Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (312)

Search Parameters:
Keywords = autocrine signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 4357 KiB  
Systematic Review
Vitamin D’s Impact on Cancer Incidence and Mortality: A Systematic Review
by Sunil J. Wimalawansa
Nutrients 2025, 17(14), 2333; https://doi.org/10.3390/nu17142333 - 16 Jul 2025
Viewed by 1534
Abstract
Background/Objectives: Adequate vitamin D levels are essential for various physiological functions, including cell growth, immune modulation, metabolic regulation, DNA repair, and overall health span. Despite its proven cost-effectiveness, widespread deficiency persists due to inadequate supplementation and limited sunlight exposure. Methods: This [...] Read more.
Background/Objectives: Adequate vitamin D levels are essential for various physiological functions, including cell growth, immune modulation, metabolic regulation, DNA repair, and overall health span. Despite its proven cost-effectiveness, widespread deficiency persists due to inadequate supplementation and limited sunlight exposure. Methods: This systematic review (SR) examines the relationship between vitamin D and the reduction of cancer risk and mortality, and the mechanisms involved in cancer prevention. This SR followed the PRISMA and PICOS guidelines and synthesized evidence from relevant studies. Results: Beyond genomic actions via calcitriol [1,25(OH)2D]-receptor interactions, vitamin D exerts cancer-protective effects through mitigating inflammation, autocrine, paracrine, and membrane signaling. The findings reveal a strong inverse relationship between serum 25(OH)D levels and the incidence, metastasis, and mortality of several cancer types, including colon, gastric, rectal, breast, endometrial, bladder, esophageal, gallbladder, ovarian, pancreatic, renal, vulvar cancers, and both Hodgkin’s and non-Hodgkin’s lymphomas. While 25(OH)D levels of around 20 ng/mL suffice for musculoskeletal health, maintaining levels above 40 ng/mL (100 nmol/L: range, 40–80 ng/mL) significantly lowers cancer risks and mortality. Conclusions: While many observational studies support vitamin D’s protective role in incidents and deaths from cancer, some recent mega-RCTs have failed to demonstrate this. The latter is primarily due to critical study design flaws, like recruiting vitamin D sufficient subjects, inadequate dosing, short durations, and biased designs in nutrient supplementation studies. Consequently, conclusions from these cannot be relied upon. Well-designed, adequately powered clinical trials using appropriate methodologies, sufficient vitamin D3 doses, and extended durations consistently demonstrate that proper supplementation significantly reduces cancer risk and markedly lowers cancer mortality. Full article
Show Figures

Figure 1

18 pages, 5892 KiB  
Article
CXCL12 Drives Reversible Fibroimmune Remodeling in Androgenetic Alopecia Revealed by Single-Cell RNA Sequencing
by Seungchan An, Mei Zheng, In Guk Park, Leegu Song, Jino Kim, Minsoo Noh and Jong-Hyuk Sung
Int. J. Mol. Sci. 2025, 26(14), 6568; https://doi.org/10.3390/ijms26146568 - 8 Jul 2025
Viewed by 626
Abstract
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) [...] Read more.
Androgenetic alopecia (AGA) is a common form of hair loss characterized by androgen-driven tissue remodeling, including progressive follicular miniaturization and dermal fibrosis, which is accompanied by low-grade immune activation. However, the molecular mechanisms underlying this fibroimmune dysfunction remain poorly understood. Dermal fibroblasts (DFs) have been suggested as androgen-responsive stromal cells and a potential source of CXCL12, a chemokine implicated in fibroimmune pathology, but their precise role in AGA has not been fully established. In this study, we performed single-cell transcriptomic profiling of a testosterone-induced mouse model of AGA, with or without treatment of CXCL12-neutralizing antibody, to elucidate the pathological role of CXCL12 in mediating stromal-immune interactions. Our analysis suggested that DFs are the primary androgen-responsive population driving CXCL12 expression. Autocrine CXCL12-ACKR3 signaling in DFs activated TGF-β pathways and promoted fibrotic extracellular matrix deposition. In parallel, paracrine CXCL12-CXCR4 signaling reprogrammed Sox2+Twist1+ dermal papilla cells (DPCs) and promoted the accumulation of pro-fibrotic Trem2+ macrophages, contributing to impaired hair follicle regeneration. Notably, CXCL12 blockade attenuated these stromal and immune alterations, restored the regenerative capacity of DPCs, reduced pro-fibrotic macrophage infiltration, and promoted hair regrowth. Together, these findings identify CXCL12 as a central mediator of androgen-induced fibroimmune remodeling and highlight its potential as a therapeutic target in AGA. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

