Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = aramid pulps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 12364 KiB  
Article
Constructing Micro-/Nano-Aramid Pulp (MAP)–Epoxy Coatings on Laser-Engraved Titanium Alloy Surfaces for Stronger Adhesive Bonding with Carbon Fiber-Reinforced Polymer Panel
by Haibo Zhu, Fei Cheng, Shihao Zuo, Jinheng Zhang, Wenyi Huang, Tangrui Fan and Xiaozhi Hu
Coatings 2025, 15(2), 221; https://doi.org/10.3390/coatings15020221 - 13 Feb 2025
Cited by 2 | Viewed by 1028
Abstract
A shape-controllable laser-engraving treatment (LET) and aramid pulp (AP)-reinforced resin pre-coating (RPC) were used on a titanium (Ti) alloy surface to construct micro-/nano-aramid pulp and epoxy (MAPE) coatings for greater bonding strength with carbon fiber-reinforced polymers (CFRPs). The array pits of regular hexagon [...] Read more.
A shape-controllable laser-engraving treatment (LET) and aramid pulp (AP)-reinforced resin pre-coating (RPC) were used on a titanium (Ti) alloy surface to construct micro-/nano-aramid pulp and epoxy (MAPE) coatings for greater bonding strength with carbon fiber-reinforced polymers (CFRPs). The array pits of regular hexagon on the Ti alloy surface were engraved and vertical spaces between the array pits were created to place the AP-reinforced epoxy for stronger mechanical interlocking. The specimen treated with laser engraving (side length of 0.3 mm) and AP-reinforced RPC yielded the greatest bonding strength of 27.1 MPa, 67.4% higher than the base strength. The failure modes of the Ti-CFRPs composites changed from debonding failure at the Ti/epoxy surface to fiber-damaged failure of the laminated CFRPs panels. The shape-controllable LET and simple AP-reinforced RPC were confirmed as the most feasible and effective combined methods for use on titanium alloy surfaces for manufacturing stronger Ti-CFRPs composites, which exhibited the potential for application in other metal–matrix-bonding composite systems. Full article
Show Figures

Figure 1

16 pages, 3530 KiB  
Article
Repair of Small-Area Delamination in Carbon Fiber-Reinforced Polymer through Small Drilled Hole and Carbon Nanotubes-Reinforced Resin Pre-Coating Technique
by Gang Han and Xiaozhi Hu
Inorganics 2023, 11(12), 454; https://doi.org/10.3390/inorganics11120454 - 24 Nov 2023
Cited by 3 | Viewed by 3434
Abstract
This study explores the potential for repairing small, isolated delamination areas in carbon fiber-reinforced polymer (CFRP), while preserving the integrity of the composite structures. A small drilled hole at the center of the delamination section served as a channel for the epoxy infill [...] Read more.
This study explores the potential for repairing small, isolated delamination areas in carbon fiber-reinforced polymer (CFRP), while preserving the integrity of the composite structures. A small drilled hole at the center of the delamination section served as a channel for the epoxy infill of the sharp delamination cracks. The pressureless infill repair was achieved through the capillary action of an acetone-diluted resin pre-coating (RPC) solution (without hardener) with CNT reinforcement, comprising 89 m/m% acetone, 10 m/m% resin, and 1 m/m% CNT. This acetone-rich resin pre-coating (RPC) solution is easily prepared and applied to the drilled hole area. Curing of the CNT-toughened resin infill was induced by filling the small drilled hole with a resin–hardener mixture toughened by CNT/aramid pulp. The effectiveness of the delamination repair was compared for curing periods of two weeks and three months. The flexural strength measurements indicated that a restoration level of 77% was achieved in this study, while the optimum 100% restoration was achieved using the same technique for edge delamination repairs. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Advanced Technology)
Show Figures

