Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = attraction association network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 22029 KiB  
Article
Evaluating the Siphon Effect on Airport Cluster Resilience Using Accessibility and a Benchmark System for Sustainable Development
by Xinglong Wang, Weiqi Lin, Hao Yin and Fang Sun
Sustainability 2025, 17(15), 7013; https://doi.org/10.3390/su17157013 - 1 Aug 2025
Viewed by 157
Abstract
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which [...] Read more.
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which affects the overall resilience of the entire airport cluster. To address this issue, this study proposes a siphon index, expands the range of ground transportation options for passengers, and establishes a zero-siphon model to assess the impact of siphoning on the resiliency of airport clusters. Using this framework, four major airport clusters in China were selected as research subjects, with regional aviation accessibility serving as a measure of resilience. The results showed that among the four airport clusters, the siphon effect is most pronounced in the Guangzhou region. To explore the implications of this effect further, three airport disruption scenarios were simulated to assess the resilience of the Pearl River Delta airport cluster. The results indicated that the intensity and timing of disruptive events significantly affect airport cluster resilience, with hub airports being particularly sensitive. This study analyzes the risks associated with excessive route concentration, providing policymakers with critical insights to enhance the sustainability, equity, and resilience of airport clusters. The proposed strategies facilitate coordinated infrastructure development, optimized air–ground intermodal connectivity, and risk mitigation. These measures contribute to building more sustainable and adaptive aviation networks in rapidly urbanizing regions. Full article
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 383
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

18 pages, 6810 KiB  
Article
The Impact of the Built Environment on Innovation Output in High-Density Urban Centres at the Micro-Scale: A Case Study of the G60 S&T Innovation Valley, China
by Lie Wang and Lingyue Li
Buildings 2025, 15(14), 2528; https://doi.org/10.3390/buildings15142528 - 18 Jul 2025
Viewed by 194
Abstract
The micro-scale interplay between the built environment and innovation has attracted increasing scholarly attention. However, discussions on how such microdynamics operate and vary across high-density cities remain insufficient. This study focuses on nine high-density urban centres along the G60 S&T Innovation Valley and [...] Read more.
The micro-scale interplay between the built environment and innovation has attracted increasing scholarly attention. However, discussions on how such microdynamics operate and vary across high-density cities remain insufficient. This study focuses on nine high-density urban centres along the G60 S&T Innovation Valley and employs a fine-grained grid unit, viz. 1 km × 1 km, combined with the gradient boosting decision tree (GBDT) model to address these issues. Results show that urban construction density-related variables, including the building density, floor area ratio, and transportation network density, generally rank higher than the amenity density and proximity-related variables. The former contributes 50.90% of the total relative importance in predicting invention patent application density (IPAD), while the latter two contribute 13.64% and 35.46%, respectively. Threshold effect analysis identifies optimal levels for enhancing IPAD. Specifically, the optimal building density is approximately 20%, floor area ratio is 5, and transportation network density is 8 km/km2. Optimal distances to universities, city centres, and transportation hubs are around 1 km, 17 km, and 9 km, respectively. Furthermore, significant city-level heterogeneity was observed: most density-related variables consistently have an overall positive association with IPAD, with metropolitan cities (e.g., Hangzhou and Suzhou) exhibiting notably higher optimal values compared to medium and small cities (e.g., Xuancheng and Huzhou). In contrast, the threshold effects of proximity-related variables on IPAD are more complex and diverse. These findings offer empirical support for enhancing innovation in high-density urban environments. Full article
Show Figures