12 pages, 2251 KiB  
Article
The Rab18/Ras/ERK/FosB/MMP3 Signaling Pathway Mediates Cell Migration Regulation by 2′3′-cGAMP
by Yu Deng, Runjie Yuan and Pengda Liu
Int. J. Mol. Sci. 2025, 26(12), 5758; https://doi.org/10.3390/ijms26125758 - 16 Jun 2025
Viewed by 461
Abstract
The unique secondary messenger 2′3′-cGAMP, produced by cGAS in response to cytosolic dsDNA, plays a critical role in activating innate immunity by binding to and activating STING via cell-intrinsic, autocrine, or paracrine mechanisms. Recently, we identified Rab18 as a novel, STING-independent binder of [...] Read more.
The unique secondary messenger 2′3′-cGAMP, produced by cGAS in response to cytosolic dsDNA, plays a critical role in activating innate immunity by binding to and activating STING via cell-intrinsic, autocrine, or paracrine mechanisms. Recently, we identified Rab18 as a novel, STING-independent binder of 2′3′-cGAMP. Binding of 2′3′-cGAMP to Rab18 promotes Rab18 activation and induces cell migration. However, the downstream mechanisms by which 2′3′-cGAMP-induced Rab18 activation regulates cell migration remain largely unclear. Herein, using phospho-profiling analysis, we identify MAPK signaling as a key downstream effector of the 2′3′-cGAMP/Rab18 axis that promotes the expression of FosB2 and drives cell migration. Furthermore, we identify MMP3 as a major transcriptional target of FosB2, through which the 2′3′-cGAMP/Rab18/MAPK/FosB2 signaling pathway positively regulates cell migration. Together, our findings provide new mechanistic insights into how 2′3′-cGAMP signaling controls cell migration and suggest the potential of MAPK inhibitors to block 2′3′-cGAMP-induced migratory responses. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 8001 KiB  
Article
Long-Term Supplementation of GABA Regulates Growth, Food Intake, Locomotion, and Lipid Metabolism by Increasing Ghrelin and Growth Hormone in Adolescent Mice
by Rafael Begazo-Jimenez, Amelia Yu, Robert Gros and Wei-Yang Lu
Nutrients 2025, 17(10), 1634; https://doi.org/10.3390/nu17101634 - 10 May 2025
Viewed by 2104
Abstract
Background/Objectives: The amino acid γ-aminobutyric acid (GABA) is the primary neurotransmitter in the central nervous system (CNS) and acts as an autocrine and/or paracrine signaling molecule in various types of non-neuronal cells. On the other hand, GABA is a nutrient found in [...] Read more.
Background/Objectives: The amino acid γ-aminobutyric acid (GABA) is the primary neurotransmitter in the central nervous system (CNS) and acts as an autocrine and/or paracrine signaling molecule in various types of non-neuronal cells. On the other hand, GABA is a nutrient found in a variety of foods and is marketed as a health supplement based on a growing number of studies reporting health benefits in humans and recuperations in animal models of diseases. The present study sought to examine whether supplementation of GABA to young mice regulates their growth as well as glucose and lipid metabolism during physiological adolescence. Methods: Mice were supplemented with GABA over a 16-week period with subsequent anthropometric, metabolic, and endocrine measurements. Results: Results showed that 16-week oral supplementation of GABA increased food consumption and body length while attenuating weight gain in male mice but not females. In addition, GABA treatment lowered the index of body fat (Lee index) and increased the expression of lipolytic enzymes in adipose and liver tissues of male mice without affecting blood glucose levels. Remarkably, supplementation of GABA significantly increased the protein expression of growth hormone (GH) in the pituitary gland of both male and female mice. However, it only substantially increased GH levels in the sera of male mice but not females. Moreover, GABA significantly increased the expression of the GH secretagogue peptide ghrelin in the stomachs of male mice only. Conclusions: Together these novel findings suggest that long-term GABA supplementation fundamentally influences the growth and lipid metabolism of males during adolescent development by stimulating ghrelin–GH production and secretion. The mechanisms of GABA-induced sex-dependent upregulations of ghrelin and GH, as well as lipid metabolism in adolescence, await further studies. Full article
Show Figures