Graphical abstract

15 pages, 7743 KiB  
Article
Heat-Treated Aramid Pulp/Silica Aerogel Composites with Improved Thermal Stability and Thermal Insulation
by Zhi Li, Kai Shen, Min Hu, Yury M. Shulga, Zhenkui Chen, Qiong Liu, Ming Li and Xiaoxu Wu
Gels 2023, 9(9), 749; https://doi.org/10.3390/gels9090749 - 14 Sep 2023
Cited by 7 | Viewed by 2487
Abstract
In this work, we prepared heat-treated aramid pulp/silica aerogel composites (AP/aerogels) and investigated in detail the feasibility of improving thermal stability and thermal insulation via tailored heat treatment. The microstructure and FTIR spectra reveal that AP/aerogels are formed by a physical combination of [...] Read more.
In this work, we prepared heat-treated aramid pulp/silica aerogel composites (AP/aerogels) and investigated in detail the feasibility of improving thermal stability and thermal insulation via tailored heat treatment. The microstructure and FTIR spectra reveal that AP/aerogels are formed by a physical combination of the silica aerogel matrix and aramid pulps. When the heat treatment temperature increases, the density slightly decreases and then increases to the maximum due to the significant volume shrinkage. The pyrolysis of aramid pulp and the collapse of silica skeletons occur during heat treatment; nevertheless, the typical structures of AP/aerogels do not change significantly. It is also found that both the hydrophobicity and the thermal insulation decrease with the increasing heat treatment temperature. We note that when the heat treatment is at 600 °C, the AP/aerogel still maintains a low density of 0.19 g/cm3 and a contact angle of 138.5°. The thermal conductivity is as low as 26.11 mW/m/K, measured using the transient hot wire method. Furthermore, the heat-treated AP/aerogels can avoid heat shock and possible thermal hazards during practical thermal insulation applications. The onset temperatures of the thermal decomposition of AP/aerogels increase from 298.8 °C for an untreated one to 414.7 °C for one treated at 600 °C, indicating that the thermal stability of AP/aerogels is improved significantly. This work provides a practical engineering approach to expand the thermal insulation applications of silica aerogel composites. Full article
(This article belongs to the Special Issue International Perspectives on Aerogels)
Show Figures

Figure 1

18 pages, 3471 KiB  
Article
Improvement of the Mechanical Properties of Silica Aerogels for Thermal Insulation Applications through a Combination of Aramid Nanofibres and Microfibres
by Mariana Emilia Ghica, Jandira G. S. Mandinga, Teresa Linhares, Cláudio M. R. Almeida and Luisa Durães
Gels 2023, 9(7), 535; https://doi.org/10.3390/gels9070535 - 30 Jun 2023
Cited by 12 | Viewed by 3556
Abstract
Reinforcement of silica aerogels, remarkable lightweight mesoporous materials with outstanding insulation performance, is still a challenging research topic. Among the strategies used to overcome their brittleness, one of the most effective is the manufacturing of aerogel composites with embedded fibres. In this work, [...] Read more.
Reinforcement of silica aerogels, remarkable lightweight mesoporous materials with outstanding insulation performance, is still a challenging research topic. Among the strategies used to overcome their brittleness, one of the most effective is the manufacturing of aerogel composites with embedded fibres. In this work, the incorporation of nanofibres together with microfibres in a tetraethoxysilane–vinyltrimethoxysilane matrix is investigated for the first time for the development of novel aerogel nanocomposites. The nanofibres, synthesized from different aramid fibres, including Kevlar® pulp, Technora®, Teijinconex® and Twaron® fibres, were used in different combinations with microaramids and the resulting nanocomposites were thoroughly investigated for their physicochemical and thermomechanical features. The properties depended on the type and amount of the nano/microfibre used. While the microfibres exhibited low interaction with the silica matrix, the higher surface of the nanofibres ensured increased contact with the gel matrix. A low bulk density of 161 kg m−3 and thermal conductivity of 38.3 mW m−1 K−1 (Hot Disk®) was achieved when combining the nanofibres obtained from Kevlar® pulp with the Technora® or Teijinconex® long fibres. The nanofibres showed higher dispersion and random orientation and in combination with microfibres led to the improvement by a factor of three regarding the mechanical properties of the aerogel nanocomposites reinforced only with microfibres. The scale-up process of the samples and simulated tests of thermal cycling and vacuum outgassing successfully conducted indicate good compliance with space applications. Full article
(This article belongs to the Special Issue Recent Advances in Aerogels)
Show Figures

Graphical abstract

16 pages, 11625 KiB  
Article
Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior
by Xiaowu Wang, Yang Wang, Mengtian Sun, Guichao Wang, Qiong Liu, Ming Li, Yury M. Shulga and Zhi Li
Gels 2022, 8(10), 654; https://doi.org/10.3390/gels8100654 - 14 Oct 2022
Cited by 11 | Viewed by 2747
Abstract
In this work, we reported that aramid pulps (AP) reinforced clay aerogel composites with improved mechanical strength, good thermal insulation and fire resistance based on the combination of AP, Poly(vinyl alcohol) (PVA) and sodium montmorillonite (MMT), which present a promising prospect in the [...] Read more.
In this work, we reported that aramid pulps (AP) reinforced clay aerogel composites with improved mechanical strength, good thermal insulation and fire resistance based on the combination of AP, Poly(vinyl alcohol) (PVA) and sodium montmorillonite (MMT), which present a promising prospect in the thermal insulation application. The PVA-MMT-APx (x: denotes the mass content of AP) aerogel composites present an isotropic “lamella-honeycomb” porous structure, which endows them with excellent comprehensive performance. With the AP content increasing, the extremely low density is kept, ranging between 67–73 mg/cm3, and the low thermal conductivity is maintained within 40.9–47.9 mW·m−1·K−1. The mechanical strength is significantly improved with the maximum compressive modulus increasing from 2.95 to 5.96 MPa and the specific modulus rising from 44.03 to 81.64 MPa∙cm3/g. Their detailed heat transfer process has been analyzed, which provides a deep understanding to the low thermal conductivity of the PVA-MMT-APx aerogel composites. Based on the combination of thermogravimetric analysis and combustion behavior, the PVA-MMT-APx aerogel composites are demonstrated to possess improved thermal stability and fire resistance. This study puts forward a facile approach to utilizing AP to reinforce clay aerogel composites, which provides new insight into the development of thermal-insulating, fire-safe and high-strength thermal insulation materials. Full article
(This article belongs to the Special Issue Preparation and Application of Aerogel and its Composite Materials)
Show Figures

