Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = back-to-back power converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 216
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

26 pages, 4627 KiB  
Article
A Low-Voltage Back-to-Back Converter Interface for Prosumers in a Multifrequency Power Transfer Environment
by Zaid Ali, Hamed Athari and David Raisz
Appl. Sci. 2025, 15(15), 8340; https://doi.org/10.3390/app15158340 - 26 Jul 2025
Viewed by 223
Abstract
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic [...] Read more.
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic power to a three-phase residential inverter supplying a clean 50 Hz load and another mode that uses a DC–DC buck–boost converter to integrate a battery storage unit for single-phase load supply. The system allows independent control of each harmonic component and maintains a clean sinusoidal voltage at the load side through DC-link isolation. The LVDC link functions as a frequency-selective barrier to suppress non-standard harmonic signals on the load side, effectively isolating the multi-frequency power grid from standard-frequency household loads. The proposed solution fills the gap between the multi-frequency power systems and the single-frequency loads because it allows the transfer of total multi-frequency grid power to the traditional household loads with pure fundamental frequency. Experimental results and simulation outcomes demonstrate that the system achieves high efficiency, robust harmonic isolation, and dynamic adaptability when load conditions change. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

13 pages, 1451 KiB  
Article
Study on the Optimization and Improvement of Control Strategies for Modular Multilevel Converter High Voltage Direct Current Connected to Weak Alternative Current Systems
by Wankai Yang, Guoliang Zhao and Dongming Han
Energies 2025, 18(11), 2984; https://doi.org/10.3390/en18112984 - 5 Jun 2025
Viewed by 327
Abstract
To address the stability problem related to grid-connected modular multilevel converter high voltage direct current (MMC HVDC) connected to weak alternative current (AC) systems, the short-circuit ratio (SCR) that affects the stability of the system was analyzed first. Short-circuit ratios with SCR values [...] Read more.
To address the stability problem related to grid-connected modular multilevel converter high voltage direct current (MMC HVDC) connected to weak alternative current (AC) systems, the short-circuit ratio (SCR) that affects the stability of the system was analyzed first. Short-circuit ratios with SCR values greater than 1.3 were obtained, and the system could still operate stably. By applying the theoretical equations of classical circuits, it has been theoretically proven that for the constant active power and constant AC voltage control modes on the weak system side, after the flexible direct current enters the weak system mode, the power must be reduced to ensure the stable operation of the system. Combined with the actual situation of the north channel of the Chongqing–Hubei back-to-back MMC HVDC project, which is connected to the weak system mode, measures such as the optimization of the control mode and the improvement of control functions in the weak system mode were proposed, and simulation calculations and real time digital simulator (RTDS) simulation verifications were carried out. These control strategies have been applied to the Chongqing–Hubei MMC HVDC project, and on-site verification tests have been conducted to ensure stable operation in the weak system mode. Full article
(This article belongs to the Special Issue Planning, Operation, and Control of New Power Systems)
Show Figures

Figure 1

23 pages, 4508 KiB  
Article
Investigation of Frequency Response Sharing-Induced Power Oscillations in VSC-HVDC Systems for Asynchronous Interconnection
by Ke Wang, Chunguang Zhou, Yiping Chen, Yan Guo, Zhantao Fan and Zhixuan Li
Energies 2025, 18(11), 2928; https://doi.org/10.3390/en18112928 - 3 Jun 2025
Viewed by 422
Abstract
Low-frequency power oscillations (LFPOs) may occur in voltage source converter-based high-voltage direct current (VSC-HVDC) systems when providing frequency support to asynchronously interconnected power grids. This phenomenon has been observed in the LUXI back-to-back (BTB) VSC-HVDC project in China and results from insufficient damping, [...] Read more.
Low-frequency power oscillations (LFPOs) may occur in voltage source converter-based high-voltage direct current (VSC-HVDC) systems when providing frequency support to asynchronously interconnected power grids. This phenomenon has been observed in the LUXI back-to-back (BTB) VSC-HVDC project in China and results from insufficient damping, which may threaten the stability of the overall power system. To better understand and address this problem, this study investigates the root causes of LFPOs and evaluates how different parts of the system affect damping. A combined approach using small-signal modeling and the damping torque method is developed to analyze the damping behavior of DC power in VSC-HVDC systems. Results show that LFPOs are caused by the interaction between VSC-based frequency control and the dynamic response of synchronous generators (SGs). The turbine and governor systems in SGs help stabilize the system by providing positive damping, whereas the DC voltage-controlled VSC station introduces negative damping. The findings are supported by detailed simulations using a modified IEEE 39-bus test system, demonstrating the effectiveness of the proposed analysis method. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