Figure 1

21 pages, 2763 KiB  
Article
An Autocrine Regulator Loop Involving Tumor Necrosis Factor and Chemokine (C-C motif) Ligand-2 Is Activated by Transforming Growth Factor-β in Rat Basophilic Leukemia-2H3 Mast Cells
by Dulce Avila-Rodríguez, Alfredo Ibarra-Sánchez, Marcela Sosa-Garrocho, Genaro Vázquez-Victorio, Cassandre Caligaris, Isabel Anaya-Rubio, Deisy Segura-Villalobos, Ulrich Blank, Claudia González-Espinosa and Marina Macias-Silva
Int. J. Mol. Sci. 2025, 26(9), 4263; https://doi.org/10.3390/ijms26094263 - 30 Apr 2025
Viewed by 524
Abstract
TGF-β is a pleiotropic cytokine with both stimulatory and inhibitory effects on immune cells, depending on the microenvironmental context. It targets mast cells (MCs) in different physio-pathological conditions, such as inflammation and cancer. Besides acting as a potent chemoattractant for MCs, TGF-β regulates [...] Read more.
TGF-β is a pleiotropic cytokine with both stimulatory and inhibitory effects on immune cells, depending on the microenvironmental context. It targets mast cells (MCs) in different physio-pathological conditions, such as inflammation and cancer. Besides acting as a potent chemoattractant for MCs, TGF-β regulates many other aspects of MCs’ physiology, including the secretion of many regulatory molecules. MCs secrete a variety of mediators, either pre-formed or newly synthesized, upon appropriate stimulation. CCL-2 chemokine and TNF cytokine act as potent chemoattractants for several immune cells and participate in the initiation of inflammatory responses by recruiting them to injured tissues. TGF-β regulates CCL-2 and TNF secretion in different cell types and under distinct cellular contexts. Here, we report that the treatment with TGF-β alone induces the secretion of both pre-formed and newly synthesized CCL-2 in the rat RBL-2H3 mast cells but not in mouse bone marrow-derived mast cells (BMMCs). TGF-β-induced CCL-2 secretion depends on rapid rearrangements of the actin cytoskeleton and, remarkably, on the early secretion of soluble TNF that triggers an autocrine TNF signaling. In conclusion, we found cooperation between TGF-β and TNF signaling pathways to promote the secretion of CCL-2 chemokine by MCs in a cell-context specific manner. Full article
(This article belongs to the Special Issue Mast Cells in Immunity and Disease: Second Edition)
Show Figures

