Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = axonal competition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3152 KiB  
Article
Connectivity in the Dorsal Visual Stream Is Enhanced in Action Video Game Players
by Kyle Cahill, Timothy Jordan and Mukesh Dhamala
Brain Sci. 2024, 14(12), 1206; https://doi.org/10.3390/brainsci14121206 - 28 Nov 2024
Viewed by 3066
Abstract
Action video games foster competitive environments that demand rapid spatial navigation and decision-making. Action video gamers often exhibit faster response times and slightly improved accuracy in vision-based sensorimotor tasks. Background/Objectives: However, the underlying functional and structural changes in the two visual streams of [...] Read more.
Action video games foster competitive environments that demand rapid spatial navigation and decision-making. Action video gamers often exhibit faster response times and slightly improved accuracy in vision-based sensorimotor tasks. Background/Objectives: However, the underlying functional and structural changes in the two visual streams of the brain that may be contributing to these cognitive improvements have been unclear. Methods: Using functional and diffusion MRI data, this study investigated the differences in connectivity between gamers who play action video games and nongamers in the dorsal and ventral visual streams. Results: We found that action video gamers have enhanced functional and structural connectivity, especially in the dorsal visual stream. Specifically, there is heightened functional connectivity—both undirected and directed—between the left superior occipital gyrus and the left superior parietal lobule during a moving-dot discrimination decision-making task. This increased connectivity correlates with response time in gamers. The structural connectivity in the dorsal stream, as quantified by diffusion fractional anisotropy and quantitative anisotropy measures of the axonal fiber pathways, was also enhanced for gamers compared to nongamers. Conclusions: These findings provide valuable insights into how action video gaming can induce targeted improvements in structural and functional connectivity between specific brain regions in the visual processing pathways. These connectivity changes in the dorsal visual stream underpin the superior performance of action video gamers compared to nongamers in tasks requiring rapid and accurate vision-based decision-making. Full article
Show Figures

Figure 1

18 pages, 10499 KiB  
Article
Oxidative Stress-Associated Alteration of circRNA and Their ceRNA Network in Differentiating Neuroblasts
by Ebrahim Mahmoudi, Behnaz Khavari and Murray J. Cairns
Int. J. Mol. Sci. 2024, 25(22), 12459; https://doi.org/10.3390/ijms252212459 - 20 Nov 2024
Cited by 1 | Viewed by 1287
Abstract
Oxidative stress from environmental exposures is thought to play a role in neurodevelopmental disorders; therefore, understanding the underlying molecular regulatory network is essential for mitigating its impacts. In this study, we analysed the competitive endogenous RNA (ceRNA) network mediated by circRNAs, a novel [...] Read more.
Oxidative stress from environmental exposures is thought to play a role in neurodevelopmental disorders; therefore, understanding the underlying molecular regulatory network is essential for mitigating its impacts. In this study, we analysed the competitive endogenous RNA (ceRNA) network mediated by circRNAs, a novel class of regulatory molecules, in an SH-SY5Y cell model of oxidative stress, both prior to and during neural differentiation, using RNA sequencing and in silico analysis. We identified 146 differentially expressed circRNAs, including 93 upregulated and 53 downregulated circRNAs, many of which were significantly co-expressed with mRNAs that potentially interact with miRNAs. We constructed a circRNA–miRNA–mRNA network and identified 15 circRNAs serving as hubs within the regulatory axes, with target genes enriched in stress- and neuron-related pathways, such as signaling by VEGF, axon guidance, signaling by FGFR, and the RAF/MAP kinase cascade. These findings provide insights into the role of the circRNA-mediated ceRNA network in oxidative stress during neuronal differentiation, which may help explain the regulatory mechanisms underlying neurodevelopmental disorders associated with oxidative stress. Full article
(This article belongs to the Special Issue Targeting Oxidative Stress for Disease)
Show Figures