25 pages, 5491 KiB  
Article
Exploring the Economic Hypothetical for Downhill Belt Conveyors Equipped with Three-Phase Active Front-End Load Converters
by Daniel Chelopo and Kapil Gupta
Technologies 2025, 13(5), 185; https://doi.org/10.3390/technologies13050185 - 5 May 2025
Viewed by 680
Abstract
This paper integrates empirical assessments of energy recovery in downhill belt conveyor systems with rigorous theoretical modeling and economic analysis. An alternative approach for capturing and transforming the potential energy of a descending conveyor into electrical energy is proposed using an active front-end [...] Read more.
This paper integrates empirical assessments of energy recovery in downhill belt conveyor systems with rigorous theoretical modeling and economic analysis. An alternative approach for capturing and transforming the potential energy of a descending conveyor into electrical energy is proposed using an active front-end (AFE) load energy recovery system. Adjusting the drive configuration from a standard direct-on-line (DOL) system to a regenerative AFE converter, the conveyor’s excess kinetic energy can be fed back into the grid. The investigation shows that operating a 300 kW downhill conveyor at full capacity would consume about 142,800 kWh per month in a conventional setup. However, at 90% of the maximum capacity over 17 h per day (~476 h per month), the conveyor with an AFE system produces a regenerative power of 188 kW (negative demand), yielding a net generation of 89,488 kWh per month. The results indicate that integrating a regenerative AFE control system can achieve energy savings of approximately 37% compared to a non-regenerative system. The key economic indicators, including lifecycle cost, payback period, and net present value, confirm the financial viability of the proposed system over a 20-year span. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

21 pages, 3679 KiB  
Article
Simulation Modeling of Energy Efficiency of Electric Dump Truck Use Depending on the Operating Cycle
by Aleksey F. Pryalukhin, Boris V. Malozyomov, Nikita V. Martyushev, Yuliia V. Daus, Vladimir Y. Konyukhov, Tatiana A. Oparina and Ruslan G. Dubrovin
World Electr. Veh. J. 2025, 16(4), 217; https://doi.org/10.3390/wevj16040217 - 5 Apr 2025
Cited by 4 | Viewed by 788
Abstract
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are [...] Read more.
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are preferable due to their environmental friendliness. Unlike dump trucks with thermal engines, which require fuel to be injected into them, electric trucks can be powered by various options of a power supply: centralized, autonomous, and combined. This paper highlights the advantages and disadvantages of different power supply systems depending on their schematic solutions and the quarry parameters for all the variants of the power supply of the dumper. Each quantitative indicator of each factor was changed under conditions consistent with the others. The steepness of the road elevation in the quarry and its length were the factors under study. The studies conducted show that the energy consumption for dump truck movement for all variants of a power supply practically does not change. Another group of factors consisted of electric energy sources, which were accumulator batteries and double electric layer capacitors. The analysis of energy efficiency and the regenerative braking system reveals low efficiency of regeneration when lifting the load from the quarry. In the process of lifting from the lower horizons of the quarry to the dump and back, kinetic energy is converted into heat, reducing the efficiency of regeneration considering the technological cycle of works. Taking these circumstances into account, removing the regenerative braking systems of open-pit electric dump trucks hauling soil or solid minerals from an open pit upwards seems to be economically feasible. Eliminating the regenerative braking system will simplify the design, reduce the cost of a dump truck, and free up usable volume effectively utilized to increase the capacity of the battery packs, allowing for longer run times without recharging and improving overall system efficiency. The problem of considering the length of the path for energy consumption per given gradient of the motion profile was solved. Full article
Show Figures