Figure 1

17 pages, 6918 KiB  
Article
Induction of Cell Death and Regulation of Autocrine Vitamin D Metabolism in Cervical Cancer by Physiological and GI20 Doses of 25-Hydroxycholecalciferol
by Esther Zhou, Sachin Bhoora, Tahir S. Pillay and Rivak Punchoo
Int. J. Mol. Sci. 2025, 26(9), 4008; https://doi.org/10.3390/ijms26094008 - 24 Apr 2025
Cited by 1 | Viewed by 569
Abstract
Vitamin D and its metabolites exert anti-cancer properties in various cancers; however, their effects on cervical cancer remain largely unexplored. To investigate this gap, we exposed HeLa adenocarcinoma cervical cells to physiological and the growth inhibition 20% (GI20) concentration of 25-hydroxycholecalciferol, the precursor [...] Read more.
Vitamin D and its metabolites exert anti-cancer properties in various cancers; however, their effects on cervical cancer remain largely unexplored. To investigate this gap, we exposed HeLa adenocarcinoma cervical cells to physiological and the growth inhibition 20% (GI20) concentration of 25-hydroxycholecalciferol, the precursor hormone of active 1,25-dihydroxycholecalciferol. We then assessed its impact on cell health, and the expression of the genes and proteins involved in the activation and catabolism of vitamin D at the cellular level by autocrine vitamin D metabolism via the vitamin D metabolizing system (VDMS). Cell health was evaluated by crystal violet and alamarBlue assays, while cell cycle progression and apoptotic cell death markers were assessed by flow cytometry. Gross morphology and ultrastructure were observed using brightfield microscopy and transmission electron microscopy. Gene and protein analyses of the autocrine VDMS were assessed using reverse transcription polymerase chain reaction and Western blot, respectively. Our findings reveal that 25(OH)D3 inhibits cell growth and induces apoptosis in HeLa cervical cells in a dose-dependent manner through the autocrine upregulation of CYP27B1 and VDR. These autocrine effects most likely promote the bioactivation of 25(OH)D3 and intracellular signaling of pro-apoptotic genomic pathways by liganded VDR. Furthermore, the upregulation of CYP24A1 at GI20 treatment likely increases the catabolism of 25(OH)D3 and 1,25(OH)2D3, and therefore may mitigate the anti-cancer action of the high-treatment dose. In summary, 25(OH)D3 holds immense potential as a complementary therapeutic treatment for cervical cancer. Full article
Show Figures

Figure 1

14 pages, 3920 KiB  
Article
Aberrant Expression and Oncogenic Activity of SPP1 in Hodgkin Lymphoma
by Stefan Nagel and Corinna Meyer
Biomedicines 2025, 13(3), 735; https://doi.org/10.3390/biomedicines13030735 - 17 Mar 2025
Viewed by 644
Abstract
Background: Hodgkin lymphoma (HL) is a B-cell-derived malignancy and one of the most frequent types of lymphoma. The tumour cells typically exhibit multiple genomic alterations together with aberrantly activated signalling pathways, driven by paracrine and/or autocrine modes. SPP1 (alias osteopontin) is a [...] Read more.
Background: Hodgkin lymphoma (HL) is a B-cell-derived malignancy and one of the most frequent types of lymphoma. The tumour cells typically exhibit multiple genomic alterations together with aberrantly activated signalling pathways, driven by paracrine and/or autocrine modes. SPP1 (alias osteopontin) is a cytokine acting as a signalling activator and has been connected with relapse in HL patients. To understand its pathogenic role, here, we investigated the mechanisms and function of deregulated SPP1 in HL. Methods: We screened public patient datasets and cell lines for aberrant SPP1 expression. HL cell lines were stimulated with SPP1 and subjected to siRNA-mediated knockdown. Gene and protein activities were analyzed by RQ-PCR, ELISA, Western blot, and immuno-cytology. Results: SPP1 expression was detected in 8.3% of classic HL patients and in HL cell line SUP-HD1, chosen to serve as an experimental model. The gene encoding SPP1 is located at chromosomal position 4q22 and is genomically amplified in SUP-HD1. Transcription factor binding site analysis revealed TALE and HOX factors as potential regulators. Consistent with this finding, we showed that aberrantly expressed PBX1 and HOXB9 mediate the transcriptional activation of SPP1. RNA-seq data and knockdown experiments indicated that SPP1 signals via integrin ITGB1 in SUP-HD1. Accordingly, SPP1 activated NFkB in addition to MAPK/ERK which in turn mediated the nuclear import of ETS2, activating oncogenic JUNB expression. Conclusions: SPP1 is aberrantly activated in HL cell line SUP-HD1 via genomic copy number gain and by homeodomain transcription factors PBX1 and HOXB9. SPP1-activated NFkB and MAPK merit further investigation as potential therapeutic targets in affected HL patients. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

