Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (440)

Search Parameters:
Keywords = axial distance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6194 KiB  
Article
Research on Analytical Solution of Stress Fields in Adjacent Tunnel Surrounding Rock Under Blasting and Verification Analysis
by Tao Luo, Yong Wei, Junbo Zhao, Yelong Xie, Yan Hu, Xiaoming Lou and Xiaofeng Huo
Appl. Sci. 2025, 15(15), 8688; https://doi.org/10.3390/app15158688 (registering DOI) - 6 Aug 2025
Abstract
In tunnel blasting, an analytical solution for dynamic stress in the surrounding rock of adjacent tunnels is critical for dynamic response analysis, mechanical evaluations, and crack propagation control. Previous studies on stress field analytical solutions primarily modeled rock as a linear elastic material, [...] Read more.
In tunnel blasting, an analytical solution for dynamic stress in the surrounding rock of adjacent tunnels is critical for dynamic response analysis, mechanical evaluations, and crack propagation control. Previous studies on stress field analytical solutions primarily modeled rock as a linear elastic material, focusing mainly on the P-wave effects from instantaneous detonation. Based on Heelan’s short cylindrical cavity model, this paper derives an analytical solution for blast-induced dynamic stresses in adjacent tunnel rock, incorporating both induced SV-waves and a rock mass damage factor through rigorous theoretical analysis. Numerical case studies and field measurements were used to analyze stress propagation during tunnel blasting, and theoretical results were compared with measured data. The key findings were as follows: Radial stress > axial stress > hoop stress. All three stresses decay with increasing distance and damage factor, following an inversely proportional relationship with distance. Radial stress decays faster than axial and hoop stresses. Stress also decays exponentially over time, with the peak occurring after the transverse wave arrival. The theoretical results show approximately 10% deviation from the existing empirical formulas, while field measurements closely match the theoretical model, showing consistent stress trends and an average error of 7.02% (radial), 7.56% (axial) and 7.05% (hoop), confirming the reliability of the proposed analytical solution. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

12 pages, 884 KiB  
Article
Anatomical Risk Patterns for Patellofemoral Instability in Skeletally Immature Patients: A Sex-Stratified MRI Study
by René Schroedter, Amir Koutp, Bernhard Guggenberger, Martin Svehlik, Sebastian Tschauner and Tanja Kraus
J. Clin. Med. 2025, 14(15), 5519; https://doi.org/10.3390/jcm14155519 - 5 Aug 2025
Abstract
Background/Objectives: Lateral patellar dislocation (LPD) is a common pathology of the adolescent knee and a major predisposing factor for patellofemoral instability (PFI). The pathogenesis of PFI involves a combination of anatomical and biomechanical contributors, with increasing evidence pointing to sex-specific differences in knee [...] Read more.
Background/Objectives: Lateral patellar dislocation (LPD) is a common pathology of the adolescent knee and a major predisposing factor for patellofemoral instability (PFI). The pathogenesis of PFI involves a combination of anatomical and biomechanical contributors, with increasing evidence pointing to sex-specific differences in knee morphology. Despite this, the developmental course of these parameters and their variation between sexes remain insufficiently characterized. This study aims to investigate sex-related differences in patellofemoral joint geometry among skeletally immature patients with a history of PFI, focusing on how these anatomical variations evolve with increasing knee size, as represented by femoral condylar width. Methods: A total of 315 knee MRIs from patients under 18 years with documented PFI were retrospectively analyzed. Trochlear morphology, patellar tilt, axial positioning, and sagittal alignment were assessed using established MRI-based parameters. All measurements were normalized to bicondylar width to account for individual knee size. Sex-specific comparisons were performed using independent t-tests and linear regression analysis. Results: Females exhibited significantly smaller femoral widths, shallower trochlear depth (TD), shorter tibial tubercle–posterior cruciate ligament (TTPCL) distances, and lower patellar trochlear index (PTI) values compared to males (p < 0.05). In males, increasing femoral width was associated with progressive normalization of patellar tilt and sagittal alignment parameters. In contrast, these alignment parameters in females remained largely unchanged or worsened across different femoral sizes. Additionally, patellar inclination angle and PTI were significantly influenced by knee size in males (p < 0.05), whereas no such relationship was identified in females. Conclusions: Sex-specific morphological differences in patellofemoral geometry are evident early in development and evolve distinctly with growth. These differences may contribute to the higher prevalence of PFI in females and underscore the importance of considering sex and knee size in anatomical assessments. Full article
(This article belongs to the Special Issue Recent Research Progress in Pediatric Orthopedic Surgery)
Show Figures

