Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = avian coronaviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3522 KiB  
Article
Repurposing of Some Nucleoside Analogs Targeting Some Key Proteins of the Avian H5N1 Clade 2.3.4.4b to Combat the Circulating HPAI in Birds: An In Silico Approach
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Mohammed Cherkaoui and Maged Gomaa Hemida
Viruses 2025, 17(7), 972; https://doi.org/10.3390/v17070972 (registering DOI) - 10 Jul 2025
Viewed by 477
Abstract
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, [...] Read more.
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, including the USA. Unfortunately, there are no specific vaccines or antiviral drugs that could help prevent and treat the infection caused by this virus in birds. Our major objective is to identify/repurpose some (novel/known) antiviral compounds that may inhibit viral replication by targeting some key viral proteins. (2) Methods: We used state-of-the-art machine learning tools such as molecular docking and MD-simulation methods from Biovia Discovery Studio (v24.1.0.321712). The key target proteins such as hemagglutinin (HA), neuraminidase (NA), Matrix-2 protein (M2), and the cap-binding domain of PB2 (PB2/CBD) homology models were validated through structural assessment via DOPE scores, Ramachandran plots, and Verify-3D metrics, ensuring reliable structural representations, confirming their reliability for subsequent in silico approaches. These approaches include molecular docking followed by molecular dynamics simulation for 50 nanoseconds (ns), highlighting the structural stability and compactness of the docked complexes. (3) Results: Molecular docking revealed strong binding affinities for both sofosbuvir and GS441524, particularly with the NA and PB2/CBD protein targets. Among them, GS441524 exhibited superior interaction scores and a greater number of hydrogen bonds with key functional residues of NA and PB2/CBD. The MM-GBSA binding free energy calculations further supported these findings, as GS441524 displayed more favorable binding energies compared to several known standard inhibitors, including F0045S for HA, Zanamivir for NA, Rimantadine and Amantadine for M2, and PB2-39 for PB2/CBD. Additionally, 50 ns molecular dynamics simulations highlighted the structural stability and compactness of the GS441524-PB2/CBD complex, further supporting its potential as a promising antiviral candidate. Furthermore, hydrogen bond monitor analysis over the 50 ns simulation confirmed persistent and specific interactions between the ligand and proteins, suggesting that GS441524 may effectively inhibit the NA, and PB2/CBD might potentially disrupt PB2-mediated RNA synthesis. (4) Conclusions: Our findings are consistent with previous evidence supporting the antiviral activity of certain nucleoside analog inhibitors, including GS441524, against various coronaviruses. These results further support the potential repurposing of GS441524 as a promising therapeutic candidate against H5N1 avian influenza clade 2.3.4.4b. However, further functional studies are required to validate these in silico predictions and support the inhibitory action of GS441524 against the targeted proteins of H5N1, specifically clade 2.3.4.4b. Full article
(This article belongs to the Special Issue Interplay Between Influenza Virus and Host Factors)
Show Figures