32 pages, 2615 KiB  
Review
KRAS Mutations in Cancer: Understanding Signaling Pathways to Immune Regulation and the Potential of Immunotherapy
by Priyanka Uniyal, Vivek Kumar Kashyap, Tapan Behl, Deepak Parashar and Ravi Rawat
Cancers 2025, 17(5), 785; https://doi.org/10.3390/cancers17050785 - 25 Feb 2025
Cited by 1 | Viewed by 4660
Abstract
The Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation is one of the most prevailing mutations in various tumors and is difficult to cure. Long-term proliferation in carcinogenesis is primarily initiated by oncogenic KRAS-downstream signaling. Recent research suggests that it also activates the [...] Read more.
The Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation is one of the most prevailing mutations in various tumors and is difficult to cure. Long-term proliferation in carcinogenesis is primarily initiated by oncogenic KRAS-downstream signaling. Recent research suggests that it also activates the autocrine effect and interplays the tumor microenvironment (TME). Here, we discuss the emerging research, including KRAS mutations to immune evasion in TME, which induce immunological modulation that promotes tumor development. This review gives an overview of the existing knowledge of the underlying connection between KRAS mutations and tumor immune modulation. It also addresses the mechanisms to reduce the effect of oncogenes on the immune system and recent advances in clinical trials for immunotherapy in KRAS-mutated cancers. Full article
(This article belongs to the Special Issue Inflammation, Immunity, and Cancer Progression: 2nd Edition)
Show Figures

Figure 1

23 pages, 4240 KiB  
Article
Effect of Scenedesmus deserticola JD052 Extracts on Hair Inductivity by Regulating the AKT and GSK3β/β-Catenin Signaling Pathways in Human Dermal Papilla Cells
by Hee-Jae Shin, Seok-Yun Jeong, Seokmuk Park and Seunghee Bae
Appl. Sci. 2025, 15(4), 2015; https://doi.org/10.3390/app15042015 - 14 Feb 2025
Viewed by 762
Abstract
The extract of Scenedesmus deserticola JD052 has been reported to exhibit anti-aging effects on the skin, with research indicating an increase in loliolide, a major active component, through heterotrophic cultivation. In this study, we evaluated the effects of extracts obtained from both photoautotrophic [...] Read more.
The extract of Scenedesmus deserticola JD052 has been reported to exhibit anti-aging effects on the skin, with research indicating an increase in loliolide, a major active component, through heterotrophic cultivation. In this study, we evaluated the effects of extracts obtained from both photoautotrophic (PE) and heterotrophic (HE) cultures on hair-inductive properties in human dermal papilla (HDP) cells. Biochemical assays demonstrated that both extracts enhanced HDP cell viability and increased the size of three-dimensional dermal papilla (DP) spheres. Notably, the activation of β-catenin, a crucial marker associated with hair growth, was assessed using a luciferase reporter assay, revealing that HE exhibited a significantly higher efficacy than PE. Further analyses indicated that HE promoted the translocation of β-catenin into the nucleus through the phosphorylation and activation of AKT, which also elevated the expression levels of DP signature genes and hair-growth-related autocrine factors. Additionally, conditioned media from HE-treated HDP cells enhanced keratinocyte migration and increased the expression of growth factors, including VEGF and IGF-1. HPLC-MS analysis showed no significant difference in loliolide content; however, specific peaks in HE were identified as pheophorbide A and linolelaidic acid. Thus, HE may enhance hair growth inductivity via AKT/β-catenin signaling. Full article
Show Figures

