Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = arteannuin B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7057 KB  
Article
Green Extraction of Volatile Terpenes from Artemisia annua L.
by Marta Mandić, Ivona Ivančić, Matija Cvetnić, Claudio Ferrante, Giustino Orlando and Sanda Vladimir-Knežević
Molecules 2025, 30(7), 1638; https://doi.org/10.3390/molecules30071638 - 7 Apr 2025
Cited by 1 | Viewed by 1892
Abstract
In the present study, the extraction of volatile terpenes from A. annua with supercritical CO2 (sc-CO2) was optimized by a full factorial design procedure and compared with conventional distillation. The influence of pressure (100–220 bar) and temperature (40–60 °C) on [...] Read more.
In the present study, the extraction of volatile terpenes from A. annua with supercritical CO2 (sc-CO2) was optimized by a full factorial design procedure and compared with conventional distillation. The influence of pressure (100–220 bar) and temperature (40–60 °C) on sc-CO2 extraction was investigated to obtain extracts rich in the desired components while maintaining a high yield. Extraction yields (m/m) varied from 0.62% (130 bar/40 °C) to 1.92% (100 bar/60 °C). Monoterpenes were the most abundant constituents of the sc-CO2 extracts, among which artemisia ketone (16.93–48.49%), camphor (3.29–18.44%) and 1,8-cineole (4.77–11.89%) dominated. Arteannuin B (3.98–10.03%) and β-selinene (1.05–7.42%) were the major sesquiterpenes. Differences were found between the terpene profiles of the sc-CO2 extracts and the essential oils obtained by conventional hydrodistillation and steam distillation, as well as between the distilled essential oils. Our results demonstrate the optimal conditions for the rapid and effective supercritical extraction of certain monoterpenes and sesquiterpenes from A. annua, which have promising antimicrobial, antioxidant, antiviral, anti-inflammatory and antitumor properties. Full article
Show Figures

Graphical abstract

12 pages, 586 KB  
Article
Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.)
by Marija Banožić, Aleksandra Weronika Wronska, Martina Jakovljević Kovač, Krunoslav Aladić, Igor Jerković and Stela Jokić
Horticulturae 2023, 9(6), 629; https://doi.org/10.3390/horticulturae9060629 - 26 May 2023
Cited by 13 | Viewed by 5503
Abstract
Sweet wormwood (Artemisia annua L.) valorization is gaining importance due to the presence of the health-promoting bioactive compound, artemisinin. Considering the wide possible application of artemisinin drug formulations, new, greener technologies in their production are welcome. In this study, artemisinin was extracted [...] Read more.
Sweet wormwood (Artemisia annua L.) valorization is gaining importance due to the presence of the health-promoting bioactive compound, artemisinin. Considering the wide possible application of artemisinin drug formulations, new, greener technologies in their production are welcome. In this study, artemisinin was extracted from A. annua leaves using green extraction technologies (ultrasound-assisted extraction, supercritical CO2 extraction, deep eutectic solvent extraction and subcritical water extraction) in combination with green solvents. Artemisinin was present up to 3.21 µg/mgdw. Among the different green extraction techniques, HPLC data revealed supercritical CO2 (SCO2) extracts to exhibit the highest yield of artemisinin due to the solvent non-polar properties. Additionally, the volatile compounds profile of SCO2 extract was determined, with camphor (12.23%), arteannuin b (15.29%) and artemisia ketone (10.97%) as the most abundant compounds. Obtained results encourage the use of green extraction techniques for the separation of artemisinin and are expected to find potential in pharmaceutical, cosmetic and food applications. Full article
Show Figures