Figure 1

10 pages, 2184 KiB  
Case Report
Characteristics of Intracranial Kinetic Loads When Sports-Related Concussion Occurs in Men’s Rhythmic Gymnastics
by Shunya Otsubo, Yutaka Shigemori, Sena Endo, Hiroshi Fukushima, Muneyuki Tachihara, Kyosuke Goto, Rino Tsurusaki, Nana Otsuka, Kentaro Masuda and Yuelin Zhang
Brain Sci. 2024, 14(8), 835; https://doi.org/10.3390/brainsci14080835 - 20 Aug 2024
Viewed by 1381
Abstract
This study aimed to clarify the differences between the previously reported mechanisms of sports-related concussion (SRC) injuries without a loss of consciousness in contact and collision sports and the mechanisms of SRC injuries in our cases. Based on two videos of SRC injuries [...] Read more.
This study aimed to clarify the differences between the previously reported mechanisms of sports-related concussion (SRC) injuries without a loss of consciousness in contact and collision sports and the mechanisms of SRC injuries in our cases. Based on two videos of SRC injuries occurring during a men’s rhythmic gymnastics competition (three people were injured), the risk of SRC occurrence was estimated from various parameters using a multibody analysis and eight brain injury evaluation criteria. In the present study, the three SRC impacts that occurred in men’s rhythmic gymnastics showed significant characteristics in duration compared to previously reported cases in the contact sports. This suggests that the occurrence of SRC may have been caused by a different type of impact from that which causes SRC in contact sports (e.g., tackling). In addition, calculation of the strain indicating the rate of brain deformation suggested a risk of nerve swelling in all cases involving type 2 axonal injuries. Therefore, when reexamining sports-related head injuries, it is important to recognize the characteristics and mechanisms of SRC that occur in each different sport, as well as the symptoms and course of SRC after injury. Full article
(This article belongs to the Section Neurosurgery and Neuroanatomy)
Show Figures

Figure 1

12 pages, 2049 KiB  
Article
Adaptation of a Commercial NAD+ Quantification Kit to Assay the Base-Exchange Activity and Substrate Preferences of SARM1
by Ilenia Cirilli, Adolfo Amici, Jonathan Gilley, Michael P. Coleman and Giuseppe Orsomando
Molecules 2024, 29(4), 847; https://doi.org/10.3390/molecules29040847 - 14 Feb 2024
Cited by 1 | Viewed by 2052
Abstract
Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine [...] Read more.
Here, we report an adapted protocol using the Promega NAD/NADH-Glo™ Assay kit. The assay normally allows quantification of trace amounts of both oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD) by enzymatic cycling, but we now show that the NAD analog 3-acetylpyridine adenine dinucleotide (AcPyrAD) also acts as a substrate for this enzyme-cycling assay. In fact, AcPyrAD generates amplification signals of a larger amplitude than those obtained with NAD. We exploited this finding to devise and validate a novel method for assaying the base-exchange activity of SARM1 in reactions containing NAD and an excess of the free base 3-acetylpyridine (AcPyr), where the product is AcPyrAD. We then used this assay to study competition between AcPyr and other free bases to rank the preference of SARM1 for different base-exchange substrates, identifying isoquinoline as a highly effect substrate that completely outcompetes even AcPyr. This has significant advantages over traditional HPLC methods for assaying SARM1 base exchange as it is rapid, sensitive, cost-effective, and easily scalable. This could represent a useful tool given current interest in the role of SARM1 base exchange in programmed axon death and related human disorders. It may also be applicable to other multifunctional NAD glycohydrolases (EC 3.2.2.6) that possess similar base-exchange activity. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106–126) via Neurotrophic Factor Signaling
by Sokho Kim, Jihye Choi and Jungkee Kwon
Molecules 2023, 28(9), 3920; https://doi.org/10.3390/molecules28093920 - 6 May 2023
Viewed by 2283
Abstract
Prion protein peptide (PrP) has demonstrated neurotoxicity in brain cells, resulting in the progression of prion diseases with spongiform degenerative, amyloidogenic, and aggregative properties. Thymosin beta 4 (Tβ4) plays a role in the nervous system and may be related to motility, [...] Read more.
Prion protein peptide (PrP) has demonstrated neurotoxicity in brain cells, resulting in the progression of prion diseases with spongiform degenerative, amyloidogenic, and aggregative properties. Thymosin beta 4 (Tβ4) plays a role in the nervous system and may be related to motility, axonal enlargement, differentiation, neurite outgrowth, and proliferation. However, no studies about the effects of Tβ4 on prion disease have been performed yet. In the present study, we investigated the protective effect of Tβ4 against synthetic PrP (106–126) and considered possible mechanisms. Hippocampal neuronal HT22 cells were treated with Tβ4 and PrP (106–126) for 24 h. Tβ4 significantly reversed cell viability and reactive oxidative species (ROS) affected by PrP (106–126). Apoptotic proteins induced by PrP (106–126) were reduced by Tβ4. Interestingly, a balance of neurotrophic factors (nerve growth factor and brain-derived neurotrophic factor) and receptors (nerve growth factor receptor p75, tropomyosin related kinase A and B) were competitively maintained by Tβ4 through receptors reacting to PrP (106–126). Our results demonstrate that Tβ4 protects neuronal cells against PrP (106–126) neurotoxicity via the interaction of neurotrophic factors/receptors. Full article
(This article belongs to the Special Issue Developing Drug Strategies for the Neuroprotective Treatment)
Show Figures