Figure 1

20 pages, 4042 KiB  
Article
Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators
by Anik Gupta, Carlos J. Slebi-Acevedo, Esther Lizasoain-Arteaga, Jorge Rodriguez-Hernandez and Daniel Castro-Fresno
Sustainability 2021, 13(4), 2146; https://doi.org/10.3390/su13042146 - 17 Feb 2021
Cited by 12 | Viewed by 4339
Abstract
Porous asphalt (PA) mixtures are more environmentally friendly but have lower durability than dense-graded mixtures. Additives can be incorporated into PA mixtures to enhance their mechanical strength; however, they may compromise the hydraulic characteristics, increase the total cost of pavement, and negatively affect [...] Read more.
Porous asphalt (PA) mixtures are more environmentally friendly but have lower durability than dense-graded mixtures. Additives can be incorporated into PA mixtures to enhance their mechanical strength; however, they may compromise the hydraulic characteristics, increase the total cost of pavement, and negatively affect the environment. In this paper, PA mixtures were produced with 5 different types of additives including 4 fibers and 1 filler. Their performances were compared with the reference mixtures containing virgin bitumen and polymer-modified bitumen. The performance of all mixes was assessed using: mechanical, hydraulic, economic, and environmental indicators. Then, the Delphi method was applied to compute the relative weights for the parameters in multi-criteria decision-making methods. Evaluation based on distance from average solution (EDAS), technique for order of the preference by similarity to ideal solution (TOPSIS), and weighted aggregated sum product assessment (WASPAS) were employed to rank the additives. According to the results obtained, aramid pulp displayed comparable and, for some parameters such as abrasion resistance, even better performance than polymer-modified bitumen, whereas cellulose fiber demonstrated the best performance regarding sustainability, due to economic and environmental benefits. Full article
Show Figures

Graphical abstract

20 pages, 11441 KiB  
Article
Microstructure and Properties of Polytetrafluoroethylene Composites Modified by Carbon Materials and Aramid Fibers
by Fubao Zhang, Jiaqiao Zhang, Yu Zhu, Xingxing Wang and Yuyang Jin
Coatings 2020, 10(11), 1103; https://doi.org/10.3390/coatings10111103 - 18 Nov 2020
Cited by 25 | Viewed by 5335
Abstract
Polytetrafluoroethylene (PTFE) is polymerized by tetrafluoroethylene, which has high corrosion resistance, self-lubrication and high temperature resistance. However, due to the large expansion coefficient, high temperature will gradually weaken the intermolecular bonding force of PTFE, which will lead to the enhancement of permeation absorption [...] Read more.
Polytetrafluoroethylene (PTFE) is polymerized by tetrafluoroethylene, which has high corrosion resistance, self-lubrication and high temperature resistance. However, due to the large expansion coefficient, high temperature will gradually weaken the intermolecular bonding force of PTFE, which will lead to the enhancement of permeation absorption and the limitation of the application range of fluoroplastics. In order to improve the performance of PTFE, the modified polytetrafluoroethylene, filled by carbon materials and aramid fiber with different scales, is prepared through the compression and sintering. Moreover, the mechanical properties and wear resistance of the prepared composite materials are tested. In addition, the influence of different types of filler materials and contents on the properties of PTFE is studied. According to the experiment results, the addition of carbon fibers with different scales reduces the tensile and impact properties of the composite materials, but the elastic modulus and wear resistance are significantly improved. Among them, the wear rate of 7 μm carbon fiber modified PTFE has decreased by 70%, and the elastic modulus has increased by 70%. The addition of aramid fiber filler significantly reduces the tensile and impact properties of the composite, but its elastic modulus and wear resistance are significantly improved. Among them, the wear rate of the modified composite material with 3% alumina particles and 5% aramid pulp decreased by 68%, and the elastic modulus increased by 206%. Full article
(This article belongs to the Special Issue Surface Treatment of Textiles)
Show Figures

Figure 1

Back to TopTop