Figure 1

10 pages, 244 KiB  
Editorial
Drivers of Zoonotic Viral Spillover: Understanding Pathways to the Next Pandemic
by Jonathon D. Gass
Zoonotic Dis. 2025, 5(3), 18; https://doi.org/10.3390/zoonoticdis5030018 - 7 Jul 2025
Viewed by 794
Abstract
In the wake of the COVID-19 pandemic and amid growing concerns regarding viral threats such as avian influenza, Mpox, and HKU5 bat coronaviruses, the phenomenon of viral zoonotic spillover, when viruses leap from circulation in non-human animals to humans, has garnered unprecedented global [...] Read more.
In the wake of the COVID-19 pandemic and amid growing concerns regarding viral threats such as avian influenza, Mpox, and HKU5 bat coronaviruses, the phenomenon of viral zoonotic spillover, when viruses leap from circulation in non-human animals to humans, has garnered unprecedented global attention [...] Full article
(This article belongs to the Special Issue Viral Zoonotic Diseases and Spillover Risks)
18 pages, 2243 KiB  
Article
Detection of a Novel Gull-like Clade of Newcastle Disease Virus and H3N8 Avian Influenza Virus in the Arctic Region of Russia (Taimyr Peninsula)
by Anastasiya Derko, Nikita Dubovitskiy, Alexander Prokudin, Junki Mine, Ryota Tsunekuni, Yuko Uchida, Takehiko Saito, Nikita Kasianov, Arina Loginova, Ivan Sobolev, Sachin Kumar, Alexander Shestopalov and Kirill Sharshov
Viruses 2025, 17(7), 955; https://doi.org/10.3390/v17070955 - 7 Jul 2025
Viewed by 619
Abstract
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into [...] Read more.
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into this region is rare. This study reports the first Newcastle disease virus (NDV) detection in Arctic Russia. As a result of a five-year study (from 2019 to 2023) of avian paramyxoviruses and avian influenza viruses in wild waterbirds of the Taimyr Peninsula, whole-genome sequences of NDV and H3N8 were obtained. The resulting influenza virus isolate was phylogenetically related to viruses that circulated between 2021 and 2023 in Eurasia, Siberia, and Asia. All NDV sequences were obtained from the Herring gull, and other gull sequences formed a separate gull-like clade in the sub-genotype I.1.2.1, Class II. This may indirectly indicate that different NDV variants adapt to more host species than is commonly believed. Further surveillance of other gull species may help to test the hypothesis of putative gull-specific NDV lineage and better understand their role in the evolution and global spread of NDV. Full article
(This article belongs to the Special Issue Evolution and Adaptation of Avian Viruses)
Show Figures

Figure 1

21 pages, 3542 KiB  
Article
Inhibiting Infectious Bronchitis Virus PLpro Using Ubiquitin Variants
by Vera J. E. van Vliet, Olivia Roscow, Kihun Kim, Brian L. Mark, Marjolein Kikkert and Christine Tait-Burkard
Int. J. Mol. Sci. 2025, 26(11), 5254; https://doi.org/10.3390/ijms26115254 - 29 May 2025
Viewed by 460
Abstract
Infectious bronchitis virus (IBV) is a coronavirus first isolated in the 1930s infecting chickens. IBV causes great economic losses to the global poultry industry, as it affects egg production and causes mortality by leaving the host susceptible to secondary bacterial infections. Even though [...] Read more.
Infectious bronchitis virus (IBV) is a coronavirus first isolated in the 1930s infecting chickens. IBV causes great economic losses to the global poultry industry, as it affects egg production and causes mortality by leaving the host susceptible to secondary bacterial infections. Even though vaccines are available, they are poorly cross-protective against new variants of the virus, which are always on the cusp of emerging. Effective antiviral therapies, or possibly the production of transgenic animals immune to IBV infection, are therefore sorely needed. As the papain-like protease (PLpro) of IBV has deubiquitinating activity besides its crucial ability to cleave the viral polyprotein, we have applied a novel strategy of selecting ubiquitin variants (UbVs) from a phage-displayed library that have high affinity to this viral protease. These UbVs were found to inhibit the deubiquitinating activity of PLpro and consequently obstruct the virus’s ability to evade the innate immune response in the host cell. By obstructing the proteolytic activity of PLpro, these UbVs were seemingly able to inhibit viral infection as assessed using immunofluorescence microscopy. Whilst virus infection was detected in around 5% of UbV-expressing cells, the virus was present in around 30–40% of GFP (control)-expressing cells. This suggests that the expression of UbVs indeed seems to inhibit IBV infection, making UbVs a potentially potent and innovative antiviral strategy in the quest for control of IBV infections. Full article
Show Figures

Figure 1

28 pages, 7550 KiB  
Article
Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2
by Roberto Patarca and William A. Haseltine
Int. J. Mol. Sci. 2024, 25(15), 8012; https://doi.org/10.3390/ijms25158012 - 23 Jul 2024
Viewed by 1524
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, [...] Read more.
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions. Full article
(This article belongs to the Special Issue RNA in Biology and Medicine)
Show Figures

