivanka Nikolova and Ivo Grabchev
Macromol 2025, 5(2), 26; https://doi.org/10.3390/macromol5020026 - 11 Jun 2025
Viewed by 569
Abstract
The results of this study, which involved treating cotton fabrics with three fluorescent hyperbranched polymers modified with 1,8-naphthalamide (P1), acridine (P2), and dansyl (P3) groups, could have applications in the development of antimicrobial textiles with self-disinfecting ability. The polymers, dissolved in DMF/water solution, [...] Read more.
The results of this study, which involved treating cotton fabrics with three fluorescent hyperbranched polymers modified with 1,8-naphthalamide (P1), acridine (P2), and dansyl (P3) groups, could have applications in the development of antimicrobial textiles with self-disinfecting ability. The polymers, dissolved in DMF/water solution, were deposited on the cotton fabric using the exhaustion method. The fabrics were thoroughly analyzed by reflection spectra, CIEL*a*b* coordinates, and color difference (∆E). The release of the polymers from the cotton surface was studied in a phosphate buffer with pH = 7.4 and an acetate buffer with pH = 4.5 at 37 °C for 10 h. It is shown that at pH = 7.4, the release of the three polymers occurs slowly (about 4–5%). In contrast, in an acidic medium, due to protonation of the tertiary amino group of 1,8-naphthalimide, P1 passes significantly more readily into the aqueous solution (35%). The possibility of singlet oxygen (1O2) generation by the polymers and the cotton fabrics treated with them under sunlight irradiation was followed using an iodometric method. The microbiological activity was investigated against Gram-positive Bacillus cereus and Gram-negative Pseudomonas aeruginosa as model bacterial strains in the dark and after irradiation with sunlight. The antimicrobial activity of the polymers increased after light irradiation, as 1O2 attacks and destroys the bacterial cell membrane. Scanning electron microscopy showed that a stable bacterial biofilm had formed on the untreated cotton surface, but treatment with hyperbranched polymers prevented its formation. However, many bacteria were still observed on the fiber surface when the microbial test was performed in the dark, whereas only a few single bacteria were noticed after the illumination. A virucidal effect against respiratory viruses HRSV-2 and AAdV-5 was observed only after irradiation with sunlight. Full article
Show Figures

Figure 1

17 pages, 8281 KiB  
Article
Oat Protein Isolate Mitigates High-Fat Diet-Induced Obesity in Rats Through Gut Microbiota, Glucose, and Lipid Control
by Xi Chen, Xue Han, Mianhong Chen, Jihua Li, Wei Zhou and Ruyi Li
Foods 2025, 14(12), 2047; https://doi.org/10.3390/foods14122047 - 10 Jun 2025
Viewed by 607
Abstract
The growing prevalence of obesity poses a significant challenge to public health. This research explored the impact of oat protein isolate (OPI) on mitigating obesity induced by a high-fat diet (HFD) in rats. The results indicate that OPI, administered at a dose of [...] Read more.
The growing prevalence of obesity poses a significant challenge to public health. This research explored the impact of oat protein isolate (OPI) on mitigating obesity induced by a high-fat diet (HFD) in rats. The results indicate that OPI, administered at a dose of 100 mg/kg, reduced the gain of body weight and fat deposits, ameliorated glucose metabolism, promoted antioxidant capacity, and alleviated inflammation. Results from the 16S rRNA sequencing of fecal samples reveal that OPI mitigated the gut microbiota disorder induced by an HFD, significantly raising the proportion of beneficial genera, such as Ruminococcus, Blautia, Allobaculum, Romboutsia, and Dubosiella. Furthermore, OPI promoted the growth of beneficial bacteria, elevated the production of short-chain fatty acid (SCFAs), and improved glucose and lipid metabolism and reduced inflammation, collectively contributing to its anti-obesity effects. These findings confirm OPI’s efficacy in reducing obesity induced by an HFD in rats. Future clinical trials are needed to further validate the efficacy of OPI as a functional food. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

16 pages, 2566 KiB  
Article
Interdisciplinary Approach as Basis for Enhancing Construction and Operation Safety of Industrial Hydraulic Structures
by Regina E. Dashko and Darya L. Kolosova
Sustainability 2025, 17(12), 5244; https://doi.org/10.3390/su17125244 - 6 Jun 2025
Viewed by 457
Abstract
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary [...] Read more.
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary approach involves treating the foundation soils of structures and anthropogenic tailings deposits as a multicomponent system. In this system, soil acts as a medium hosting groundwater of varying compositions and contamination levels, containing biotic components and their metabolic products, including the gaseous phase. It has been demonstrated that the justified application of this approach increases the operational safety of existing structures and the long-term stability of starter and tailings dikes built on weak clay foundation soils. Particular emphasis is placed on the biotic component and the dual role of subsurface microorganisms. These bacteria negatively impact the strength and load-bearing capacity of water- and water–gas-saturated clay soils in the foundation of the structures under consideration. The diverse biocenosis in groundwater simultaneously facilitates self-purification from petroleum hydrocarbons to undetectable levels. This aspect holds fundamental importance, as groundwater discharges into river systems. Full article
Show Figures

Figure 1

15 pages, 2900 KiB  
Article
It Is Useless to Resist: Biofilms in Metalworking Fluid Systems
by Giulia von Känel, Lara Ylenia Steinmann, Britta Mauz, Robert Lukesch and Peter Küenzi
Life 2025, 15(6), 890; https://doi.org/10.3390/life15060890 - 30 May 2025
Viewed by 404
Abstract
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus [...] Read more.
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus inevitable, as there is no shortage of wetted surfaces in metalworking systems. MWF manufacturers tried in vain to offer resistance by using biocides and biostatic compounds as ingredients in concentrates and as tank-side additives. We report here that such elements, alone or as components of MWFs, did not prevent biofilm formation and had negligible effects on pre-established laboratory biofilms. Moreover, biofilms in metalworking systems are interwoven with residues, sediments, and metal swarfs generated during machining. Again, co-incubation of such “real” biofilms with MWFs had no significant effect on population size—but on population composition! The implications of this finding are unclear but could provide a starting point for the treatment of biofouling, as biofilm population structure might be of importance. Finally, we show that bacteria gain function in biofilms and that they were able to degrade a toxic amine in MWFs, which the same bacteria were unable to do in planktonic form. Full article
(This article belongs to the Special Issue Microbial Diversity and Function in Aquatic Environments)
Show Figures

Figure 1

Back to TopTop