Figure 1

30 pages, 4112 KiB  
Article
Tourism Sentiment Chain Representation Model and Construction from Tourist Reviews
by Bosen Li, Rui Li, Junhao Wang and Aihong Song
Future Internet 2025, 17(7), 276; https://doi.org/10.3390/fi17070276 - 23 Jun 2025
Viewed by 297
Abstract
Current tourism route recommendation systems often overemphasize popular destinations, thereby overlooking geographical accessibility between attractions and the experiential coherence of the journey. Leveraging multidimensional attribute perceptions derived from tourist reviews, this study proposes a Spatial–Semantic Integrated Model for Tourist Attraction Representation (SSIM-TAR), which [...] Read more.
Current tourism route recommendation systems often overemphasize popular destinations, thereby overlooking geographical accessibility between attractions and the experiential coherence of the journey. Leveraging multidimensional attribute perceptions derived from tourist reviews, this study proposes a Spatial–Semantic Integrated Model for Tourist Attraction Representation (SSIM-TAR), which holistically encodes the composite attributes and multifaceted evaluations of attractions. Integrating these multidimensional features with inter-attraction relationships, three relational metrics are defined and fused: spatial proximity, resonance correlation, and thematic-sentiment similarity, forming a Tourist Attraction Multidimensional Association Network (MAN-SRT). This network enables precise characterization of complex inter-attraction dependencies. Building upon MAN-SRT, the Tourism Sentiment Chain (TSC) model is proposed that incorporates geographical accessibility, associative resonance, and thematic-sentiment synergy to optimize the selection and sequential arrangement of attractions in personalized route planning. Results demonstrate that SSIM-TAR effectively captures the integrated attributes and experiential quality of tourist attractions, while MAN-SRT reveals distinct multidimensional association patterns. Compared with popular platforms such as “Qunar” and “Mafengwo”, the TSC approach yields routes with enhanced spatial efficiency and thematic-sentiment coherence. This study advances tourism route modeling by jointly analyzing multidimensional experiential quality through spatial–semantic feature fusion and by achieving an integrated optimization of geographical accessibility and experiential coherence in route design. Full article
Show Figures

Figure 1

29 pages, 1900 KiB  
Article
MSC1 Cells Suppress Colorectal Cancer Cell Growth via Metabolic Reprogramming, Laminin–Integrin Adhesion Signaling, Oxidative Stress Resistance, and a Tumor-Suppressive Secretome
by Panagiota-Angeliki Galliou, Niti Argyri, Papaioannou Maria, George Koliakos and Nikolaos A. Papanikolaou
Biomedicines 2025, 13(6), 1503; https://doi.org/10.3390/biomedicines13061503 - 19 Jun 2025
Viewed by 716
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) possess immunomodulatory properties, tumor-homing, and low immunogenicity, making them attractive for cell-based cancer therapies, but their role in colorectal cancer (CRC) remains controversial. The MSC1 phenotype, a pro-inflammatory, tumor-suppressive state induced by short-term, low-dose LPS activation via TLR4, [...] Read more.
Background/Objectives: Mesenchymal stem cells (MSCs) possess immunomodulatory properties, tumor-homing, and low immunogenicity, making them attractive for cell-based cancer therapies, but their role in colorectal cancer (CRC) remains controversial. The MSC1 phenotype, a pro-inflammatory, tumor-suppressive state induced by short-term, low-dose LPS activation via TLR4, has shown therapeutic promise but remains poorly characterized in CRC. We aimed to elucidate MSC1’s tumor-suppressive mechanisms and validate its activity against CRC cells using an integrated bioinformatics and in vitro approach. Methods: We constructed a high-confidence protein-protein interaction (PPI) network in Wharton’s jelly-derived MSCs (WJ-MSCs) following TLR4 activation to uncover enriched signaling pathways, transcriptional regulators, and secreted factors. Functional and transcriptional enrichment analyses pinpointed key mechanisms. We then co-cultured MSC1 cells with CRC cells to assess effects on proliferation and metabolism. Results: Network analysis revealed six tumor-suppressive mechanisms of MSC1 cells: (i) Metabolic reprogramming via enhanced glucose and lipid uptake, phosphoinositide signaling, and membrane/protein recycling, (ii) Robust antioxidant defenses, including SOS signaling and system xc⁻, (iii) Extracellular matrix stabilization and laminin-111–integrin-mediated adhesion, (iv) Secretome with direct anti-cancer effects, (v) Regulation of survival and cancer-associated fibroblasts (CAFs) formation inhibition through balanced proliferation, apoptosis, and epigenetic signals, (vi) Controlled pro-inflammatory signaling with anti-inflammatory feedback. In vitro, MSC1 cells significantly suppressed CRC cell proliferation and metabolic activity versus controls. Conclusions: This study provides the first mechanistic map of MSC1’s tumor-suppressive functions in CRC, extending beyond immunomodulation to include metabolic competition, ECM stabilization, and anti-cancer secretome activity. These findings establish MSC1 cells as a novel therapeutic strategy for CRC in cell-based cancer therapies. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