Figure 1

19 pages, 811 KiB  
Review
Metal Profiles in Autism Spectrum Disorders: A Crosstalk between Toxic and Essential Metals
by Anna Błażewicz and Andreas M. Grabrucker
Int. J. Mol. Sci. 2023, 24(1), 308; https://doi.org/10.3390/ijms24010308 - 24 Dec 2022
Cited by 25 | Viewed by 8505
Abstract
Since hundreds of years ago, metals have been recognized as impacting our body’s physiology. As a result, they have been studied as a potential cure for many ailments as well as a cause of acute or chronic poisoning. However, the link between aberrant [...] Read more.
Since hundreds of years ago, metals have been recognized as impacting our body’s physiology. As a result, they have been studied as a potential cure for many ailments as well as a cause of acute or chronic poisoning. However, the link between aberrant metal levels and neuropsychiatric illnesses such as schizophrenia and neurodevelopmental disorders, such as autism spectrum disorders (ASDs), is a relatively new finding, despite some evident ASD-related consequences of shortage or excess of specific metals. In this review, we will summarize past and current results explaining the pathomechanisms of toxic metals at the cellular and molecular levels that are still not fully understood. While toxic metals may interfere with dozens of physiological processes concurrently, we will focus on ASD-relevant activity such as inflammation/immune activation, mitochondrial malfunction, increased oxidative stress, impairment of axonal myelination, and synapse formation and function. In particular, we will highlight the competition with essential metals that may explain why both the presence of certain toxic metals and the absence of certain essential metals have emerged as risk factors for ASD. Although often investigated separately, through the agonistic and antagonistic effects of metals, a common metal imbalance may result in relation to ASD. Full article
(This article belongs to the Special Issue Medical and Environmental Aspects of Metal Toxicity)
Show Figures

Figure 1

6 pages, 626 KiB  
Communication
PKA and PKC Balance in Synapse Elimination during Neuromuscular Junction Development
by Neus Garcia, Maria A. Lanuza, Marta Tomàs, Víctor Cilleros-Mañé, Laia Just-Borràs, Maria Duran, Aleksandra Polishchuk and Josep Tomàs
Cells 2021, 10(6), 1384; https://doi.org/10.3390/cells10061384 - 4 Jun 2021
Cited by 4 | Viewed by 3056
Abstract
During the development of the nervous system, synaptogenesis occurs in excess though only the appropriate connections consolidate. At the neuromuscular junction, competition between several motor nerve terminals results in the maturation of a single axon and the elimination of the others. The activity-dependent [...] Read more.
During the development of the nervous system, synaptogenesis occurs in excess though only the appropriate connections consolidate. At the neuromuscular junction, competition between several motor nerve terminals results in the maturation of a single axon and the elimination of the others. The activity-dependent release of transmitter, cotransmitters, and neurotrophic factors allows the direct mutual influence between motor axon terminals through receptors such as presynaptic muscarinic ACh autoreceptors and the tropomyosin-related kinase B neurotrophin receptor. In previous studies, we investigated the synergistic and antagonistic relations between these receptors and their downstream coupling to PKA and PKC pathways and observed a metabotropic receptor-driven balance between PKA (stabilizes multinnervation) and PKC (promotes developmental axonal loss). However, how much does each kinase contribute in the developmental synapse elimination process? A detailed statistical analysis of the differences between the PKA and PKC effects in the synapse elimination could help to explore this point. The present short communication provides this analysis and results show that a similar level of PKA inhibition and PKC potentiation would be required during development to promote synapse loss. Full article
Show Figures