Figure 1

14 pages, 3520 KiB  
Article
Anterior Chamber Configuration and Its Related Factors Among 8-Year-Old Children in the Yamanashi Adjunct Study of the Japan Environment and Children’s Study
by Mingxue Bao, Ryo Harada, Yuka Kasai, Natsuki Okabe, Airi Takahashi, Chio Kuleshov, Yumi Shigemoto, Tadao Ooka, Hiroshi Yokomichi, Kunio Miyake, Reiji Kojima, Ryoji Shinohara, Hideki Yui, Sanae Otawa, Anna Kobayashi, Megumi Kushima, Zentaro Yamagata, Kenji Kashiwagi and on behalf of The Yamanashi Adjunct Study of the Japan Environment and Children’s Study Group
J. Clin. Med. 2025, 14(15), 5454; https://doi.org/10.3390/jcm14155454 - 3 Aug 2025
Viewed by 152
Abstract
Objective: This study aims to examine the anterior chamber structure and related factors in 8-year-old children based on data from The Yamanashi Adjunct Study of the Japan Environment and Children’s Study (JECS). Methods: A total of 709 children aged 8 years [...] Read more.
Objective: This study aims to examine the anterior chamber structure and related factors in 8-year-old children based on data from The Yamanashi Adjunct Study of the Japan Environment and Children’s Study (JECS). Methods: A total of 709 children aged 8 years (350 boys and 359 girls) who participated in the JECS Adjunct Study were included. The right eyes were primarily used for measurements. Optical Coherence Tomography (OCT) was utilized to scan the anterior chambers of the participants’ eyes. The following parameters were measured: Angle Opening Distance (AOD500, 750), Trabecular Iris Space Area (TISA500, 750), Anterior Chamber Angle (ACA500, 750), Peripheral Iris Thickness (IT500, 750), and Peripheral Corneal Thickness (PCT500, 750). The relationships between anterior chamber structure, axial length (AL), spherical equivalent (SE), logMAR (without correction), and body height were analyzed. Results: A significant negative correlation was found between SE and ACA (500: coefficient = −0.19; 750: −0.24), AOD (500: −0.19; 750: −0.24), and TISA (500: −0.17; 750: −0.23) (p < 0.001). Conversely, a significant positive correlation was observed between AL and ACA (500: 0.22; 750: 0.26), AOD (500: 0.25; 750: 0.30), and TISA (500: 0.24; 750: 0.29) (p < 0.001). Boys exhibited a longer AL (boys: girls = 23.30 ± 0.76 mm; girls = 22.79 ± 0.72 mm) and greater CT (500: boys = 812.82 ± 51.94 mm; girls = 784.48 ± 51.81 mm; 750: boys = 776.01 ± 48.64 mm; girls = 751.34 ± 49.63 mm) compared to girls (p < 0.001) despite no significant difference in body height. CT and IT showed no correlation with AL or SE, and visual acuity had minimal correlation with IT and CT. Conclusions: In our cohort of eight-year-old children, the anterior chamber angle structure correlates with ocular structures and refractive error, revealing notable differences between boys and girls. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

18 pages, 4093 KiB  
Article
Study of Mechanical and Wear Properties of Fabricated Tri-Axial Glass Composites
by Raghu Somanna, Rudresh Bekkalale Madegowda, Rakesh Mahesh Bilwa, Prashanth Malligere Vishveshwaraiah, Prema Nisana Siddegowda, Sandeep Bagrae, Madhukar Beejaganahalli Sangameshwara, Girish Hunaganahalli Nagaraju and Madhusudan Puttaswamy
J. Compos. Sci. 2025, 9(8), 409; https://doi.org/10.3390/jcs9080409 - 1 Aug 2025
Viewed by 187
Abstract
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite [...] Read more.
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite strength, with values ranging from 1.63% to 5.31%. Tensile tests revealed that composites with 5 wt% SiO2 (GV1) exhibited superior tensile strength, Young’s modulus, and elongation due to enhanced fiber–matrix interaction. Conversely, composites with 10 wt% SiO2 (GV2) showed decreased tensile performance, indicating increased brittleness. Flexural tests demonstrated that GV1 outperformed GV2, showcasing higher flexural strength, elastic modulus, and deflection, reflecting improved load-bearing capacity at optimal filler content. Shore D hardness tests confirmed that GV1 had the highest hardness among the specimens. SEM analysis revealed wear behavior under various loads and sliding distances. GV1 exhibited minimal wear loss at lower loads and distances, while higher loads caused significant matrix detachment and fiber damage. These findings highlight the importance of optimizing SiO2 filler content to enhance epoxy composites’ mechanical and tribological performance. Full article
Show Figures