30 pages, 1177 KiB  
Review
Recent Preclinical Evidence on Phytocannabinoids in Neurodegenerative Disorders: A Focus on Parkinson’s and Alzheimer’s Disease
by Nicoleta-Mirela Blebea, Ciprian Pușcașu, Gabriel Hancu, Alina Mihaela Stăniguț and Cornel Chiriță
Pharmaceuticals 2025, 18(6), 890; https://doi.org/10.3390/ph18060890 - 13 Jun 2025
Viewed by 1456
Abstract
The endocannabinoid system (ECS) is a vital biological network essential for maintaining homeostasis and supporting various physiological functions. It comprises cannabinoid receptors, endogenous lipid-based ligands, known as endocannabinoids, as well as metabolic enzymes and associated proteins responsible for regulating their levels within tissues. [...] Read more.
The endocannabinoid system (ECS) is a vital biological network essential for maintaining homeostasis and supporting various physiological functions. It comprises cannabinoid receptors, endogenous lipid-based ligands, known as endocannabinoids, as well as metabolic enzymes and associated proteins responsible for regulating their levels within tissues. The ECS plays a central role in modulating processes involving the central nervous system (CNS). Recent studies have highlighted its antioxidant, anti-inflammatory, and neuroprotective properties. The therapeutic potential of cannabinoids, particularly phytocannabinoids derived from plants, has attracted significant attention in medical and pharmaceutical research. This interest has grown in parallel with the increasing availability of cannabinoid-based food supplements on the pharmaceutical market. Given the complexity of the ECS and its broad range of interactions, the discovery of this system has spurred extensive investigations into the use of cannabinoids for various health conditions. In this review, we examine recent preclinical evidence supporting the use of phytocannabinoids in the context of neurodegenerative diseases, particularly in Alzheimer’s disease and Parkinson’s disease. Targeting the ECS through phytocannabinoid-based pharmacological modulation offers a promising therapeutic strategy for these neurological disorders. Among these compounds, cannabidiol has emerged as a key focus of research due to its multifaceted effects and favorable safety profile. Nonetheless, continued investigation is necessary to clarify its mechanisms of action, and to develop effective, evidence-based clinical applications. Full article
(This article belongs to the Special Issue Medicinal Potential of Cannabidiol and New Structural Analogs)
Show Figures

Graphical abstract

16 pages, 3771 KiB  
Article
Spatial Dynamics of Olive Fruit Fly Adults in the Framework of a Monitoring Trap Network
by Andrea Sciarretta, Dionysios Perdikis, Linda Kfoury, Tania Travaglini, Marios-Ioannis Sotiras, Flora Moreno Alcaide, Manel Ben Ameur, Elia Choueiri, Mohieddine Ksantini, Ines Ksentini, Ahmad El Bitar, Meelad Yousef Yousef and Theodore A. Tsiligiridis
Appl. Sci. 2025, 15(11), 6285; https://doi.org/10.3390/app15116285 - 3 Jun 2025
Viewed by 947
Abstract
Bactrocera oleae (Rossi) (Diptera: Tephritidae) is a key pest of olive groves. Adult monitoring is carried out by means of attractant traps of different shapes, which give relevant information for pest control such as the presence of adult flies in the field and [...] Read more.
Bactrocera oleae (Rossi) (Diptera: Tephritidae) is a key pest of olive groves. Adult monitoring is carried out by means of attractant traps of different shapes, which give relevant information for pest control such as the presence of adult flies in the field and their trend, female maturity and sex ratio. However, it is still not entirely clear whether a given density is sufficient for providing a reliable representation of flies in an olive grove. To investigate this question, an experiment was planned, consisting of arranging a high-density network of unbaited sticky panels (UTs) between panels baited with ammonium carbonate (BTs) deployed at a density of 2 traps/ha. The experiment was carried out in Greece, Italy, Lebanon, Spain and Tunisia. The percentage of BT over UT catches varied significantly among the different countries, with BTs ranging from 82% of catches in Italy to 27% in Greece. The Pearson correlation between BTs and UTs was significant under high captures but not significant at low densities. The index of aggregation showed an inverse relationship with baited catches. The distributions of males and females were nearly always positively spatially associated. According to the field data, BTs at the density of 2/ha provide a realistic estimate of the population in the field in the cases of established populations. However, in the periods without population establishment, a denser monitoring trap network is likely required to obtain a reliable estimation of the field population. Full article
Show Figures