Graphical abstract

21 pages, 3267 KiB  
Article
Opposed Actions of PKA Isozymes (RI and RII) and PKC Isoforms (cPKCβI and nPKCε) in Neuromuscular Developmental Synapse Elimination
by Neus Garcia, Cori Balañà, Maria A. Lanuza, Marta Tomàs, Víctor Cilleros-Mañé, Laia Just-Borràs and Josep Tomàs
Cells 2019, 8(11), 1304; https://doi.org/10.3390/cells8111304 - 23 Oct 2019
Cited by 7 | Viewed by 3176
Abstract
Background: During neuromuscular junction (NMJ) development, synapses are produced in excess. By sensing the activity-dependent release of ACh, adenosine, and neurotrophins, presynaptic receptors prompt axonal competition and loss of the unnecessary axons. The receptor action is mediated by synergistic and antagonistic relations when [...] Read more.
Background: During neuromuscular junction (NMJ) development, synapses are produced in excess. By sensing the activity-dependent release of ACh, adenosine, and neurotrophins, presynaptic receptors prompt axonal competition and loss of the unnecessary axons. The receptor action is mediated by synergistic and antagonistic relations when they couple to downstream kinases (mainly protein kinases A and C (PKA and PKC)), which phosphorylate targets involved in axonal disconnection. Here, we directly investigated the involvement of PKA subunits and PKC isoforms in synapse elimination. Methods: Selective PKA and PKC peptide modulators were applied daily to the Levator auris longus (LAL) muscle surface of P5–P8 transgenic B6.Cg-Tg (Thy1-YFP) 16 Jrs/J (and also C57BL/6J) mice, and the number of axons and the postsynaptic receptor cluster morphology were evaluated in P9 NMJ. Results: PKA (PKA-I and PKA-II isozymes) acts at the pre- and postsynaptic sites to delay both axonal elimination and nAChR cluster differentiation, PKC activity promotes both axonal loss (a cPKCβI and nPKCε isoform action), and postsynaptic nAChR cluster maturation (a possible role for PKCθ). Moreover, PKC-induced changes in axon number indirectly influence postsynaptic maturation. Conclusions: PKC and PKA have opposed actions, which suggests that changes in the balance of these kinases may play a major role in the mechanism of developmental synapse elimination. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

16 pages, 153 KiB  
Review
Competing Interactions of RNA-Binding Proteins, MicroRNAs, and Their Targets Control Neuronal Development and Function
by Amy S. Gardiner, Jeffery L. Twiss and Nora I. Perrone-Bizzozero
Biomolecules 2015, 5(4), 2903-2918; https://doi.org/10.3390/biom5042903 - 23 Oct 2015
Cited by 55 | Viewed by 9590
Abstract
Post-transcriptional mechanisms play critical roles in the control of gene expression during neuronal development and maturation as they allow for faster responses to environmental cues and provide spatially-restricted compartments for local control of protein expression. These mechanisms depend on the interaction of cis [...] Read more.
Post-transcriptional mechanisms play critical roles in the control of gene expression during neuronal development and maturation as they allow for faster responses to environmental cues and provide spatially-restricted compartments for local control of protein expression. These mechanisms depend on the interaction of cis-acting elements present in the mRNA sequence and trans-acting factors, such as RNA-binding proteins (RBPs) and microRNAs (miRNAs) that bind to those cis-elements and regulate mRNA stability, subcellular localization, and translation. Recent studies have uncovered an unexpected complexity in these interactions, where coding and non-coding RNAs, termed competing endogenous RNAs (ceRNAs), compete for binding to miRNAs. This competition can, thereby, control a larger number of miRNA target transcripts. However, competing RNA networks also extend to competition between target mRNAs for binding to limited amounts of RBPs. In this review, we present evidence that competitions between target mRNAs for binding to RBPs also occur in neurons, where they affect transcript stability and transport into axons and dendrites as well as translation. In addition, we illustrate the complexity of these mechanisms by demonstrating that RBPs and miRNAs also compete for target binding and regulation. Full article
(This article belongs to the Special Issue RNA-Binding Proteins—Structure, Function, Networks and Disease)
Show Figures

Graphical abstract

Back to TopTop