Figure 1

39 pages, 14288 KiB  
Article
Design and Performance Study of a Magnetic Flux Leakage Pig for Subsea Pipeline Defect Detection
by Fei Qu, Shengtao Chen, Meiyu Zhang, Kang Zhang and Yongjun Gong
J. Mar. Sci. Eng. 2025, 13(8), 1462; https://doi.org/10.3390/jmse13081462 - 30 Jul 2025
Viewed by 282
Abstract
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related [...] Read more.
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related leaks. This study develops a magnetic flux leakage (MFL)-based pig for detecting corrosion in subsea pipelines. Using a three-dimensional finite element model, this study analyzes the effects of defect geometry, lift-off distance, and operating speed on MFL signals. It proposes a defect estimation method based on axial peak-to-valley values and radial peak spacing, with inversion accuracy validated against simulation results. This study establishes a theoretical and practical framework for subsea pipeline integrity management, providing an effective solution for corrosion monitoring. Full article
(This article belongs to the Special Issue Theoretical Research and Design of Subsea Pipelines)
Show Figures

Figure 1

26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 339
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

16 pages, 990 KiB  
Article
Bivalent Inhibitors of Mannose-Specific Bacterial Adhesion: A Xylose-Based Conformational Switch to Control Glycoligand Distance
by Sven Ole Jaeschke, Ingo vom Sondern and Thisbe K. Lindhorst
Molecules 2025, 30(15), 3074; https://doi.org/10.3390/molecules30153074 - 23 Jul 2025
Viewed by 217
Abstract
Functional glycomimetics is suited to study the parameters of carbohydrate recognition that forms the basis of glycobiology. It is particularly attractive when a glycoligand allows for the investigation of two different states, such as varying distance between multiple glycoligands. Here, a xylopyranoside was [...] Read more.
Functional glycomimetics is suited to study the parameters of carbohydrate recognition that forms the basis of glycobiology. It is particularly attractive when a glycoligand allows for the investigation of two different states, such as varying distance between multiple glycoligands. Here, a xylopyranoside was employed as a scaffold for the presentation of two mannoside units which are ligands of the bacterial lectin FimH. The chair conformation of the central xyloside can be switched between a 4C1 and a 1C4 conformation whereby the two conjugated mannoside ligands are flipped from a di-equatorial into a di-axial position. Concomitantly, the distance between the two glycoligands changes and, as a consequence, so does the biological activity of the respective bivalent glycocluster, as shown in adhesion–inhibition assays with live bacteria. Molecular modeling was employed to correlate the inter-ligand distance with the structure of the formed glycocluster–FimH complex. Our study suggests that conformational switches can be employed and further advanced as smart molecular tools to study structural boundary conditions of carbohydrate recognition in a bottom-up approach. Full article
Show Figures

Graphical abstract

13 pages, 1207 KiB  
Article
Subaxial Subluxation (SAS) and Cervical Deformity in Patients with Rheumatoid Arthritis in Relation to Selected Sagittal Balance Parameters
by Robert Wróblewski, Małgorzata Mańczak and Robert Gasik
J. Clin. Med. 2025, 14(14), 4954; https://doi.org/10.3390/jcm14144954 - 13 Jul 2025
Viewed by 342
Abstract
Introduction: Synovitis and damage to natural stabilizers of many axial and peripheral joints make patients with rheumatoid arthritis particularly susceptible to sagittal balance disorders of the axial skeleton. This may determine the high individual variability of cervical spine deformities as well as differences [...] Read more.
Introduction: Synovitis and damage to natural stabilizers of many axial and peripheral joints make patients with rheumatoid arthritis particularly susceptible to sagittal balance disorders of the axial skeleton. This may determine the high individual variability of cervical spine deformities as well as differences in the rate of development of disease symptoms in these patients, such as radiculopathy and myelopathy. Methods: In the scientific literature, in addition to systemic factors, more and more attention is paid to work on biomechanical factors in the development of cervical spine instability. One of the methods for assessing the influence of biomechanical factors, which can also be used in everyday practice, is the analysis of radiological parameters of sagittal balance. Results: Among the selected sagittal balance parameters studied, a statistical relationship between C4 and C5 distance and the OI parameter has been found, indicating a relationship to a parameter that remains constant throughout an individual’s life in the group of patients with disease duration over 20 years. Conclusions: The development of instability and deformity in the subaxial segment of the cervical spine in patients with rheumatoid arthritis may be the result of insufficiently understood components of biomechanical factors; hence, further research in this field is necessary. Full article
(This article belongs to the Special Issue Rheumatoid Arthritis: Challenges, Innovations and Outcomes)
Show Figures