Figure 1

28 pages, 2526 KiB  
Article
Baselining Urban Ecosystems from Sentinel Species: Fitness, Flows, and Sinks
by Matteo Convertino, Yuhan Wu and Hui Dong
Entropy 2025, 27(5), 486; https://doi.org/10.3390/e27050486 - 30 Apr 2025
Cited by 1 | Viewed by 580
Abstract
How can the shape of biodiversity inform us about cities’ ecoclimatic fitness and guide their development? Can we use species as the harbingers of climatic extremes? Eco-climatically sensitive species carry information about hydroclimatic change in their distribution, fitness, and preferential gradients of habitat [...] Read more.
How can the shape of biodiversity inform us about cities’ ecoclimatic fitness and guide their development? Can we use species as the harbingers of climatic extremes? Eco-climatically sensitive species carry information about hydroclimatic change in their distribution, fitness, and preferential gradients of habitat suitability. Conversely, environmental features outside of the species’ fitness convey information on potential ecological anomalies in response to extremes to adapt or mitigate, such as through urban parks. Here, to quantify ecosystems’ fitness, we propose a novel computational model to extract multivariate functional ecological networks and their basins, which carry the distributed signature of the compounding hydroclimatic pressures on sentinel species. Specifically, we consider butterflies and their habitat suitability (HS) to infer maximum suitability gradients that are meaningful of potential species networks and flows, with the smallest hydroclimatic resistance across urban landscapes. These flows are compared to the distribution of urban parks to identify parks’ ecological attractiveness, actual and potential connectivity, and park potential to reduce hydroclimatic impacts. The ecosystem fitness index (EFI) is novelly introduced by combining HS and the divergence of the relative species abundance (RSA) from the optimal log-normal Preston plot. In Shenzhen, as a case study, eco-flow networks are found to be spatially very extended, scale-free, and clustering for low HS gradient and EFI areas, where large water bodies act as sources of ecological corridors draining into urban parks. Conversely, parks with higher HS, HS gradients, and EFIs have small-world connectivity non-overlapping with hydrological networks. Diverging patterns of abundance and richness are inferred as increasing and decreasing with HS. HS is largely determined by temperature and precipitation of the coldest quarter and seasonality, which are critical hydrologic variables. Interestingly, a U-shape pattern is found between abundance and diversity, similar to the one in natural ecosystems. Additionally, both abundance and richness are mildly associated with park area according to a power function, unrelated to longitude but linked to the degree of urbanization or park centrality, counterintuitively. The Preston plot’s richness–abundance and abundance-rank patterns were verified to reflect the stationarity or ecological meta-equilibrium with the environment, where both are a reflection of community connectivity. Ecological fitness is grounded on the ecohydrological structure and flows where maximum HS gradients are indicative of the largest eco-changes like climate-driven species flows. These flows, as distributed stress-response functions, inform about the collective eco-fitness of communities, like parks in cities. Flow-based networks can serve as blueprints for designing ecotones that regulate key ecosystem functions, such as temperature and evapotranspiration, while generating cascading ecological benefits across scales. The proposed model, novelly infers HS eco-networks and calculates the EFI, is adaptable to diverse sensitive species and environmental layers, offering a robust tool for precise ecosystem assessment and design. Full article
Show Figures