Figure 1

17 pages, 8581 KiB  
Article
Enhanced Control Strategy for Three-Level T-Type Converters in Hybrid Power-to-X Systems
by Moria Sassonker Elkayam and Dmitri Vinnikov
Appl. Sci. 2025, 15(5), 2409; https://doi.org/10.3390/app15052409 - 24 Feb 2025
Viewed by 656
Abstract
This paper presents a dual-loop control system designed for three-level three-phase T-type converters, optimizing their performance in the hybrid operation of Power-to-X systems. Due to the increasing of distributed power generation based on renewable energy sources, Power-to-X systems convert surplus renewable energy into [...] Read more.
This paper presents a dual-loop control system designed for three-level three-phase T-type converters, optimizing their performance in the hybrid operation of Power-to-X systems. Due to the increasing of distributed power generation based on renewable energy sources, Power-to-X systems convert surplus renewable energy into other forms of energy, such as hydrogen, synthetic fuels, or chemical storage, which can be stored and later converted back to electricity or used in other applications. Bidirectional converters play a crucial role in hybrid system operation, which requires an efficient and reliable power conversion to maintain stability and performance. The proposed dual-loop control system includes an inner current loop for fast current regulation and an outer voltage loop to maintain stable voltage levels, ensuring precise control of the output of the converter and enhancing its response to dynamic changes in load and generation. Additionally, the control system incorporates a technique to balance the split DC-link capacitors voltages, a major challenge in three-level converters. Comprehensive simulation and experimental results demonstrate the efficacy of the proposed control system in maintaining high power quality and supporting the hybrid operation of Power-to-X systems. Full article
(This article belongs to the Special Issue Control of Power Systems, 2nd Edition)
Show Figures

Figure 1

28 pages, 16912 KiB  
Article
Power Flow and Voltage Control Strategies in Hybrid AC/DC Microgrids for EV Charging and Renewable Integration
by Zaid H. Ali and David Raisz
World Electr. Veh. J. 2025, 16(2), 104; https://doi.org/10.3390/wevj16020104 - 14 Feb 2025
Cited by 2 | Viewed by 1125
Abstract
This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid connections [...] Read more.
This study outlines the creation and lab verification of a low-voltage direct current (LVDC) back-to-back (B2B) converter intended as a versatile connection point for low-voltage users. The converter configuration features dual inverters that regulate the power distribution to AC loads and grid connections through a shared DC circuit. This arrangement enables the integration of various DC generation sources, such as photovoltaic systems, as well as DC consumers, like electric vehicle chargers, supported by DC/DC converters. Significant advancements include sensorless current estimation for grid-forming inverters, which removes the necessity for conventional current sensors by employing mathematical models and established system parameters. The experimental findings validate the system’s effectiveness in grid-connected and isolated microgrid modes, demonstrating its ability to sustain energy quality and system stability under different conditions. Our results highlight the considerable potential of integrating grid-forming functionalities in inverters to improve microgrid operations. Full article
Show Figures