Figure 1

17 pages, 5854 KiB  
Article
Interpupillary Distance and Peripapillary Myopic Changes: A Pilot Study in a Glaucomatous Cohort
by Sameer Butt and Adèle Ehongo
J. Clin. Med. 2025, 14(14), 4895; https://doi.org/10.3390/jcm14144895 - 10 Jul 2025
Viewed by 360
Abstract
Background/Objectives: Myopia is associated with peripapillary changes, namely, gamma peripapillary atrophy (γPPA) and optic disc ovalization, estimated by the ovality index (OI). These changes have been suggested to be promoted by adduction. Recent studies highlight that near reading significantly contributes to the [...] Read more.
Background/Objectives: Myopia is associated with peripapillary changes, namely, gamma peripapillary atrophy (γPPA) and optic disc ovalization, estimated by the ovality index (OI). These changes have been suggested to be promoted by adduction. Recent studies highlight that near reading significantly contributes to the development and progression of myopia and that the interpupillary distance (IPD) influences vergence amplitudes. While both adduction and convergence are involved during near reading, a potential link between IPD and myopic peripapillary changes has not yet been explored. We, therefore, sought to determine whether IPD is related to the OI or γPPA width. Methods: In this monocentric cross-sectional study, 100 eyes from 100 adults (mean age of 62.6 ± 13.7 years) were analyzed. Axial length (AL), refractive error, and IPD were recorded. The OI and γPPA width were assessed using spectral-domain Optical Coherence Tomography. Pearson correlations and multivariable linear regressions were performed, adjusting for age, gender, and myopia status. Results: IPD showed no significant correlation with the OI (r = 0.001; p = 0.989) or γPPA (r = −0.028; p = 0.789). A weak, non-significant correlation was found between IPD and AL (p = 0.059). In contrast, AL was strongly correlated with both a lower OI and wider γPPA (p < 0.001). Conclusions: These findings suggest that IPD-related biomechanical forces do not influence optic nerve head (ONH) shape or γPPA. Axial elongation remains the key driver of myopic ONH remodeling. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

13 pages, 7320 KiB  
Article
Determination of Main Bearing Dynamic Clearance in a Shield Tunneling Machine Through a Broadband PMUT Array with a Decreased Blind Area and High Accuracy
by Guoxi Luo, Haoyu Zhang, Delai Liu, Wenyan Li, Min Li, Zhikang Li, Lin Sun, Ping Yang, Ryutaro Maeda and Libo Zhao
Sensors 2025, 25(13), 4182; https://doi.org/10.3390/s25134182 - 4 Jul 2025
Cited by 1 | Viewed by 338
Abstract
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by [...] Read more.
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by integrating six types of different cells with adjacent resonant frequencies into an array. Through overlapping and coupling of the bandwidths from the different cells, the proposed PMUTs showed a wide –6 dB fractional bandwidth of 108% in silicon oil. Due to the broadening of bandwidth, the device could obtain the maximum steady state with less excitation (5 cycles versus 14 cycles) and reduce its residual ring-down (ca. 6 μs versus 15 μs) compared with the traditional PMUT array with the same cells, resulting in a small blind area. The pulse–echo ranging experiments demonstrated that the blind area was effectively reduced to 4.4 mm in air or 12.8 mm in silicon oil, and the error was controlled within ±0.3 mm for distance measurements up to 250 mm. In addition, a specific ultrasound signal processing circuit with functions of transmitting, receiving, and processing ultrasonic waves was developed. Combining the processing circuit and PMUT device, the system was applied to determine the axial clearance of the main bearing in a tunneling machine. This work develops broadband PMUTs with a small blind area and high resolution for distance measurement in narrow and confined spaces, opening up a new path for ultrasonic ranging technology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