Graphical abstract

7 pages, 1011 KiB  
Communication
Screening for SARS-CoV-2 and Other Coronaviruses in Urban Pigeons (Columbiformes) from the North of Spain under a ‘One Health’ Perspective
by Aránzazu Portillo, Cristina Cervera-Acedo, Ana M. Palomar, Ignacio Ruiz-Arrondo, Paula Santibáñez, Sonia Santibáñez and José A. Oteo
Microorganisms 2024, 12(6), 1143; https://doi.org/10.3390/microorganisms12061143 - 4 Jun 2024
Cited by 1 | Viewed by 1142
Abstract
Coronaviruses have a major impact on human and animal health. The SARS-CoV-2, a beta coronavirus responsible for the COVID-19 pandemic, is a clear example. It continues circulating and causes human deaths, and its high replication rate results in numerous variants. Coronaviruses adapt to [...] Read more.
Coronaviruses have a major impact on human and animal health. The SARS-CoV-2, a beta coronavirus responsible for the COVID-19 pandemic, is a clear example. It continues circulating and causes human deaths, and its high replication rate results in numerous variants. Coronaviruses adapt to birds and mammals and constitute a serious threat, and new viruses are likely to emerge. Urban pigeons (Columbiformes) are synanthropic birds of great interest from a ‘One Health’ perspective, due to their interaction with humans and other animals. Aware that they may act as viral reservoirs and contribute to their spread, we aimed to investigate the possible presence of SARS-CoV-2 and other coronaviruses in Columbiformes in the city of Logroño, Spain. Oropharyngeal and cloacal swabs were tested using real-time (N1 and E genes from SARS-CoV-2) and conventional PCR assays (RdRp gene from all coronaviruses). SARS-CoV-2 was not detected. A total of 13.3% of pigeons harbored coronaviruses closely related to Gamma coronavirus (Igacovirus) from Columbiformes in Finland, Poland and China. Monitoring the emergence of a new variant of SARS-CoV-2 capable of infecting Columbiformes should continue. SARS-CoV-2 is still circulating, the viral RNA of this virus has been detected in avian species (Phasianidae and Anatidae), and other coronaviruses are associated with animals that are in close contact with humans. The presence of Gamma coronavirus in urban pigeons must be considered for the risk of surveillance of human infections. Full article
(This article belongs to the Special Issue State of the Art of Wildlife Infection in Europe)
Show Figures

Figure 1

14 pages, 7961 KiB  
Article
Comparative Performance in the Detection of Four Coronavirus Genera from Human, Animal, and Environmental Specimens
by Supaporn Wacharapluesadee, Nattakarn Thippamom, Piyapha Hirunpatrawong, Khwankamon Rattanatumhi, Spencer L. Sterling, Wiparat Khunnawutmanotham, Kirana Noradechanon, Patarapol Maneeorn, Rome Buathong, Leilani Paitoonpong and Opass Putcharoen
Viruses 2024, 16(4), 534; https://doi.org/10.3390/v16040534 - 29 Mar 2024
Cited by 6 | Viewed by 1836
Abstract
Emerging coronaviruses (CoVs) are understood to cause critical human and domestic animal diseases; the spillover from wildlife reservoirs can result in mild and severe respiratory illness in humans and domestic animals and can spread more readily in these naïve hosts. A low-cost CoV [...] Read more.
Emerging coronaviruses (CoVs) are understood to cause critical human and domestic animal diseases; the spillover from wildlife reservoirs can result in mild and severe respiratory illness in humans and domestic animals and can spread more readily in these naïve hosts. A low-cost CoV molecular method that can detect a variety of CoVs from humans, animals, and environmental specimens is an initial step to ensure the early identification of known and new viruses. We examine a collection of 50 human, 46 wastewater, 28 bat, and 17 avian archived specimens using 3 published pan-CoV PCR assays called Q-, W-, and X-CoV PCR, to compare the performance of each assay against four CoV genera. X-CoV PCR can detect all four CoV genera, but Q- and W-CoV PCR failed to detect δ-CoV. In total, 21 (42.0%), 9 (18.0%), and 21 (42.0%) of 50 human specimens and 30 (65.22%), 6 (13.04%), and 27 (58.70%) of 46 wastewater specimens were detected using Q-, W-, and X-CoV PCR assays, respectively. The X-CoV PCR assay has a comparable sensitivity to Q-CoV PCR in bat CoV detection. Combining Q- and X-CoV PCR assays can increase sensitivity and avoid false negative results in the early detection of novel CoVs. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

36 pages, 1200 KiB  
Review
Common and Potential Emerging Foodborne Viruses: A Comprehensive Review
by Amin N. Olaimat, Asma’ O. Taybeh, Anas Al-Nabulsi, Murad Al-Holy, Ma’mon M. Hatmal, Jihad Alzyoud, Iman Aolymat, Mahmoud H. Abughoush, Hafiz Shahbaz, Anas Alzyoud, Tareq Osaili, Mutamed Ayyash, Kevin M. Coombs and Richard Holley
Life 2024, 14(2), 190; https://doi.org/10.3390/life14020190 - 28 Jan 2024
Cited by 22 | Viewed by 11457
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based [...] Read more.
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food. Full article
(This article belongs to the Special Issue Food Microbiological Contamination)
Show Figures

Figure 1

12 pages, 1962 KiB  
Article
Does Avian Coronavirus Co-Circulate with Avian Paramyxovirus and Avian Influenza Virus in Wild Ducks in Siberia?
by Kirill Sharshov, Nikita Dubovitskiy, Anastasiya Derko, Arina Loginova, Ilya Kolotygin, Dmitry Zhirov, Ivan Sobolev, Olga Kurskaya, Alexander Alekseev, Alexey Druzyaka, Pavel Ktitorov, Olga Kulikova, Guimei He, Zhenghuan Wang, Yuhai Bi and Alexander Shestopalov
Viruses 2023, 15(5), 1121; https://doi.org/10.3390/v15051121 - 7 May 2023
Cited by 2 | Viewed by 3092
Abstract
Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae [...] Read more.
Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

19 pages, 28795 KiB  
Article
Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya
by Henry M. Kariithi, Jeremy D. Volkening, Iryna V. Goraichuk, Leonard O. Ateya, Dawn Williams-Coplin, Tim L. Olivier, Yatinder S. Binepal, Claudio L. Afonso and David L. Suarez
Viruses 2023, 15(2), 264; https://doi.org/10.3390/v15020264 - 17 Jan 2023
Cited by 14 | Viewed by 3157
Abstract
The avian gamma-coronavirus infectious bronchitis virus (AvCoV, IBV; Coronaviridae family) causes upper respiratory disease associated with severe economic losses in the poultry industry worldwide. Here, we report for the first time in Kenya and the Eastern African region two novel AvCoVs, designated IBV/ck/KE/1920/A374/2017 [...] Read more.
The avian gamma-coronavirus infectious bronchitis virus (AvCoV, IBV; Coronaviridae family) causes upper respiratory disease associated with severe economic losses in the poultry industry worldwide. Here, we report for the first time in Kenya and the Eastern African region two novel AvCoVs, designated IBV/ck/KE/1920/A374/2017 (A374/17) and AvCoV/ck/KE/1922/A376/2017 (A376/17), inadvertently discovered using random nontargeted next-generation sequencing (NGS) of cloacal swabs collected from indigenous chickens. Despite having genome organization (5′UTR-[Rep1a/1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b]-3′UTR), canonical conservation of essential genes and size (~27.6 kb) typical of IBVs, the Kenyan isolates do not phylogenetically cluster with any genotypes of the 37 IBV lineages and 26 unique variants (UVs). Excluding the spike gene, genome sequences of A374/17 and A376/17 are only 93.1% similar to each other and 86.7–91.4% identical to genomes of other AvCoVs. All five non-spike genes of the two isolates phylogenetically cluster together and distinctly from other IBVs and turkey coronaviruses (TCoVs), including the indigenous African GI-26 viruses, suggesting a common origin of the genome backbone of the Kenyan isolates. However, isolate A376/17 contains a TCoV-like spike (S) protein coding sequence and is most similar to Asian TCoVs (84.5–85.1%) compared to other TCoVs (75.6–78.5%), whereas isolate A374/17 contains an S1 gene sequence most similar to the globally distributed lineage GI-16 (78.4–79.5%) and the Middle Eastern lineage GI-23 (79.8–80.2%) viruses. Unanswered questions include the actual origin of the Kenyan AvCoVs, the potential pathobiological significance of their genetic variations, whether they have indeed established themselves as independent variants and subsequently spread within Kenya and to the neighboring east/central African countries that have porous live poultry trade borders, and whether the live-attenuated Mass-type (lineage GI-1)-based vaccines currently used in Kenya and most of the African countries provide protection against these genetically divergent field variants. Full article
(This article belongs to the Special Issue Infectious Bronchitis Virus)
Show Figures

Figure 1

22 pages, 4250 KiB  
Article
The Genetic Stability, Replication Kinetics and Cytopathogenicity of Recombinant Avian Coronaviruses with a T16A or an A26F Mutation within the E Protein Is Cell-Type Dependent
by Isobel Webb, Sarah Keep, Kieran Littolff, Jamie Stuart, Graham Freimanis, Paul Britton, Andrew D. Davidson, Helena J. Maier and Erica Bickerton
Viruses 2022, 14(8), 1784; https://doi.org/10.3390/v14081784 - 15 Aug 2022
Cited by 3 | Viewed by 2671
Abstract
The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, [...] Read more.
The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein. Full article
(This article belongs to the Special Issue Infectious Bronchitis Virus)
Show Figures

Figure 1

18 pages, 3684 KiB  
Article
Characterization of the Cross-Species Transmission Potential for Porcine Deltacoronaviruses Expressing Sparrow Coronavirus Spike Protein in Commercial Poultry
by Moyasar A. Alhamo, Patricia A. Boley, Mingde Liu, Xiaoyu Niu, Kush Kumar Yadav, Carolyn Lee, Linda J. Saif, Qiuhong Wang and Scott P. Kenney
Viruses 2022, 14(6), 1225; https://doi.org/10.3390/v14061225 - 5 Jun 2022
Cited by 10 | Viewed by 3599
Abstract
Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between [...] Read more.
Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

11 pages, 1529 KiB  
Communication
Occurrence and Phylogenetic Analysis of Avian Coronaviruses in Domestic Pigeons (Columba livia domestica) in Poland between 2016 and 2020
by Ewa Łukaszuk, Daria Dziewulska and Tomasz Stenzel
Pathogens 2022, 11(6), 646; https://doi.org/10.3390/pathogens11060646 - 3 Jun 2022
Cited by 6 | Viewed by 2554
Abstract
While disease control in racing pigeons and the potential role of pigeons as vectors transmitting viruses to poultry are of importance, there is still a paucity of data concerning the occurrence of coronaviruses in pigeons. In this study, 215 domestic pigeons were tested [...] Read more.
While disease control in racing pigeons and the potential role of pigeons as vectors transmitting viruses to poultry are of importance, there is still a paucity of data concerning the occurrence of coronaviruses in pigeons. In this study, 215 domestic pigeons were tested for the presence of coronaviral genetic material using the nested PCR method, which revealed 57 positive samples (26.51%). The difference in coronavirus prevalence between young and adult pigeons (34.34% and 19.83%, respectively) has been found statistically significant. In contrast, no statistically significant difference has been demonstrated between the prevalence in symptomatic and asymptomatic birds, leaving the influence of coronavirus presence on pigeon health uncertain. Phylogenetic analysis of the RdRp gene fragment allowed us to assign all the obtained strains to the Gammacoronavirus genus and Igacovirus subgenus. The phylogenetic tree plotted using the ML method revealed that those sequences formed a group most similar to pigeon coronavirus strains from China, Finland, and Poland, and to a single strain from a common starling from Poland, which suggests wide geographical distribution of the virus and its possible transmission between various species. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

15 pages, 2515 KiB  
Article
Infectious Bronchitis Virus Nsp14 Degrades JAK1 to Inhibit the JAK-STAT Signaling Pathway in HD11 Cells
by Peng Ma, Kui Gu, Hao Li, Yu Zhao, Chao Li, Renqiao Wen, Changyu Zhou, Changwei Lei, Xin Yang and Hongning Wang
Viruses 2022, 14(5), 1045; https://doi.org/10.3390/v14051045 - 14 May 2022
Cited by 14 | Viewed by 3438
Abstract
Coronaviruses (CoVs) are RNA viruses that can infect a wide range of animals, including humans, and cause severe respiratory and gastrointestinal disease. The Gammacoronavirus avian infectious bronchitis virus (IBV) causes acute and contagious diseases in chickens, leading to severe economic losses. Nonstructural protein [...] Read more.
Coronaviruses (CoVs) are RNA viruses that can infect a wide range of animals, including humans, and cause severe respiratory and gastrointestinal disease. The Gammacoronavirus avian infectious bronchitis virus (IBV) causes acute and contagious diseases in chickens, leading to severe economic losses. Nonstructural protein 14 (Nsp14) is a nonstructural protein encoded by the CoV genome. This protein has a regulatory role in viral virulence and replication. However, the function and mechanism of IBV Nsp14 in regulating the host’s innate immune response remain unclear. Here we report that IBV Nsp14 was a JAK-STAT signaling pathway antagonist in chicken macrophage (HD11) cells. In these cells, Nsp14 protein overexpression blocked IBV suppression induced by exogenous chIFN-γ treatment. Meanwhile, Nsp14 remarkably reduced interferon-gamma-activated sequence (GAS) promoter activation and chIFN-γ-induced interferon-stimulated gene expression. Nsp14 impaired the nuclear translocation of chSTAT1. Furthermore, Nsp14 interacted with Janus kinase 1 (JAK1) to degrade JAK1 via the autophagy pathway, thereby preventing the activation of the JAK-STAT signaling pathway and facilitating viral replication. These results indicated a novel mechanism by which IBV inhibits the host antiviral response and provide new insights into the selection of antiviral targets against CoV. Full article
(This article belongs to the Special Issue Animal Coronavirus Pathogenesis and Immunity)
Show Figures

Figure 1

20 pages, 3927 KiB  
Article
Human Wharton’s Jelly Mesenchymal Stem Cells Secretome Inhibits Human SARS-CoV-2 and Avian Infectious Bronchitis Coronaviruses
by Mohamed A. A. Hussein, Hosni A. M. Hussein, Ali A. Thabet, Karim M. Selim, Mervat A. Dawood, Ahmed M. El-Adly, Ahmed A. Wardany, Ali Sobhy, Sameh Magdeldin, Aya Osama, Ali M. Anwar, Mohammed Abdel-Wahab, Hussam Askar, Elsayed K. Bakhiet, Serageldeen Sultan, Amgad A. Ezzat, Usama Abdel Raouf and Magdy M. Afifi
Cells 2022, 11(9), 1408; https://doi.org/10.3390/cells11091408 - 21 Apr 2022
Cited by 11 | Viewed by 5397
Abstract
Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic [...] Read more.
Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic agents are highly in demand for controlling viral transmission and disease progression. Mesenchymal stem cells (MSC) secreted factors (secretome) are safe and efficient alternatives to stem cells in MSC-based therapies. This study aimed to investigate the antiviral potentials of human Wharton’s jelly MSC secretome (hWJ-MSC-S) against SARS-CoV-2 and IBV infections in vitro and in ovo. The half-maximal inhibitory concentrations (IC50), cytotoxic concentration (CC50), and selective index (SI) values of hWJ-MSC-S were determined using Vero-E6 cells. The virucidal, anti-adsorption, and anti-replication antiviral mechanisms of hWJ-MSC-S were evaluated. The hWJ-MSC-S significantly inhibited infection of SARS-CoV-2 and IBV, without affecting the viability of cells and embryos. Interestingly, hWJ-MSC-S reduced viral infection by >90%, in vitro. The IC50 and SI of hWJ-MSC secretome against SARS-CoV-2 were 166.6 and 235.29 µg/mL, respectively, while for IBV, IC50 and SI were 439.9 and 89.11 µg/mL, respectively. The virucidal and anti-replication antiviral effects of hWJ-MSC-S were very prominent compared to the anti-adsorption effect. In the in ovo model, hWJ-MSC-S reduced IBV titer by >99%. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis of hWJ-MSC-S revealed a significant enrichment of immunomodulatory and antiviral proteins. Collectively, our results not only uncovered the antiviral potency of hWJ-MSC-S against SARS-CoV-2 and IBV, but also described the mechanism by which hWJ-MSC-S inhibits viral infection. These findings indicate that hWJ-MSC-S could be utilized in future pre-clinical and clinical studies to develop effective therapeutic approaches against human COVID-19 and avian IB respiratory diseases. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

Back to TopTop