Figure 1

19 pages, 2276 KiB  
Article
A Broadband Mode Converter Antenna for Terahertz Communications
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Electronics 2025, 14(3), 551; https://doi.org/10.3390/electronics14030551 - 29 Jan 2025
Viewed by 951
Abstract
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a [...] Read more.
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a major challenge in THz systems. In this paper, we propose a THz band mode converter that converts from a rectangular waveguide (RWG) (WR-0.43) in TE10 mode to a substrate-integrated waveguide (SIW) in TE20 mode. The converter comprises a tapered waveguide, a widened waveguide, a zigzag antenna, and an aperture coupling slot. The zigzag antenna effectively captures the electromagnetic (EM) energy from the RWG, which is then coupled to the aperture slot. This coupling generates a quasi-slotline mode for the electric field (E-field) along the longitudinal side of the aperture, exhibiting odd symmetry akin to the SIW’s TE20 mode. Consequently, the TE20 mode is excited in the symmetrical plane of the SIW and propagates transversely. Our work details the mode transition principle through simulations of the EM field distribution and model optimization. A back-to-back RWG TE10-to-TE10 mode converter is designed, demonstrating an insertion loss of approximately 5 dB over the wide frequency range band of 2.15–2.36 THz, showing a return loss of 10 dB. An on-chip antenna is proposed which is fed by a single higher-order mode of the SIW, achieving a maximum gain of 4.49 dB. Furthermore, a balun based on the proposed converter is designed, confirming the presence of the TE20 mode in the SIW. The proposed mode converter demonstrates its feasibility for integration into a THz-band high-speed circuit due to its efficient mode conversion and compact planar design. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

13 pages, 2840 KiB  
Article
Experimental Investigation of a Hybrid S-Band Amplifier Based on Two Parametric Wavelength Converters and an Erbium-Doped Fiber Amplifier
by Cheng Guo, Afshin Shamsshooli, Michael Vasilyev, Youichi Akasaka, Paparao Palacharla, Ryuichi Sugizaki and Shigehiro Takasaka
Photonics 2025, 12(2), 100; https://doi.org/10.3390/photonics12020100 - 23 Jan 2025
Viewed by 1101
Abstract
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation [...] Read more.
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation lies in the high cost and suboptimal performance of optical amplifiers, stemming from the underdeveloped state of rare-earth-doped fiber-optic amplifier technologies for these bands. Fiber-optic parametric amplifiers provide an alternative for wideband optical amplification, yet their low power efficiency limits their practical use in the field. In this paper, we study a hybrid optical amplifier that combines the excellent power efficiency of rare-earth-doped amplifiers with broadband wavelength conversion capability of parametric amplifiers. It uses wavelength converters to shift signals between the S- and L-bands, amplifying them with an L-band erbium-doped fiber amplifier, and converting them back to the S-band. We experimentally demonstrate such a hybrid S-band amplifier, characterize its performance with 16-QAM input signals, and evaluate its power efficiency and four-wave-mixing-induced crosstalk. This hybrid approach paves the way for scalable expansion of optical communication bands without waiting for advancements in rare-earth-doped amplifier technology. Full article
Show Figures

Figure 1

20 pages, 4910 KiB  
Article
Grid Connection of a Squirrel-Cage Induction Generator Excited by a Partial Power Converter
by Dominik A. Górski, Grzegorz Dziechciaruk and Grzegorz Iwański
Energies 2025, 18(2), 368; https://doi.org/10.3390/en18020368 - 16 Jan 2025
Cited by 1 | Viewed by 1061
Abstract
This article concerns the connection process of a squirrel-cage induction generator to the grid/microgrid. Typically, the generator is unexcited, and its connection to the grid is made directly via a switch. This connection causes a high inrush current and grid voltage drop, which [...] Read more.
This article concerns the connection process of a squirrel-cage induction generator to the grid/microgrid. Typically, the generator is unexcited, and its connection to the grid is made directly via a switch. This connection causes a high inrush current and grid voltage drop, which local consumers notice. This article proposes a robust power system consisting of the squirrel-cage induction generator, a power electronic converter, and a capacitor bank, all connected in parallel. The proposed configuration and a dedicated control system eliminate the inrush current and compensate for the generator’s reactive power during grid-tied operation. The converter controls the generator voltage build-up to adjust the generator voltage to the grid voltage (controlled excitation) and connects the generator to the grid, minimising distortions. Moreover, the system is robust because the failure of the converter does not stop the power generation, unlike a system with a back-to-back converter, where the converter links the generator and the grid. Furthermore, the parallel-connected converter has a significantly reduced power rating because it is only rated for a part of the reactive generator power. The rest of the reactive generator power is delivered by the fixed capacitor bank. The article presents the system configuration, the control method, and laboratory results confirming the system’s effectiveness in maintaining high-quality grid voltage during generator-to-grid connection and high-quality power supplied to the grid. Full article
Show Figures