26 pages, 2588 KiB  
Article
Evaluating Sustainable Intermodal Transport Routes: A Hybrid Fuzzy Delphi-Factor Relationship (FARE)-Axial Distance Based Aggregated Measurement (ADAM) Model
by Snežana Tadić, Biljana Mićić and Mladen Krstić
Sustainability 2025, 17(13), 6071; https://doi.org/10.3390/su17136071 - 2 Jul 2025
Viewed by 336
Abstract
Intermodal transport (IT), which implies the combination of several different types of transport to achieve a more efficient and economical movement of goods, is of increasing importance in modern supply chains. In the conditions of globalization, growth of trade flows and increasingly pronounced [...] Read more.
Intermodal transport (IT), which implies the combination of several different types of transport to achieve a more efficient and economical movement of goods, is of increasing importance in modern supply chains. In the conditions of globalization, growth of trade flows and increasingly pronounced requirements for sustainability, effective planning and management of intermodal routes have become crucial, which is why their evaluation and ranking are essential for making strategic and operational decisions. Accordingly, this paper aims to identify the most favorable alternative for developing intermodal transport. Deciding on the choice of the most important intermodal route requires consideration of a large number of criteria, often of a mutually conflicting nature, which places this problem in the domain of multi-criteria decision-making (MCDM). Accordingly, this paper develops a hybrid decision-making model in a fuzzy environment, which combines fuzzy DELPHI (FDELPHI), fuzzy factor relationship (FFARE), and fuzzy axial-distance-based aggregated measurement (FADAM) methods. The model enables the identification and evaluation of relevant criteria, as well as the ranking of defined variants under the requirements and attitudes of various stakeholders. The practical application and effectiveness of the developed model were demonstrated and confirmed by a case study for Bosnia and Herzegovina (B&H). The sensitivity analysis showed that even with changes in the weights of the criteria or the elimination of the most important criteria, the solution remains consistent and reliable. This indicates the robustness of the model and suggests that changes in the parameters do not lead to significant changes in the final results. This confirms the validity of the proposed model and increases confidence in its applicability in practice. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

10 pages, 1891 KiB  
Article
Alternative Methods to Enhance the Axial Resolution of Total Internal Reflection Fluorescence–Structured Illumination Microscopy
by Xiu Zheng, Xiaomian Cai, Wenjie Liu, Youhua Chen and Cuifang Kuang
Photonics 2025, 12(7), 652; https://doi.org/10.3390/photonics12070652 - 27 Jun 2025
Viewed by 333
Abstract
Total internal reflection fluorescence–structured illumination microscopy (TIRF-SIM) can enhance the lateral resolution of fluorescence microscopy to twice the diffraction limit, enabling subtler observations of activity in subcellular life. However, the lack of an axial resolution makes it difficult to resolve three-dimensional (3D) subcellular [...] Read more.
Total internal reflection fluorescence–structured illumination microscopy (TIRF-SIM) can enhance the lateral resolution of fluorescence microscopy to twice the diffraction limit, enabling subtler observations of activity in subcellular life. However, the lack of an axial resolution makes it difficult to resolve three-dimensional (3D) subcellular structures. In this paper, we present an alternative TIRF-SIM axial resolution enhancement method by exploiting quantitative information regarding the distance between fluorophores and the surface within the evanescent field. Combining the lateral super-resolution information of TIRF-SIM with reconstructed axial information, a 3D super-resolution image with a 25 nm axial resolution is achieved without attaching special optical components or high-power lasers. The reconstruction results of cell samples demonstrate that the axial resolution enhancement method for TIRF-SIM can effectively resolve the axial depth of densely structured regions. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