Figure 1

22 pages, 5998 KB  
Article
Arteannuin-B and (3-Chlorophenyl)-2-Spiroisoxazoline Derivative Exhibit Anti-Inflammatory Effects in LPS-Activated RAW 264.7 Macrophages and BALB/c Mice-Induced Proinflammatory Responses via Downregulation of NF-κB/P38 MAPK Signaling
by Gifty Sawhney, Javeed Ur Rasool, Diksha Saroch, Mumin Ozturk, Frank Brombacher, Bilal Ahmad, Asha Bhagat, Asif Ali, Suraj P. Parihar and Zabeer Ahmed
Molecules 2022, 27(22), 8068; https://doi.org/10.3390/molecules27228068 - 20 Nov 2022
Cited by 8 | Viewed by 2997
Abstract
Host inflammatory responses are key to protection against injury; however, persistent inflammation is detrimental and contributes to morbidity and mortality. Herein, we demonstrated the anti-inflammatory role of Arteannuin-B (1) and its new spirocyclic-2-isoxazoline derivative JR-9 and their side effects in acute [...] Read more.
Host inflammatory responses are key to protection against injury; however, persistent inflammation is detrimental and contributes to morbidity and mortality. Herein, we demonstrated the anti-inflammatory role of Arteannuin-B (1) and its new spirocyclic-2-isoxazoline derivative JR-9 and their side effects in acute inflammatory condition in vivo using LPS-induced cytokines assay, carrageenan-induced paw edema, acetic acid-induced writhing and tail immersion. The results show that the spirocyclic-2-isoxazoline derivative is a potent anti-inflammatory agent with minimal cell toxicity as compared to Arteannuin-B. In addition, the efficacies of these compounds were also validated by flow cytometric, computational, and histopathological analysis. Our results show that the anti-inflammatory response of JR-9 significantly reduces the ability of mouse macrophages to produce NO, TNF-α, and IL-6 following LPS stimulation. Therefore, JR-9 is a prospective candidate for the development of anti-inflammatory drugs and its molecular mechanism is likely related to the regulation of NF-κB and MAPK signaling pathway. Full article
(This article belongs to the Special Issue Natural Products: Biological and Pharmacological Activity)
Show Figures

Graphical abstract

21 pages, 5382 KB  
Article
Development of Arteannuin B Sustained-Release Microspheres for Anti-Tumor Therapy by Integrated Experimental and Molecular Modeling Approaches
by Yanqing Wang, Weijuan Huang, Nannan Wang, Defang Ouyang, Lifeng Xiao, Sirui Zhang, Xiaozheng Ou, Tingsha He, Rongmin Yu and Liyan Song
Pharmaceutics 2021, 13(8), 1236; https://doi.org/10.3390/pharmaceutics13081236 - 11 Aug 2021
Cited by 6 | Viewed by 3468
Abstract
Arteannuin B (AB) has been found to demonstrate obvious anti-tumor activity. However, AB is not available for clinical use due to its very low solubility and very short half-life. This study aimed to develop AB long sustained-release microspheres (ABMs) to improve the feasibility [...] Read more.
Arteannuin B (AB) has been found to demonstrate obvious anti-tumor activity. However, AB is not available for clinical use due to its very low solubility and very short half-life. This study aimed to develop AB long sustained-release microspheres (ABMs) to improve the feasibility of clinical applications. Firstly, AB-polylactic-co-glycolic acid (PLGA) microspheres were prepared by a single emulsification method. In vitro characterization studies showed that ABMs had a low burst release and stable in vitro release for up to one week. The particle size of microspheres was 69.10 μm (D50). The drug loading is 37.8%, and the encapsulation rate is 85%. Moreover, molecular dynamics modeling was firstly used to simulate the preparation process of microspheres, which clearly indicated the molecular image of microspheres and provided in-depth insights for understanding several key preparation parameters. Next, in vivo pharmacokinetics (PK) study was carried out to evaluate its sustained release effect in Sprague-Dawley (SD) rats. Subsequently, the methyl thiazolyl tetrazolium (MTT) method with human lung cancer cells (A549) was used to evaluate the in vitro efficacy of ABMs, which showed the IC50 of ABMs (3.82 μM) to be lower than that of AB (16.03 μM) at day four. Finally, in vivo anti-tumor activity and basic toxicity studies were performed on BALB/c nude mice by subcutaneous injection once a week, four times in total. The relative tumor proliferation rate T/C of AMBs was lower than 40% and lasted for 21 days after administration. The organ index, organ staining, and tumor cell staining indicated the excellent safety of ABMs than Cis-platinum. In summary, the ABMs were successfully developed and evaluated with a low burst release and a stable release within a week. Molecular dynamics modeling was firstly applied to investigate the molecular mechanism of the microsphere preparation. Moreover, the ABMs possess excellent in vitro and in vivo anti-tumor activity and low toxicity, showing great potential for clinical applications. Full article
(This article belongs to the Special Issue Solubilization and Controlled Release of Poorly Water-Soluble Drugs)
Show Figures

Graphical abstract

13 pages, 2000 KB  
Article
Insights into Heterologous Biosynthesis of Arteannuin B and Artemisinin in Physcomitrella patens
by Nur Kusaira Khairul Ikram, Arman Beyraghdar Kashkooli, Anantha Peramuna, Alexander R. van der Krol, Harro Bouwmeester and Henrik Toft Simonsen
Molecules 2019, 24(21), 3822; https://doi.org/10.3390/molecules24213822 - 23 Oct 2019
Cited by 22 | Viewed by 5449
Abstract
Metabolic engineering is an integrated bioengineering approach, which has made considerable progress in producing terpenoids in plants and fermentable hosts. Here, the full biosynthetic pathway of artemisinin, originating from Artemisia annua, was integrated into the moss Physcomitrella patens. Different combinations of [...] Read more.
Metabolic engineering is an integrated bioengineering approach, which has made considerable progress in producing terpenoids in plants and fermentable hosts. Here, the full biosynthetic pathway of artemisinin, originating from Artemisia annua, was integrated into the moss Physcomitrella patens. Different combinations of the five artemisinin biosynthesis genes were ectopically expressed in P. patens to study biosynthesis pathway activity, but also to ensure survival of successful transformants. Transformation of the first pathway gene, ADS, into P. patens resulted in the accumulation of the expected metabolite, amorpha-4,11-diene, and also accumulation of a second product, arteannuin B. This demonstrates the presence of endogenous promiscuous enzyme activity, possibly cytochrome P450s, in P. patens. Introduction of three pathway genes, ADS-CYP71AV1-ADH1 or ADS-DBR2-ALDH1 both led to the accumulation of artemisinin, hinting at the presence of one or more endogenous enzymes in P. patens that can complement the partial pathways to full pathway activity. Transgenic P. patens lines containing the different gene combinations produce artemisinin in varying amounts. The pathway gene expression in the transgenic moss lines correlates well with the chemical profile of pathway products. Moreover, expression of the pathway genes resulted in lipid body formation in all transgenic moss lines, suggesting that these may have a function in sequestration of heterologous metabolites. This work thus provides novel insights into the metabolic response of P. patens and its complementation potential for A. annua artemisinin pathway genes. Identification of the related endogenous P. patens genes could contribute to a further successful metabolic engineering of artemisinin biosynthesis, as well as bioengineering of other high-value terpenoids in P. patens. Full article
(This article belongs to the Special Issue Natural Products and Drug Discovery)
Show Figures

Graphical abstract

15 pages, 1320 KB  
Article
Simultaneous Quantification of Five Sesquiterpene Components after Ultrasound Extraction in Artemisia annua L. by an Accurate and Rapid UPLC–PDA Assay
by Jiaqi Ruan, Zhengyue Liu, Feng Qiu, Henan Shi and Manyuan Wang
Molecules 2019, 24(8), 1530; https://doi.org/10.3390/molecules24081530 - 18 Apr 2019
Cited by 11 | Viewed by 3535
Abstract
Objective: To develop an accurate and rapid ultra-performance liquid chromatography (UPLC) coupled with a photodiode array (PDA) method for the simultaneous determination of artemisinin (Art), arteannuin B (Art B), arteannuin C (Art C), dihydroartemisinic acid (DHAA) and artemisinic acid (AA) in Artemisia [...] Read more.
Objective: To develop an accurate and rapid ultra-performance liquid chromatography (UPLC) coupled with a photodiode array (PDA) method for the simultaneous determination of artemisinin (Art), arteannuin B (Art B), arteannuin C (Art C), dihydroartemisinic acid (DHAA) and artemisinic acid (AA) in Artemisia annua L. Methodology: Chromatography separation was performed on an ACQUITY UPLC BEH C18 Column with isocratic elution; the mobile phase was 0.1% formic acid aqueous solution (A) and acetonitrile (B) (A:B = 40:60, v/v). Data were recorded at an ultraviolet (UV) wavelength of 191 nm for Art, Art C, DHAA and AA, and 206 nm for Art B. Results: The calibration curves of the five sesquiterpene components were all linear with correlation coefficients more than 0.9990. The linear ranges were 31.44–1572 μg/mL, 25.48–1274 μg/mL, 40.56–2028 μg/mL, 31.44–1572 μg/mL and 26.88–1396 μg/mL for Art, Art B, Art C, DHAA and AA, respectively. The precision ranged from 0.08% to 2.88%, the stability was from 0.96% to 1.66%, and the repeatability was all within 2.42% and had a mean extraction recovery of 96.5% to 100.6%. Conclusion: The established UPLC–PDA method would be valuable for improving the quantitative analysis of sesquiterpene components in Artemisia annua L. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

17 pages, 233 KB  
Article
Effect of Sugars on Artemisinin Production in Artemisia annua L.: Transcription and Metabolite Measurements
by Patrick R. Arsenault, Daniel R. Vail, Kristin K. Wobbe and Pamela J. Weathers
Molecules 2010, 15(4), 2302-2318; https://doi.org/10.3390/molecules15042302 - 30 Mar 2010
Cited by 46 | Viewed by 14223
Abstract
The biosynthesis of the valuable sesquiterpene anti-malarial, artemisinin, is known to respond to exogenous sugar concentrations. Here young Artemisia annua L. seedlings (strain YU) were used to measure the transcripts of six key genes in artemisinin biosynthesis in response to growth on sucrose, [...] Read more.
The biosynthesis of the valuable sesquiterpene anti-malarial, artemisinin, is known to respond to exogenous sugar concentrations. Here young Artemisia annua L. seedlings (strain YU) were used to measure the transcripts of six key genes in artemisinin biosynthesis in response to growth on sucrose, glucose, or fructose. The measured genes are: from the cytosolic arm of terpene biosynthesis, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), farnesyl disphosphate (FPS); from the plastid arm of terpene biosynthesis, 1-deoxyxylulose-5-phosphate synthase (DXS), 1-deoxyxylulouse 5-phosphate reductoisomerase (DXR); from the dedicated artemisinin pathway amorpha-4,11-diene synthase (ADS), and the P450, CYP71AV1 (CYP). Changes in intracellular concentrations of artemisinin (AN) and its precursors, dihydroartemisinic acid (DHAA), artemisinic acid (AA), and arteannuin B (AB) were also measured in response to these three sugars. FPS, DXS, DXR, ADS and CYP transcript levels increased after growth in glucose, but not fructose. However, the kinetics of these transcripts over 14 days was very different. AN levels were significantly increased in glucose-fed seedlings, while levels in fructose-fed seedlings were inhibited; in both conditions this response was only observed for 2 days after which AN was undetectable until day 14. In contrast to AN, on day 1 AB levels doubled in seedlings grown in fructose compared to those grown in glucose. Results showed that transcript level was often negatively correlated with the observed metabolite concentrations. When seedlings were gown in increasing levels of AN, some evidence of a feedback mechanism emerged, but mainly in the inhibition of AA production. Together these results show the complex interplay of exogenous sugars on the biosynthesis of artemisinin in young A. annua seedlings. Full article
Show Figures

Figure 1

Back to TopTop