Figure 1

15 pages, 2795 KiB  
Article
Paneth Cells Are a Constitutive Source of IL-10 in Mouse Small Intestinal Organoids
by Huong Nguyen, Francesca Di Cara, Jun Wang and Andrew W. Stadnyk
Organoids 2025, 4(1), 4; https://doi.org/10.3390/organoids4010004 - 12 Feb 2025
Viewed by 1009
Abstract
The healthy gut masks a dynamic balance between pro- and anti-inflammatory activities, largely due to microbial factors in the lumen. IL-10 is vital among the anti-inflammatory mediators, yet confirming constitutive versus stimulated secretion in any cell type is difficult due to the cellular [...] Read more.
The healthy gut masks a dynamic balance between pro- and anti-inflammatory activities, largely due to microbial factors in the lumen. IL-10 is vital among the anti-inflammatory mediators, yet confirming constitutive versus stimulated secretion in any cell type is difficult due to the cellular complexity in the gut. Seeking to determine whether intestinal epithelial cells are programmed to constitutively make IL-10, we confirmed that IL-10 mRNA was present in enteroids from C57BL/6 mice and IL-10 protein was co-localized with a Paneth cell marker but not with markers for goblet or tuft cells. Paneth cells positive for IL-10 also possessed apical and basal IL-10RA, while cells negative for IL-10 had only basal IL-10RA, suggesting a possible autocrine role for IL-10. Indeed, Paneth cells in IL-10 gene knockout (IL-10KO) enteroids possessed lower levels of anti-microbial protein mRNAs, which could not be restored by adding IL-10. Enteroids passaged onto Transwell® filters to form monolayers were treated with IL-10 and STAT3 phosphorylation was measured. Apically applied IL-10 resulted in a stronger STAT3 signal than basally applied cytokine. Our results indicate that a subpopulation of Paneth cells constitutively secrete IL-10 apically, which binds apical IL-10RA, impacting the expression of anti-microbial proteins unique to Paneth cells. Full article
Show Figures

Figure 1

21 pages, 2682 KiB  
Article
Non-Canonical Wnt16 and microRNA-145 Mediate the Response of Human Bone Marrow Stromal Cells to Additively Manufactured Porous 3-Dimensional Biomimetic Titanium–Aluminum–Vanadium Constructs
by David. J. Cohen, Michael B. Berger, Jingyao Deng, Thomas W. Jacobs, Barbara D. Boyan and Zvi Schwartz
Cells 2025, 14(3), 211; https://doi.org/10.3390/cells14030211 - 1 Feb 2025
Viewed by 1477
Abstract
Metal 3D printing is increasingly being used to manufacture titanium–aluminum–vanadium (Ti6Al4V) implants. In vitro studies using 2D substrates demonstrate that the osteoblastic differentiation of bone marrow stromal cells (MSCs) on Ti6Al4V surfaces, with a microscale/nanoscale surface topography that mimics an osteoclast resorption pit, [...] Read more.
Metal 3D printing is increasingly being used to manufacture titanium–aluminum–vanadium (Ti6Al4V) implants. In vitro studies using 2D substrates demonstrate that the osteoblastic differentiation of bone marrow stromal cells (MSCs) on Ti6Al4V surfaces, with a microscale/nanoscale surface topography that mimics an osteoclast resorption pit, involves non-canonical Wnt signaling; Wnt3a is downregulated and Wnt5a is upregulated, leading to the local production of BMP2 and semaphorin 3A (sema3A). In this study, it was examined whether the regulation of MSCs in a 3D environment occurs by a similar mechanism. Human MSCs from two different donors were cultured for 7, 14, or 21 days on porous (3D) or solid (2D) constructs fabricated by powder-bed laser fusion. mRNA and secretion of osteoblast markers, as well as factors that enhance peri-implant osteogenesis, were analyzed, with a primary focus on the Wnt family, sema3A, and microRNA-145 (miR-145) signaling pathways. MSCs exhibited greater production of osteocalcin, latent and active TGFβ1, sema3A, and Wnt16 on the 3D constructs compared to 2D, both of which had similar microscale/nanoscale surface modifications. Wnt3a was reduced on 2D constructs as a function of time; Wnt11 and Wnt5a remained elevated in the 3D and 2D cultures. To better understand the role of Wnt16, cultures were treated with rhWnt16; endogenous Wnt16 was blocked using an antibody. Wnt16 promoted proliferation and inhibited osteoblast differentiation, potentially by reducing production of BMP2 and BMP4. Wnt16 expression was reduced by exogenous Wnt16 in 3D cells. Addition of the anti-Wnt16 antibody to the cultures reversed the effects of exogenous Wnt16, indicating an autocrine mechanism. Wnt16 increased miR-145-5p, suggesting a potential feedback mechanism. The miR-145-5p mimic increased Wnt16 production and inhibited sema3A in a 3D porous substrate-specific manner. Wnt16 did not affect sema3A production, but it was reduced by miR-145-5p mimic on the 3D constructs and stimulated by miR-145-5p inhibitor. Media from 7-, 14-, and 21-day cultures of MSCs grown on 3D constructs inhibited osteoclast activity to a greater extent than media from the 2D cultures. The findings present a significant step towards understanding the complex molecular interplay that occurs in 3D Ti6Al4V constructs fabricated by additive manufacturing. In addition to enhancing osteogenesis, the 3D porous biomimetic structure inhibits osteoclast activities, indicating its role in modulating bone remodeling processes. Our data suggest that the pathway mediated by sema3A/Wnt16/miR145-5p was enhanced by the 3D surface and contributes to bone regeneration in the 3D implants. This comprehensive exploration contributes valuable insights to guide future strategies in implant design, customization, and ultimately aims at improving clinical outcomes and successful osseointegration. Full article
Show Figures