29 pages, 5956 KiB  
Article
Energy Sustainability, Resilience, and Climate Adaptability of Modular and Panelized Buildings with a Lightweight Envelope Integrating Active Thermal Protection. Part 1—Parametric Study and Computer Simulation
by Veronika Mučková, Daniel Kalús, Simon Muhič, Zuzana Straková, Martina Mudrá, Anna Predajnianska, Mária Füri and Martin Bolček
Coatings 2025, 15(7), 756; https://doi.org/10.3390/coatings15070756 - 25 Jun 2025
Viewed by 525
Abstract
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have [...] Read more.
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have developed a mathematical–physical model of a wall fragment, in which we have analyzed several variants through a parametric study. ATP in the energy function of a thermal barrier (TB) represents a high potential for energy savings. Cold tap water (an average temperature of +6 °C, thermal untreated) in the ATP layer of the investigated building structure increases its thermal resistance by up to 27.24%. The TB’s mean temperature can be thermally adjusted to a level comparable to the heated space (e.g., +20 °C). For the fragment under consideration, optimizing the axial distance between the pipes (in the ATP layer) and the insulation thickness (using computer simulation) reveals that a pipe distance of 150 mm and an insulation thickness of 100 mm are the most suitable. ATP has significant potential in the design of sustainable, resilient, and climate-adaptive buildings, thereby meeting the UN SDGs, in particular the Sustainable Development Goal 7 ‘Affordable and Clean Energy’ and the Goal 13 ‘Climate Action’. Full article
Show Figures

Figure 1

26 pages, 21454 KiB  
Article
Numerical Study of Surrounding Rock Damage in Deep-Buried Tunnels for Building-Integrated Underground Structures
by Penglin Zhang, Chong Zhang, Weitao Chen, Chunhui He, Yang Liu and Zhaofei Chu
Buildings 2025, 15(13), 2168; https://doi.org/10.3390/buildings15132168 - 21 Jun 2025
Viewed by 342
Abstract
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated [...] Read more.
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated underground structures. This study investigates the relationship between surrounding rock damage and in situ stress conditions through numerical simulation methods. A constitutive model suitable for simulating rock mass damage was developed and implemented in the LS-DYNA (version R12) code via a user-defined material model, with parameters determined using the Hoek–Brown failure criterion. A finite element model was established to analyze surrounding rock damage under cyclic blasting loads, and the model was validated using field data. Simulations were then carried out to explore the evolution of the damage zone under various stress conditions. The results show that with increasing hydrostatic pressure, the extent of the damage zone first decreases and then increases, with blasting-induced damage dominating under lower pressure and unloading-induced shear failure prevailing at higher pressure. When the hydrostatic pressure is less than 20 MPa, the surrounding rock stabilizes at a distance greater than 12.6 m from the tunnel face, whereas at hydrostatic pressures of 30 MPa and 40 MPa, this distance increases to 29.4 m. When the lateral pressure coefficient is low, tensile failure occurs mainly at the vault and floor, while shear failure dominates at the arch waist. As the lateral pressure coefficient increases, the failure mode at the vault shifts from tensile to shear. Additionally, when the horizontal stress perpendicular to the tunnel axis (σH) is less than the vertical stress (σv), variations in the axial horizontal stress (σh) have a significant effect on shear failure. Conversely, when σH exceeds σv, changes in σh have little impact on the extent of rock damage. Full article
Show Figures

Figure 1

24 pages, 6641 KiB  
Article
Separation Method for Installation Eccentricity Error of Workpiece
by Guanyao Qiao, Chunyu Zhao, Huihui Miao and Ye Chen
Appl. Sci. 2025, 15(12), 6788; https://doi.org/10.3390/app15126788 - 17 Jun 2025
Viewed by 306
Abstract
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for [...] Read more.
This work solves the challenge of separating the eccentricity error of a workpiece installation from the first harmonic of radial runout error of the spindle, which has a crucial impact on improving the machining quality of the workpiece. Firstly, a mathematical model for the synthesized elliptical motion for spindle vibration and eccentricity error is established. Subsequently, a novel separation method combining Particle swarm optimization (PSO) and the least squares method (LSM) is proposed. PSO is applied to determine phase angles, and the least squares method is applied to determine amplitudes, achieving precise error separation. Then, numerical simulations were used to verify the effectiveness and reliability of the proposed method, producing a calculation error of less than 0.07% and high consistency (R2 > 0.97). Finally, experimental tests at different spindle speeds, axial distances, and workpieces confirmed the robustness of the method, with a variation in eccentricity error calculation result of less than 0.6%. The results indicate that the installation eccentricity error of the experimental machine tool is independent of the spindle angular velocity and stems from the misalignment of the chuck. This method provides a reliable solution for accurately separating installation eccentricity errors in precision manufacturing. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop