Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (126)

Search Parameters:
Keywords = automated rehabilitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8141 KiB  
Review
AI-Driven Aesthetic Rehabilitation in Edentulous Arches: Advancing Symmetry and Smile Design Through Medit SmartX and Scan Ladder
by Adam Brian Nulty
J. Aesthetic Med. 2025, 1(1), 4; https://doi.org/10.3390/jaestheticmed1010004 - 1 Aug 2025
Viewed by 534
Abstract
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in [...] Read more.
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in intraoral scanning accuracy—such as scan distortion, angular deviation, and cross-arch misalignment—and presents how innovations like the Medit SmartX AI-guided workflow and the Scan Ladder system can significantly enhance precision in implant position registration. These technologies mitigate stitching errors by using real-time scan body recognition and auxiliary geometric references, yielding mean RMS trueness values as low as 11–13 µm, comparable to dedicated photogrammetry systems. AI-driven prosthetic design further aligns implant-supported restorations with facial symmetry and smile aesthetics, prioritising predictable midline and occlusal plane control. Early clinical data indicate that such tools can reduce prosthetic misfits to under 20 µm and lower complication rates related to passive fit, while shortening scan times by up to 30% compared to conventional workflows. This is especially valuable for elderly individuals who may not tolerate multiple lengthy adjustments. Additionally, emerging AI applications in design automation, scan validation, and patient-specific workflow adaptation continue to evolve, supporting more efficient and personalised digital prosthodontics. In summary, AI-enhanced scanning and prosthetic workflows do not merely meet functional demands but also elevate aesthetic standards in complex full-arch rehabilitations. The synergy of AI and digital dentistry presents a transformative opportunity to consistently deliver superior precision, passivity, and facial harmony for edentulous implant patients. Full article
Show Figures

Graphical abstract

19 pages, 1425 KiB  
Article
Early Detection of Autism Spectrum Disorder Through Automated Machine Learning
by Khafsa Ehsan, Kashif Sultan, Abreen Fatima, Muhammad Sheraz and Teong Chee Chuah
Diagnostics 2025, 15(15), 1859; https://doi.org/10.3390/diagnostics15151859 - 24 Jul 2025
Viewed by 435
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder distinguished by an extensive range of symptoms, including reduced social interaction, communication difficulties and tiresome behaviors. Early detection of ASD is important because it allows for timely intervention, which significantly improves developmental, behavioral, [...] Read more.
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder distinguished by an extensive range of symptoms, including reduced social interaction, communication difficulties and tiresome behaviors. Early detection of ASD is important because it allows for timely intervention, which significantly improves developmental, behavioral, and communicative outcomes in children. However, traditional diagnostic procedures for identifying autism spectrum disorder (ASD) typically involve lengthy clinical examinations, which can be both time-consuming and costly. This research proposes leveraging automated machine learning (AUTOML) to streamline the diagnostic process and enhance its accuracy. Methods: In this study, by collecting data from various rehabilitation centers across Pakistan, we applied a specific AUTOML tool known as Tree-based Pipeline Optimization Tool (TPOT) for ASD detection. Notably, this study marks one of the initial explorations into utilizing AUTOML for ASD detection. The experimentations indicate that the TPOT provided the best pipeline for the dataset, which was verified using a manual machine learning method. Results: The study contributes to the field of ASD diagnosis by using AUTOML to determine the likelihood of ASD in children at prompt stages of evolution. The study also provides an evaluation of precision, recall, and F1-score metrics to confirm the correctness of the diagnosis. The propose TPOT-based AUTOML framework attained an overall accuracy 78%, with a precision of 83%, a recall of 90%, and an F1-score of 86% for the autistic class. Conclusions: In summary, this research offers an encouraging approach to improve the detection of autism spectrum disorders (ASD) in children, which could lead to better results for affected individuals and their families. Full article
(This article belongs to the Special Issue Artificial Intelligence in Biomedical Diagnostics and Analysis 2024)
Show Figures

Figure 1

40 pages, 600 KiB  
Systematic Review
Summarizing Recent Developments on Autism Spectrum Disorder Detection and Classification Through Machine Learning and Deep Learning Techniques
by Masroor Ahmed, Sadam Hussain, Farman Ali, Anna Karen Gárate-Escamilla, Ivan Amaya, Gilberto Ochoa-Ruiz and José Carlos Ortiz-Bayliss
Appl. Sci. 2025, 15(14), 8056; https://doi.org/10.3390/app15148056 - 19 Jul 2025
Viewed by 626
Abstract
Autism Spectrum Disorder (ASD) encompasses various neurological disorders with symptoms varying by age, development, genetics, and other factors. Core symptoms include decreased pain sensitivity, difficulty sustaining eye contact, incorrect auditory responses, and social engagement issues. Diagnosing ASD poses challenges as signs can appear [...] Read more.
Autism Spectrum Disorder (ASD) encompasses various neurological disorders with symptoms varying by age, development, genetics, and other factors. Core symptoms include decreased pain sensitivity, difficulty sustaining eye contact, incorrect auditory responses, and social engagement issues. Diagnosing ASD poses challenges as signs can appear at early stages of life, leading to delayed diagnoses. Traditional diagnosis relies mainly on clinical observation, which is a subjective and time-consuming approach. However, AI-driven techniques, primarily those within machine learning and deep learning, are becoming increasingly prevalent for the efficient and objective detection and classification of ASD. In this work, we review and discuss the most relevant related literature between January 2016 and May 2024 by focusing on ASD detection or classification using diverse technologies, including magnetic resonance imaging, facial images, questionnaires, electroencephalogram, and eye tracking data. Our analysis encompasses works from major research repositories, including WoS, PubMed, Scopus, and IEEE. We discuss rehabilitation techniques, the structure of public and private datasets, and the challenges of automated ASD detection, classification, and therapy by highlighting emerging trends, gaps, and future research directions. Among the most interesting findings of this review are the relevance of questionnaires and genetics in the early detection of ASD, as well as the prevalence of datasets that are biased toward specific genders, ethnicities, or geographic locations, restricting their applicability. This document serves as a comprehensive resource for researchers, clinicians, and stakeholders, promoting a deeper understanding and advancement of AI applications in the evaluation and management of ASD. Full article
Show Figures

Figure 1

32 pages, 1948 KiB  
Review
Writing the Future: Artificial Intelligence, Handwriting, and Early Biomarkers for Parkinson’s Disease Diagnosis and Monitoring
by Giuseppe Marano, Sara Rossi, Ester Maria Marzo, Alice Ronsisvalle, Laura Artuso, Gianandrea Traversi, Antonio Pallotti, Francesco Bove, Carla Piano, Anna Rita Bentivoglio, Gabriele Sani and Marianna Mazza
Biomedicines 2025, 13(7), 1764; https://doi.org/10.3390/biomedicines13071764 - 18 Jul 2025
Viewed by 489
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that impairs motor function, including the fine motor control required for handwriting. Traditional diagnostic methods often lack sensitivity and objectivity in the early stages, limiting opportunities for timely intervention. There is a growing need for [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that impairs motor function, including the fine motor control required for handwriting. Traditional diagnostic methods often lack sensitivity and objectivity in the early stages, limiting opportunities for timely intervention. There is a growing need for non-invasive, accessible tools capable of capturing subtle motor changes that precede overt clinical symptoms. Among early PD manifestations, handwriting impairments such as micrographia have shown potential as digital biomarkers. However, conventional handwriting analysis remains subjective and limited in scope. Recent advances in artificial intelligence (AI) and machine learning (ML) enable automated analysis of handwriting dynamics, such as pressure, velocity, and fluency, collected via digital tablets and smartpens. These tools support the detection of early-stage PD, monitoring of disease progression, and assessment of therapeutic response. This paper highlights how AI-enhanced handwriting analysis provides a scalable, non-invasive method to support diagnosis, enable remote symptom tracking, and personalize treatment strategies in PD. This approach integrates clinical neurology with computer science and rehabilitation, offering practical applications in telemedicine, digital health, and personalized medicine. By capturing dynamic features often missed by traditional assessments, AI-based handwriting analysis contributes to a paradigm shift in the early detection and long-term management of PD, with broad relevance across neurology, digital diagnostics, and public health innovation. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

17 pages, 5036 KiB  
Article
Automated UPDRS Gait Scoring Using Wearable Sensor Fusion and Deep Learning
by Xiangzhi Liu, Xiangliang Zhang, Juan Li, Wenhao Pan, Yiping Sun, Shuanggen Lin and Tao Liu
Bioengineering 2025, 12(7), 686; https://doi.org/10.3390/bioengineering12070686 - 24 Jun 2025
Viewed by 570
Abstract
The quantitative assessment of Parkinson’s disease (PD) is critical for guiding diagnosis, treatment, and rehabilitation. Conventional clinical evaluations—heavily dependent on manual rating scales such as the Unified Parkinson’s Disease Rating Scale (UPDRS)—are time-consuming and prone to inter-rater variability. In this study, we propose [...] Read more.
The quantitative assessment of Parkinson’s disease (PD) is critical for guiding diagnosis, treatment, and rehabilitation. Conventional clinical evaluations—heavily dependent on manual rating scales such as the Unified Parkinson’s Disease Rating Scale (UPDRS)—are time-consuming and prone to inter-rater variability. In this study, we propose a fully automated UPDRS gait-scoring framework. Our method combines (a) surface electromyography (EMG) signals and (b) inertial measurement unit (IMU) data into a single deep learning model. Our end-to-end network comprises three specialized branches—a diagnosis head, an evaluation head, and a balance head—whose outputs are integrated via a customized fusion-detection module to emulate the multidimensional assessments performed by clinicians. We validated our system on 21 PD patients and healthy controls performing a simple walking task while wearing a four-channel EMG array on the lower limbs and 2 shank-mounted IMUs. It achieved a mean classification accuracy of 92.8% across UPDRS levels 0–2. This approach requires minimal subject effort and sensor setup, significantly cutting clinician workload associated with traditional UPDRS evaluations while improving objectivity. The results demonstrate the potential of wearable sensor-driven deep learning methods to deliver rapid, reliable PD gait assessment in both clinical and home settings. Full article
(This article belongs to the Special Issue Advanced Wearable Sensors for Human Gait Analysis)
Show Figures

Figure 1

17 pages, 5666 KiB  
Article
Mechatronic and Robotic Systems Utilizing Pneumatic Artificial Muscles as Actuators
by Željko Šitum, Juraj Benić and Mihael Cipek
Inventions 2025, 10(4), 44; https://doi.org/10.3390/inventions10040044 - 23 Jun 2025
Viewed by 412
Abstract
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). [...] Read more.
This article presents a series of innovative systems developed through student laboratory projects, comprising two autonomous vehicles, a quadrupedal walking robot, an active ankle-foot orthosis, a ball-on-beam balancing mechanism, a ball-on-plate system, and a manipulator arm, all actuated by pneumatic artificial muscles (PAMs). Due to their flexibility, low weight, and compliance, fluidic muscles demonstrate substantial potential for integration into various mechatronic systems, robotic platforms, and manipulators. Their capacity to generate smooth and adaptive motion is particularly advantageous in applications requiring natural and human-like movements, such as rehabilitation technologies and assistive devices. Despite the inherent challenges associated with nonlinear behavior in PAM-actuated control systems, their biologically inspired design remains promising for a wide range of future applications. Potential domains include industrial automation, the automotive and aerospace sectors, as well as sports equipment, medical assistive devices, entertainment systems, and animatronics. The integration of self-constructed laboratory systems powered by PAMs into control systems education provides a comprehensive pedagogical framework that merges theoretical instruction with practical implementation. This methodology enhances the skillset of future engineers by deepening their understanding of core technical principles and equipping them to address emerging challenges in engineering practice. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 2240 KiB  
Article
Wearable Sensors and Artificial Intelligence for the Diagnosis of Parkinson’s Disease
by Yacine Benyoucef, Islem Melliti, Jouhayna Harmouch, Borhan Asadi, Antonio Del Mastro, Diego Lapuente-Hernández and Pablo Herrero
J. Clin. Med. 2025, 14(12), 4207; https://doi.org/10.3390/jcm14124207 - 13 Jun 2025
Viewed by 833
Abstract
Background/Objectives: This study explores the integration of wearable sensors and artificial intelligence (AI) for Human Activity Recognition (HAR) in the diagnosis and rehabilitation of Parkinson’s disease (PD). The objective was to develop a proof-of-concept model based on internal reproducibility, without external generalization, that [...] Read more.
Background/Objectives: This study explores the integration of wearable sensors and artificial intelligence (AI) for Human Activity Recognition (HAR) in the diagnosis and rehabilitation of Parkinson’s disease (PD). The objective was to develop a proof-of-concept model based on internal reproducibility, without external generalization, that is capable of distinguishing pathological movements from healthy ones while ensuring clinical relevance and patient safety. Methods: Nine subjects, including eight patients with Parkinson’s disease and one healthy control, were included. Motion data were collected using the Motigravity platform, which integrates inertial sensors in a controlled environment. The signals were automatically segmented into fixed-length windows, with poor-quality segments excluded through preprocessing. A hybrid CNN-LSTM (Convolutional Neural Networks—Long Short-Term Memory) model was trained to classify motion patterns, leveraging convolutional layers for spatial feature extraction and LSTM layers for temporal dependencies. The Motigravity system provided a controlled hypogravity environment for data collection and rehabilitation exercises. Results: The proposed CNN-LSTM model achieved a validation accuracy of 100%, demonstrating classification potential. The Motigravity system contributed to improved data reliability and ensured patient safety. Despite increasing class imbalance in extended experiments, the model consistently maintained perfect accuracy, suggesting strong generalizability after external validation to overcome the limitations. Conclusions: Integrating AI and wearable sensors has significant potential to improve the HAR-based classification of movement impairments and guide rehabilitation strategies in PD. While challenges such as dataset size remain, expanding real-world validation and enhancing automated segmentation could further improve clinical impact. Future research should explore larger cohorts, extend the model to other neurodegenerative diseases, and evaluate its integration into clinical rehabilitation workflows. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

22 pages, 473 KiB  
Review
Monitoring Slope Stability: A Comprehensive Review of UAV Applications in Open-Pit Mining
by Stephanos Tsachouridis, Francis Pavloudakis, Constantinos Sachpazis and Vassilios Tsioukas
Land 2025, 14(6), 1193; https://doi.org/10.3390/land14061193 - 3 Jun 2025
Viewed by 1029
Abstract
Unmanned aerial vehicles (UAVs) have increasingly proven to be flexible tools for mapping mine terrain, offering expedient and precise data compared to alternatives. Photogrammetric outputs are particularly beneficial in open pit operations and waste dump areas, since they enable cost-effective and reproducible digital [...] Read more.
Unmanned aerial vehicles (UAVs) have increasingly proven to be flexible tools for mapping mine terrain, offering expedient and precise data compared to alternatives. Photogrammetric outputs are particularly beneficial in open pit operations and waste dump areas, since they enable cost-effective and reproducible digital terrain models. Meanwhile, UAV-based LiDAR has proven invaluable in situations where uniform ground surfaces, dense vegetation, or steep slopes challenge purely photogrammetric solutions. Recent advances in machine learning and deep learning have further enhanced the capacity to distinguish critical features, such as vegetation and fractured rock surfaces, thereby reducing the likelihood of accidents and ecological damage. Nevertheless, scientific gaps remain to be researched. Standardization around flight practices, sensor selection, and data verification persists as elusive, and most mining sites still rely on limited, multi-temporal surveys that may not capture sudden changes in slope conditions. Complexity lies in devising strategies for rehabilitated dumps, where post-mining restoration efforts involve vegetation regrowth, erosion mitigation, and altered land use. Through expanded sensor integration and refined automated analysis, approaches could shift from information gathering to ongoing hazard assessment and environmental surveillance. This evolution would improve both safety and environmental stewardship, reflecting the emerging role of UAVs in advancing a more sustainable future for mining. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

36 pages, 2706 KiB  
Article
Towards Intelligent Assessment in Personalized Physiotherapy with Computer Vision
by Victor García and Olga C. Santos
Sensors 2025, 25(11), 3436; https://doi.org/10.3390/s25113436 - 29 May 2025
Viewed by 782
Abstract
Effective physiotherapy requires accurate and personalized assessments of patient mobility, yet traditional methods can be time-consuming and subjective. This study explores the potential of open-source computer vision algorithms, specifically YOLO Pose, to support automated, vision-based analysis in physiotherapy settings using information collected from [...] Read more.
Effective physiotherapy requires accurate and personalized assessments of patient mobility, yet traditional methods can be time-consuming and subjective. This study explores the potential of open-source computer vision algorithms, specifically YOLO Pose, to support automated, vision-based analysis in physiotherapy settings using information collected from optical sensors such as cameras. By extracting skeletal data from video input, the system enables objective evaluation of patient movements and rehabilitation progress. The visual information is then analyzed to propose a semantic framework that facilitates a structured interpretation of clinical parameters. Preliminary results indicate that YOLO Pose provides reliable pose estimation, offering a solid foundation for future enhancements, such as the integration of natural language processing (NLP) to improve patient interaction through empathetic, AI-driven support. Full article
Show Figures

Figure 1

14 pages, 883 KiB  
Systematic Review
Clinical Performance of Subperiosteal Implants in the Full-Arch Rehabilitation of Severely Resorbed Edentulous Jaws: A Systematic Review and Metanalysis
by Luis Sánchez-Labrador, Santiago Bazal-Bonelli, Fabián Pérez-González, Tomás Beca-Campoy, Carlos Manuel Cobo-Vázquez, Jorge Cortés-Bretón Brinkmann and José María Martínez-González
Dent. J. 2025, 13(6), 240; https://doi.org/10.3390/dj13060240 - 28 May 2025
Viewed by 520
Abstract
Background/Objectives: Subperiosteal implants (SPIs) were first used in the 1940s, but due to their complications and the rise of dental implants, they were discontinued. Thanks to new technologies and new materials, nowadays they are being used again and studied as a treatment [...] Read more.
Background/Objectives: Subperiosteal implants (SPIs) were first used in the 1940s, but due to their complications and the rise of dental implants, they were discontinued. Thanks to new technologies and new materials, nowadays they are being used again and studied as a treatment for severe bone defects. This review analyzes the clinical results—survival rates and complications—of SPIs used to support full arch rehabilitations of severely resorbed maxillae and mandibles, comparing the outcomes resulting from implant placement conducted in one or two surgical interventions. Methods: An automated search was conducted in four databases (Medline/Pubmed, Scopus, Web of Science, and Cochrane Library), as well as a manual search for relevant clinical articles published before 28 February 2025. The review included human studies with at least four patients, in which SPIs were placed to restore full-arch edentulous maxillae and mandibles. Quality of evidence was evaluated using the Newcastle–Ottawa Quality Assessment Scale and the Joanna Briggs Institute Critical Appraisal tool. Results: A total of 14 studies met the inclusion criteria and were included for analysis, including 958 patients and 973 SPIs. The survival rate was 100% when one surgical intervention was performed and 85% when two interventions were performed after 4–38 months and 3–22 years follow-up, respectively. Conclusions: SPIs would appear to offer a good alternative for patients with severe bone atrophies, especially SPIs fabricated using digital techniques in a single step, presenting promising survival rates and a low complication rate, although more randomized clinical trials with long-term follow-up are needed. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

21 pages, 4080 KiB  
Review
Integrating Artificial Intelligence in Orthopedic Care: Advancements in Bone Care and Future Directions
by Rahul Kumar, Kyle Sporn, Joshua Ong, Ethan Waisberg, Phani Paladugu, Swapna Vaja, Tamer Hage, Tejas C. Sekhar, Amar S. Vadhera, Alex Ngo, Nasif Zaman, Alireza Tavakkoli and Mouayad Masalkhi
Bioengineering 2025, 12(5), 513; https://doi.org/10.3390/bioengineering12050513 - 13 May 2025
Cited by 2 | Viewed by 2170
Abstract
Artificial intelligence (AI) is revolutionizing the field of orthopedic bioengineering by increasing diagnostic accuracy and surgical precision and improving patient outcomes. This review highlights using AI for orthopedics in preoperative planning, intraoperative robotics, smart implants, and bone regeneration. AI-powered imaging, automated 3D anatomical [...] Read more.
Artificial intelligence (AI) is revolutionizing the field of orthopedic bioengineering by increasing diagnostic accuracy and surgical precision and improving patient outcomes. This review highlights using AI for orthopedics in preoperative planning, intraoperative robotics, smart implants, and bone regeneration. AI-powered imaging, automated 3D anatomical modeling, and robotic-assisted surgery have dramatically changed orthopedic practices. AI has improved surgical planning by enhancing complex image interpretation and providing augmented reality guidance to create highly accurate surgical strategies. Intraoperatively, robotic-assisted surgeries enhance accuracy and reduce human error while minimizing invasiveness. AI-powered smart implant sensors allow for in vivo monitoring, early complication detection, and individualized rehabilitation. It has also advanced bone regeneration devices and neuroprosthetics, highlighting its innovation capabilities. While AI advancements in orthopedics are exciting, challenges remain, like the need for standardized surgical system validation protocols, assessing ethical consequences of AI-derived decision-making, and using AI with bioprinting for tissue engineering. Future research should focus on proving the reliability and predictability of the performance of AI-pivoted systems and their adoption within clinical practice. This review synthesizes recent developments and highlights the increasing impact of AI in orthopedic bioengineering and its potential future effectiveness in bone care and beyond. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

28 pages, 4904 KiB  
Review
Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review
by Eyad Alsuhaibani
Polymers 2025, 17(9), 1284; https://doi.org/10.3390/polym17091284 - 7 May 2025
Cited by 1 | Viewed by 991
Abstract
The growing application of Fiber-Reinforced Polymer (FRP) composites in rehabilitating deteriorating concrete infrastructure underscores the need for reliable, cost-effective, and automated nondestructive testing (NDT) methods. This review provides a comprehensive analysis of existing and emerging NDT techniques used to assess externally bonded FRP [...] Read more.
The growing application of Fiber-Reinforced Polymer (FRP) composites in rehabilitating deteriorating concrete infrastructure underscores the need for reliable, cost-effective, and automated nondestructive testing (NDT) methods. This review provides a comprehensive analysis of existing and emerging NDT techniques used to assess externally bonded FRP (EB-FRP) systems, emphasizing their accuracy, limitations, and practicality. Various NDT methods, including Ground-Penetrating Radar (GPR), Phased Array Ultrasonic Testing (PAUT), Infrared Thermography (IRT), Acoustic Emission (AE), and Impact–Echo (IE), are critically evaluated in terms of their effectiveness in detecting debonding, voids, delaminations, and other defects. Recent technological advancements, particularly the integration of artificial intelligence (AI) and machine learning (ML) in NDT applications, have significantly improved defect characterization, automated inspections, and real-time data analysis. This review highlights AI-driven NDT approaches such as automated crack detection, hybrid NDT frameworks, and drone-assisted thermographic inspections, which enhance accuracy and efficiency in large-scale infrastructure assessments. Additionally, economic considerations and cost–performance trade-offs are analyzed, addressing the feasibility of different NDT methods in real-world FRP-strengthened structures. Finally, the review identifies key research gaps, including the need for standardization in FRP-NDT applications, AI-enhanced defect quantification, and hybrid inspection techniques. By consolidating state-of-the-art research and emerging innovations, this paper serves as a valuable resource for engineers, researchers, and practitioners involved in the assessment, monitoring, and maintenance of FRP-strengthened concrete structures. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

14 pages, 6796 KiB  
Article
Berg Balance Scale Scoring System for Balance Evaluation by Leveraging Attention-Based Deep Learning with Wearable IMU Sensors
by Zhangli Lu, Huiying Zhou, Honghao Lyu, Haiteng Wu, Shaohua Tian and Geng Yang
Bioengineering 2025, 12(4), 395; https://doi.org/10.3390/bioengineering12040395 - 7 Apr 2025
Viewed by 902
Abstract
Balance assessment is crucial for health monitoring and rehabilitation evaluation of neurological diseases like Parkinson’s disease (PD) and stroke. The Berg Balance Scale (BBS) is a widely used clinical tool for balance evaluation. However, its dependence on trained therapists for subjective, time-consuming assessments [...] Read more.
Balance assessment is crucial for health monitoring and rehabilitation evaluation of neurological diseases like Parkinson’s disease (PD) and stroke. The Berg Balance Scale (BBS) is a widely used clinical tool for balance evaluation. However, its dependence on trained therapists for subjective, time-consuming assessments limits its scalability. Current researchers have proposed several automated assessment systems. However, they suffer from difficulty in use in clinical settings and the need for feature engineering. The rapid advancement of wearable inertial measurement units (IMUs) provides an objective tool for motion analysis that is suitable for use in clinical environments. Thus, to address the limitations of manual scoring and complexities of capturing gait features, we proposed an automated BBS assessment system using an attention-based deep learning algorithm with IMU data, integrating convolutional neural networks (CNNs) for spatial feature extraction, bidirectional long short-term memory (Bi-LSTM) networks for temporal modeling, and attention mechanisms to emphasize informative features. Validated with 20 healthy subjects (young and elderly) and 20 patients (PD and stroke), the system achieved a mean absolute error (MAE) of 1.1627 and root mean squared error (RMSE) of 1.5333. Requiring only 5 min of walking data, this approach provided an efficient, objective solution for balance assessment to assist healthcare physicians as well as patients in their own health monitoring. The key limitations included: a limited generalizability to severely impaired patients who were unable to walk independently, and the inability to predict the score of individual tasks. Full article
(This article belongs to the Special Issue Technological Advances for Gait and Balance Assessment)
Show Figures

Figure 1

20 pages, 1075 KiB  
Review
Eye Tracking in Parkinson’s Disease: A Review of Oculomotor Markers and Clinical Applications
by Pierluigi Diotaiuti, Giulio Marotta, Francesco Di Siena, Salvatore Vitiello, Francesco Di Prinzio, Angelo Rodio, Tommaso Di Libero, Lavinia Falese and Stefania Mancone
Brain Sci. 2025, 15(4), 362; https://doi.org/10.3390/brainsci15040362 - 31 Mar 2025
Cited by 2 | Viewed by 1989
Abstract
(1) Background. Eye movement abnormalities are increasingly recognized as early biomarkers of Parkinson’s disease (PD), reflecting both motor and cognitive dysfunction. Advances in eye-tracking technology provide objective, quantifiable measures of saccadic impairments, fixation instability, smooth pursuit deficits, and pupillary changes. These advances offer [...] Read more.
(1) Background. Eye movement abnormalities are increasingly recognized as early biomarkers of Parkinson’s disease (PD), reflecting both motor and cognitive dysfunction. Advances in eye-tracking technology provide objective, quantifiable measures of saccadic impairments, fixation instability, smooth pursuit deficits, and pupillary changes. These advances offer new opportunities for early diagnosis, disease monitoring, and neurorehabilitation. (2) Objective. This narrative review explores the relationship between oculomotor dysfunction and PD pathophysiology, highlighting the potential applications of eye tracking in clinical and research settings. (3) Methods. A comprehensive literature review was conducted, focusing on peer-reviewed studies examining eye movement dysfunction in PD. Relevant publications were identified through PubMed, Scopus, and Web of Science, using key terms, such as “eye movements in Parkinson’s disease”, “saccadic control and neurodegeneration”, “fixation instability in PD”, and “eye-tracking for cognitive assessment”. Studies integrating machine learning (ML) models and VR-based interventions were also included. (4) Results. Patients with PD exhibit distinct saccadic abnormalities, including hypometric saccades, prolonged saccadic latency, and increased anti-saccade errors. These impairments correlate with executive dysfunction and disease progression. Fixation instability and altered pupillary responses further support the role of oculomotor metrics as non-invasive biomarkers. Emerging AI-driven eye-tracking models show promise for automated PD diagnosis and progression tracking. (5) Conclusions. Eye tracking provides a reliable, cost-effective tool for early PD detection, cognitive assessment, and rehabilitation. Future research should focus on standardizing clinical protocols, validating predictive AI models, and integrating eye tracking into multimodal treatment strategies. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 655 KiB  
Perspective
AI-Driven Telerehabilitation: Benefits and Challenges of a Transformative Healthcare Approach
by Rocco Salvatore Calabrò and Sepehr Mojdehdehbaher
AI 2025, 6(3), 62; https://doi.org/10.3390/ai6030062 - 17 Mar 2025
Cited by 1 | Viewed by 3385
Abstract
Artificial intelligence (AI) has revolutionized telerehabilitation by integrating machine learning (ML), big data analytics, and real-time feedback to create adaptive, patient-centered care. AI-driven systems enhance telerehabilitation by analyzing patient data to personalize therapy, monitor progress, and suggest adjustments, eliminating the need for constant [...] Read more.
Artificial intelligence (AI) has revolutionized telerehabilitation by integrating machine learning (ML), big data analytics, and real-time feedback to create adaptive, patient-centered care. AI-driven systems enhance telerehabilitation by analyzing patient data to personalize therapy, monitor progress, and suggest adjustments, eliminating the need for constant clinician oversight. The benefits of AI-powered telerehabilitation include increased accessibility, especially for remote or mobility-limited patients, and greater convenience, allowing patients to perform therapies at home. However, challenges persist, such as data privacy risks, the digital divide, and algorithmic bias. Robust encryption protocols, equitable access to technology, and diverse training datasets are critical to addressing these issues. Ethical considerations also arise, emphasizing the need for human oversight and maintaining the therapeutic relationship. AI also aids clinicians by automating administrative tasks and facilitating interdisciplinary collaboration. Innovations like 5G networks, the Internet of Medical Things (IoMT), and robotics further enhance telerehabilitation’s potential. By transforming rehabilitation into a dynamic, engaging, and personalized process, AI and telerehabilitation together represent a paradigm shift in healthcare, promising improved outcomes and broader access for patients worldwide. Full article
Show Figures

Figure 1

Back to TopTop