Figure 1

15 pages, 2447 KiB  
Article
The Autocrine Impact of Nerve Growth Factor on Sheep Uterine Epithelial Cells
by Gabriella Guelfi, Rolando Pasquariello, Cecilia Dall’Aglio, Francesca Mercati, Chiara Suvieri, Carmela Conte, Camilla Capaccia, Marcelo Ratto and Margherita Maranesi
Cells 2025, 14(3), 208; https://doi.org/10.3390/cells14030208 - 31 Jan 2025
Cited by 1 | Viewed by 1039
Abstract
Nerve growth factor (NGF) plays a critical role in reproduction through paracrine and endocrine mechanisms. However, its autocrine effects on uterine receptivity and inflammatory pathways remain unknown. This study is the first to demonstrate NGF’s direct autocrine action on sheep endometrial luminal epithelial [...] Read more.
Nerve growth factor (NGF) plays a critical role in reproduction through paracrine and endocrine mechanisms. However, its autocrine effects on uterine receptivity and inflammatory pathways remain unknown. This study is the first to demonstrate NGF’s direct autocrine action on sheep endometrial luminal epithelial cells (SELECs), primary cultures treated with NGF for 12, 24, and 48 h, with or without the NTRK1 antagonist. NGF significantly increased PGE2 (p < 0.0001) and PGF2α (p < 0.0001) levels only at 12 h, with no significant changes at 24 and 48 h. NGF also upregulated the expression of NGF, COX2, and NTRK1 (p < 0.0001), and p75NTR and STAR (p < 0.001), at 12 h, with the effects reversed by NTRK1 inhibition, while no significant changes were observed for TLR4 (p > 0.05). Western blot (WB) analysis was performed exclusively to confirm the presence of NGF protein, revealing no significant differences (p > 0.05) across experimental conditions. These findings highlight NGF’s role in directly regulating SELEC activity through autocrine mechanisms, emphasizing its importance in uterine receptivity and reproductive readiness. This study provides novel insights into NGF’s role in sheep reproduction and its potential applications in fertility treatments. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Graphical abstract