Figure 1

25 pages, 11967 KiB  
Article
Quadrature-Phase-Locked-Loop-Based Back-Electromotive Force Observer for Sensorless Brushless DC Motor Drive Control in Solar-Powered Electric Vehicles
by Biswajit Saha, Aryadip Sen, Bhim Singh, Kumar Mahtani and José A. Sánchez-Fernández
Appl. Sci. 2025, 15(2), 574; https://doi.org/10.3390/app15020574 - 9 Jan 2025
Cited by 1 | Viewed by 1372
Abstract
This work presents a sensorless brushless DC motor (BLDCM) drive control, optimized for solar photovoltaic (PV)- and battery-fed light electric vehicles (LEVs). A back-electromotive force (EMF) observer integrated with an enhanced quadrature-phase-locked-loop (QPLL) structure is proposed for accurate rotor position estimation, addressing limitations [...] Read more.
This work presents a sensorless brushless DC motor (BLDCM) drive control, optimized for solar photovoltaic (PV)- and battery-fed light electric vehicles (LEVs). A back-electromotive force (EMF) observer integrated with an enhanced quadrature-phase-locked-loop (QPLL) structure is proposed for accurate rotor position estimation, addressing limitations of existing control methods at low speeds and under dynamic conditions. The study replaces the conventional arc-tangent technique with a QPLL-based approach, eliminating low-pass filters to enhance system adaptability and reduce delays. The experimental results demonstrate a significant reduction in commutation error, with a nearly flat value at 0 degrees during steady-state and less than 8 degrees under dynamic conditions. Furthermore, the performance of a modified single-ended primary-inductor converter (SEPIC) for maximum power point tracking (MPPT) in solar-powered LEVs is verified, minimizing current ripple and ensuring smooth motor operation. The system also incorporates a regenerative braking mechanism, extending the vehicle’s range by efficiently recovering kinetic energy through the battery with 30.60% efficiency. The improved performance of the proposed method and system over conventional approaches contributes to the advancement of efficient and sustainable solar-powered BLDC motor-based EV technologies. Full article
(This article belongs to the Special Issue Design and Synthesis of Electric Energy Conversion Systems)
Show Figures

Figure 1

26 pages, 7292 KiB  
Article
Research on Low-Voltage Ride-Through and Intelligent Optimization Control of Wind Turbines Based on Hybrid Power Prediction Models
by Xianlong Su and Jinming Gao
Electronics 2024, 13(24), 4886; https://doi.org/10.3390/electronics13244886 - 11 Dec 2024
Cited by 1 | Viewed by 1056
Abstract
This paper proposes a dual-loop back-to-back converter coordination control scheme with a DC-side voltage as the primary control target, along with a CROW unloading control strategy for low voltage ride-through (LVRT) capability enhancement. The feasibility and effectiveness of the proposed system topology and [...] Read more.
This paper proposes a dual-loop back-to-back converter coordination control scheme with a DC-side voltage as the primary control target, along with a CROW unloading control strategy for low voltage ride-through (LVRT) capability enhancement. The feasibility and effectiveness of the proposed system topology and control strategy are verified through MATLAB/Simulink simulations. Furthermore, a hybrid short-term wind power prediction model based on data-driven and deep learning techniques (CEEMDAN-CNN-Transformer-XGBoost) is introduced in the wind turbine control system. The coordination control strategy seamlessly integrates wind power prediction, pitch angle adjustment, and the control system, embodying a predictive-driven intelligent optimization control approach. This method significantly improves prediction accuracy and stability, theoretically reduces unnecessary pitch angle adjustments, lowers mechanical stress, and enhances system adaptability in complex operating conditions. The research findings provide a valuable theoretical foundation and technical reference for the intelligent and efficient operation of wind power generation systems. Full article
Show Figures