Graphical abstract

18 pages, 3138 KiB  
Article
Aspergillusidone G Exerts Anti-Neuroinflammatory Effects via Inhibiting MMP9 Through Integrated Bioinformatics and Experimental Analysis: Implications for Parkinson’s Disease Intervention
by Fangfang Ban, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
Mar. Drugs 2025, 23(5), 181; https://doi.org/10.3390/md23050181 - 23 Apr 2025
Viewed by 733
Abstract
Natural products have extensive attractiveness as therapeutic agents due to their low toxicity and high efficiency. Our previous study has identified a depside-type Aspergillusidone G (Asp G) derived from Aspergillus unguis DLEP2008001, which shows excellent neuroprotective activity for 1-methyl-4-phenylpyridinium (MPP+)-induced primary [...] Read more.
Natural products have extensive attractiveness as therapeutic agents due to their low toxicity and high efficiency. Our previous study has identified a depside-type Aspergillusidone G (Asp G) derived from Aspergillus unguis DLEP2008001, which shows excellent neuroprotective activity for 1-methyl-4-phenylpyridinium (MPP+)-induced primary cortical neurons and anti-neuroinflammatory property, promising to be a potential therapeutic agent for Parkinson’s disease (PD). To further explore the anti-PD potential and mechanisms of Asp G, we employed network pharmacology, cellular experiments, and various biological techniques for analysis and validation. The analysis of network pharmacology suggested that Asp G’s anti-PD potential might be attributed to its modulation of inflammation. The data from nitric oxide (NO) detection, qRT-PCR, and Western blot confirmed that Asp G dose-dependently inhibited lipopolysaccharide (LPS)-stimulated NO production, with 40 μM Asp G suppressing 90.54% of the NO burst compared to the LPS group, and suppressed the overproduction of inflammatory-related factors in LPS-induced BV2 cells. Further protein–protein interaction analysis indicated that matrix metalloproteinase 9 (MMP9), a promising target for PD intervention, was the most likely anti-PD target of Asp G, and the results of gelatin zymography, qRT-PCR, and Western blot validated that Asp G could inhibit the active and inactive forms of MMP9 directly and indirectly, respectively. Notably, the inhibition of 67 kDa-MMP9 by Asp G is expected to compensate for the inability of TIMP-1 to inhibit this form. Furthermore, a selective inhibitor of MMP9 (20 μM SB-3CT) further potentiated the anti-inflammatory effects of Asp G (20 μM), with inhibition rate on NO increasing from 27.57% to 63.50% compared to LPS group. In summary, our study revealed that Asp G exerts anti-neuroinflammatory effects by inhibiting MMP9, which provides a valuable lead compound for the development of anti-neuroinflammatory drugs and offers insights into the intervention of PD-associated neuroinflammation. Future studies will further investigate the upstream regulatory mechanisms of Asp G-mediated MMP9 inhibition and its effects in in vivo PD models. Full article
(This article belongs to the Special Issue Chemoinformatics for Marine Drug Discovery)
Show Figures

Graphical abstract

26 pages, 5256 KiB  
Article
Influence of Differentiated Tolling Strategies on Route Choice Behavior of Heterogeneous Highway Users
by Xinyu Dong, Yuekai Zeng, Ruyi Luo, Nengchao Lyu, Da Xu and Xincong Zhou
Future Transp. 2025, 5(2), 41; https://doi.org/10.3390/futuretransp5020041 - 3 Apr 2025
Viewed by 540
Abstract
The differential toll policy has emerged as an effective method for regulating expressway traffic flow and has positively impacted the efficiency of vehicular movement, as well as balanced the spatial and temporal distribution of the road network. However, the acceptance of differentiated charging [...] Read more.
The differential toll policy has emerged as an effective method for regulating expressway traffic flow and has positively impacted the efficiency of vehicular movement, as well as balanced the spatial and temporal distribution of the road network. However, the acceptance of differentiated charging policies and the range of rates associated with these policies warrant further investigation. This study employs both revealed preference (RP) and stated preference (SP) survey methods to assess users’ willingness to accept the current differentiated toll scheme and to analyze the proportion of users opting for alternative travel routes and their behavioral characteristics in simulated scenarios. Additionally, we construct a Structural Equation Model-Latent Class Logistics (SEM-LCL) to explore the mechanisms influencing differentiated toll road alternative travel choices while considering user heterogeneity. The findings indicate that different tolling strategies and discount rates attract users variably. The existing differentiated tolling scheme—based on road sections, time periods, and payment methods—significantly affects users’ choices of alternative routes, with the impact of tolling based on vehicle type being especially pronounced for large trucks. The user population is heterogeneous and can be categorized into three distinct groups: rate-sensitive, information-promoting, and conservative-rejecting. Furthermore, the willingness to consider alternative travel routes is significantly influenced by factors such as gender, age, driving experience, vehicle type, travel time, travel distance, payment method, and past differential toll experiences. The results of this study provide valuable insights for highway managers to establish optimal toll rates and implement dynamic flow regulation strategies while also guiding users in selecting appropriate driving routes. Full article
Show Figures

Figure 1

17 pages, 11316 KiB  
Article
Transcriptome Analysis Reveals the Role of Plant Hormone Signal Transduction Pathways in the Drought Stress Response of Hemerocallis middendorffii
by Ying Qian, Haihang Yu, Siyu Lu, Yun Bai, Yuan Meng, Lifei Chen, Lin Wu and Yunwei Zhou
Plants 2025, 14(7), 1082; https://doi.org/10.3390/plants14071082 - 1 Apr 2025
Viewed by 627
Abstract
Drought stress is a significant environmental factor that can impede plant growth and ornamental quality. Hemerocallis middendorffii, a drought-tolerant garden plant, has attracted attention for its ornamental value and application prospects. To investigate the molecular mechanism of drought stress resistance of H [...] Read more.
Drought stress is a significant environmental factor that can impede plant growth and ornamental quality. Hemerocallis middendorffii, a drought-tolerant garden plant, has attracted attention for its ornamental value and application prospects. To investigate the molecular mechanism of drought stress resistance of H. middendorffii, this study employed 20% polyethylene glycol (PEG) 6000 to simulate drought stress. Leaves and roots of H. middendorfii were subjected to 24 h treatment and followed by transcriptome sequencing. Analysis revealed 8796 and 3401 differentially expressed genes (DEGs) in leaves and roots. The major biological processes and key molecular pathways activated under drought stress in H. middendorffii were revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The focus of this analysis was on the gene expression changes within plant hormone signal transduction pathway. Additionally, drought-associated transcription factor families such as AP2/ERF, WRKY, MYB, bHLH, NAC, and bZIP were identified among DEGs. Furthermore, potential regulatory relationships of the above transcription factors (TFs) with functional genes in the abscisic acid (ABA) and jasmonic acid (JA) signalling pathways were analysed using correlation network prediction. This research establishes the groundwork for subsequent exploration of drought-responsive gene expression and regulatory patterns in H. middendorfii and provides an importance for the systematic study of its drought-resistant molecular mechanism. Full article
Show Figures

Figure 1

13 pages, 12294 KiB  
Review
Vagus Nerve Stimulation in Stroke Management: Brief Review of Evolution and Present Applications Paired with Rehabilitation
by Prasad S. Vannemreddy, Mark Cummings, Romana V. Bahrii and Konstantin V. Slavin
Brain Sci. 2025, 15(4), 346; https://doi.org/10.3390/brainsci15040346 - 27 Mar 2025
Viewed by 1241
Abstract
Cerebrovascular accident (CVA) or stroke is a devastating neurological condition with dismal prognosis associated with recurrent episodes that further damage the neuronal networks, thus disabling neuronal plasticity. Vagus nerve stimulation (VNS) has been used in clinical practice to treat epilepsy for several decades [...] Read more.
Cerebrovascular accident (CVA) or stroke is a devastating neurological condition with dismal prognosis associated with recurrent episodes that further damage the neuronal networks, thus disabling neuronal plasticity. Vagus nerve stimulation (VNS) has been used in clinical practice to treat epilepsy for several decades and is well accepted as a safe procedure devoid of serious adverse events. Bailey and Bremer demonstrated that VNS has the capabilities to stimulate neuronal pathways that enhance the recovery of damaged cerebral function. Further studies have strengthened these observations, while technology has improved the tolerability of implants, resulting in VNS applications for epilepsy. Several animal models on neural plasticity have improved our understanding of VNS and its ability to provide neuromodulation to improve recovery in stroke patients. The closed-loop stimulation of the vagus nerve with individualized stimulation parameters combined with physical therapy appears to be an attractive option today. VNS is also being tested as a noninvasive trans-cutaneous modality to further improve patient acceptance and tolerability. However, the implantation of VNS is yielding desirable outcomes and appears to be a more reliable treatment for stroke rehabilitation in clinical trials. Full article
(This article belongs to the Section Systems Neuroscience)
Show Figures

Figure 1

24 pages, 2087 KiB  
Article
Revealing Factors Influencing mHealth Adoption Intention Among Generation Y: An Empirical Study Using SEM-ANN-IPMA Analysis
by Ashikur Rahman and Jia Uddin
Digital 2025, 5(2), 9; https://doi.org/10.3390/digital5020009 - 21 Mar 2025
Cited by 1 | Viewed by 3169
Abstract
Mobile Health (mHealth) technologies are transforming healthcare by making it more accessible, efficient, and patient-centric. This study investigates the factors influencing Millennial’s mobile health adoption intention (mHAI). We propose a research model based on the integrated model of the Unified Theory of Acceptance [...] Read more.
Mobile Health (mHealth) technologies are transforming healthcare by making it more accessible, efficient, and patient-centric. This study investigates the factors influencing Millennial’s mobile health adoption intention (mHAI). We propose a research model based on the integrated model of the Unified Theory of Acceptance and Use of Technology—UTAUT and the health belief model—HBM. A cross-sectional study was carried out employing purposive sampling to enlist Generation Y (born between 1981 and 1996) and 220 valid questionnaires were collected. We employed structure equation modeling partial least square (SEM-PLS) along with artificial neural network (ANN) and importance–performance map analysis (IPMA) to analyze our model. The research findings revealed that performance expectancy is the most influential factor, while effort expectancy showed no significant association with mHAI. Theoretical and managerial implications are offered to expand the literature on digital healthcare studies, indicating how healthcare providers in developing countries can attract their potential users. Full article
Show Figures

Figure 1

29 pages, 10931 KiB  
Article
Berries as Nature’s Therapeutics: Exploring the Potential of Vaccinium Metabolites in Gastric Cancer Treatment Through Computational Insights
by Angelica Rachel Carpio, Nicholas Dale Talubo, Po-Wei Tsai, Bor-Yann Chen and Lemmuel L. Tayo
Life 2025, 15(3), 406; https://doi.org/10.3390/life15030406 - 5 Mar 2025
Viewed by 1247
Abstract
Berries from the Vaccinium genus, known for their rich array of bioactive metabolites, are recognized for their antioxidant, anti-inflammatory, and anticancer properties. These compounds, including anthocyanins, flavonoids, and phenolic acids, have attracted significant attention for their potential health benefits, particularly in cancer prevention [...] Read more.
Berries from the Vaccinium genus, known for their rich array of bioactive metabolites, are recognized for their antioxidant, anti-inflammatory, and anticancer properties. These compounds, including anthocyanins, flavonoids, and phenolic acids, have attracted significant attention for their potential health benefits, particularly in cancer prevention and treatment. Gastric cancer (GC), a leading cause of cancer-related deaths worldwide, remains challenging to treat, especially in its advanced stages. This study investigates the therapeutic potential of Vaccinium species in GC treatment using computational methods. RNA sequencing revealed upregulated genes associated with GC, while network pharmacology and molecular docking approaches identified strong interactions between cyanidin 3-O-glucoside (C3G), a key bioactive metabolite. Furthermore, molecular dynamics simulations of the HSP90AA1-C3G complex demonstrated stable binding and structural integrity, suggesting that C3G may inhibit HSP90AA1, a protein involved in cancer progression. These findings highlight the therapeutic potential of Vaccinium metabolites, offering a novel approach to GC treatment by targeting key molecular pathways. This research provides valuable insights into the role of berries as natural therapeutics, supporting their integration into future gastric cancer treatment strategies. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

9 pages, 2030 KiB  
Communication
Enhancing Care Through a Virtual Canadian Community of Practice for Managing Immune-Related Adverse Events
by Khashayar Esfahani, John Walker, Kevin Bambury, Eoin O’Carroll and Stephanie Snow
Curr. Oncol. 2025, 32(3), 140; https://doi.org/10.3390/curroncol32030140 - 27 Feb 2025
Viewed by 687
Abstract
The advent of immune checkpoint inhibitors (ICIs) has significantly transformed cancer treatment outcomes. However, these therapies can induce immune-related adverse events (irAEs) that may affect any organ system, sometimes requiring specialized expertise. As ICIs are increasingly used across various tumor types and in [...] Read more.
The advent of immune checkpoint inhibitors (ICIs) has significantly transformed cancer treatment outcomes. However, these therapies can induce immune-related adverse events (irAEs) that may affect any organ system, sometimes requiring specialized expertise. As ICIs are increasingly used across various tumor types and in earlier treatment settings, not all practitioners have the necessary support network to handle complex irAEs. To address this gap, we collaborated with ONCOassist, a leading app for oncology professionals, to establish the first virtual Canadian Community of Practice (CoP) focused on irAEs. The CoP facilitates continuous learning and improves patient care among Canadian clinicians treating patients with immunotherapy by providing a platform for knowledge exchange and peer-to-peer support. This article outlines the development and growth of the CoP on irAEs, highlighting both successes and challenges. As of May 2024, over a year since its inception, the CoP on irAEs has attracted almost 130 Canadian oncology healthcare professionals, and peer-to-peer interactions and engagement continue to increase. To ensure its long-term sustainability, we plan to evolve and adapt the CoP to meet the needs of the oncology community and address clinical challenges associated with new therapies. Full article
Show Figures

Figure 1

Back to TopTop