20 pages, 8828 KiB  
Article
Oncogene OSTM1 Promotes Gastric-Cancer Metastasis by Modulating the Metastatic Microenvironment Through Altered Tumor-Cell Autocrine Signaling
by Yucheng Tang, Yi Guo, Jiangyi Feng and Ziwei Wang
Curr. Issues Mol. Biol. 2025, 47(1), 55; https://doi.org/10.3390/cimb47010055 - 16 Jan 2025
Viewed by 1019
Abstract
Gastric cancer remains a malignancy with high incidence, mortality rates, and poor prognosis globally. Osteoclastogenesis-associated transmembrane protein 1 (OSTM1), a transmembrane protein overexpressed in various tumors, has unclear functions in gastric-cancer progression. This study explores OSTM1’s role in gastric-cancer proliferation and metastasis. OSTM1 [...] Read more.
Gastric cancer remains a malignancy with high incidence, mortality rates, and poor prognosis globally. Osteoclastogenesis-associated transmembrane protein 1 (OSTM1), a transmembrane protein overexpressed in various tumors, has unclear functions in gastric-cancer progression. This study explores OSTM1’s role in gastric-cancer proliferation and metastasis. OSTM1 expression was analyzed in gastric-cancer and adjacent tissues using immunohistochemistry and RT-qPCR. OSTM1 overexpression and knockdown cell lines were established to assess its effects on cancer-cell behavior through in vitro and in vivo experiments. Western blot and RT-qPCR were used to examine OSTM1’s regulation of S100A4 expression. OSTM1 was significantly overexpressed in gastric-cancer tissues, negatively correlating with TNM staging and overall survival. OSTM1 overexpression enhanced cancer-cell proliferation, colony formation, migration, and invasion, while its knockdown showed opposite effects. In vivo studies confirmed increased lung metastatic capability in high OSTM1-expressing cells. Mechanistically, OSTM1 positively regulated S100A4 expression, with S100A4 knockdown reducing OSTM1-enhanced metastasis. Gastric-cancer lung metastases showed higher microvascular density and α-SMA-positive fibroblast infiltration in the OSTM1 high-expression group. OSTM1 promotes gastric-cancer progression by upregulating S100A4 and modifying the tumor microenvironment through enhanced angiogenesis and fibroblast activation. OSTM1 represents a potential diagnostic and prognostic biomarker, with the OSTM1–S100A4 axis offering new therapeutic possibilities for gastric-cancer treatment. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

24 pages, 1568 KiB  
Review
The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies
by Anh L. Nguyen, Caroline O. B. Facey and Bruce M. Boman
Cancers 2025, 17(1), 82; https://doi.org/10.3390/cancers17010082 - 30 Dec 2024
Cited by 3 | Viewed by 2757
Abstract
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in [...] Read more.
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers. Among the FGF members, the FGF 15/19 subfamily is particularly interesting because of its unique protein structure and role in endocrine function. The abnormal expression of FGFs in different cancer types (breast, colorectal, hepatobiliary, bronchogenic, and others) is examined and correlated with patient prognosis. The classification of FGF ligands based on their mode of action, whether autocrine, paracrine, endocrine, or intracrine, is illustrated, and an analysis of the binding specificity of FGFs to FGFRs is also provided. Moreover, the latest advances in cancer therapeutic strategies involving small molecules, ligand traps, and monoclonal antibody-based FGF inhibitors are presented. Lastly, we discuss how the dysregulation of FGF and FGFR expression affects FGF signaling and its role in cancer development. Full article
Show Figures

Graphical abstract

20 pages, 2879 KiB  
Article
Activation of Bradykinin B2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling
by Ying Lu, Yishan Gu, Anthony S. L. Chan, Ying Yung and Yung H. Wong
Int. J. Mol. Sci. 2024, 25(23), 13079; https://doi.org/10.3390/ijms252313079 - 5 Dec 2024
Viewed by 1271
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we [...] Read more.
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF. Full article
Show Figures

Figure 1

Back to TopTop