Figure 1

29 pages, 2345 KiB  
Article
Signal Processing for Transient Flow Rate Determination: An Analytical Soft Sensor Using Two Pressure Signals
by Faras Brumand-Poor, Tim Kotte, Enrico Gaspare Pasquini and Katharina Schmitz
Signals 2024, 5(4), 812-840; https://doi.org/10.3390/signals5040045 - 2 Dec 2024
Cited by 1 | Viewed by 1526
Abstract
Accurate knowledge of the flow rate is essential for hydraulic systems, enabling the calculation of hydraulic power when combined with pressure measurements. These data are crucial for applications such as predictive maintenance. However, most flow rate sensors in fluid power systems operate invasively, [...] Read more.
Accurate knowledge of the flow rate is essential for hydraulic systems, enabling the calculation of hydraulic power when combined with pressure measurements. These data are crucial for applications such as predictive maintenance. However, most flow rate sensors in fluid power systems operate invasively, disrupting the flow and producing inaccurate results, especially under transient conditions. Utilizing pressure transducers represents a non-invasive soft sensor approach since no physical flow rate sensor is used to determine the flow rate. Usually, this approach relies on the Hagen–Poiseuille (HP) law, which is limited to steady and incompressible flow. This paper introduces a novel soft sensor with an analytical model for transient, compressible pipe flow based on two pressure signals. The model is derived by solving fundamental fluid equations in the Laplace domain and converting them back to the time domain. Using the four-pole theorem, this model contains a relationship between the pressure difference and the flow rate. Several unsteady test cases are investigated and compared to a steady soft sensor based on the HP law, highlighting our soft sensor’s promising capability. It exhibits an overall error of less than 0.15% for the investigated test cases in a distributed-parameter simulation, whereas the HP-based sensor shows errors in the double-digit range. Full article
Show Figures

Graphical abstract

18 pages, 5693 KiB  
Article
A Novel Approach to Transient Fourier Analysis for Electrical Engineering Applications
by Mariana Beňová, Branislav Dobrucký, Jozef Šedo, Michal Praženica, Roman Koňarik, Juraj Šimko and Martin Kuchař
Appl. Sci. 2024, 14(21), 9888; https://doi.org/10.3390/app14219888 - 29 Oct 2024
Cited by 2 | Viewed by 1376
Abstract
This paper presents a detailed investigation into the application of transient Fourier analysis in select electrical engineering contexts. Two novel approaches for addressing transient analysis are introduced. The first approach combines the Fourier series with the Laplace–Carson (L-C) transform [...] Read more.
This paper presents a detailed investigation into the application of transient Fourier analysis in select electrical engineering contexts. Two novel approaches for addressing transient analysis are introduced. The first approach combines the Fourier series with the Laplace–Carson (L-C) transform in the complex domain, utilizing complex time vectors to streamline the computation of the original function. The inverse transformation back into the time domain is achieved using the Cauchy-Heaviside (C-H) method. The second approach applies the Fourier transform (F-Τ) for the transient analysis of a power converter circuit with both passive and active loads. The method of complex conjugate amplitudes is employed for steady-state analysis. Both contributions represent innovative approaches within this study. The process begins with Fourier series expansions and the computation of Fourier coefficients, followed by solving the system’s steady-state and transient responses. The transient states are then confirmed using the Fourier transform. To validate these findings, the analytical results are verified through simulations conducted in the Matlab/Simulink R2023b environment. Full article
(This article belongs to the Special Issue Electric Power System Stability and Control)
Show Figures

Figure 1

Back to TopTop