Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = applied classical electromagnetism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7897 KB  
Article
Quantum Selection for Genetic Algorithms Applied to Electromagnetic Design Problems
by Gabriel F. Martinez, Alessandro Niccolai, Eleonora L. Zich and Riccardo E. Zich
Appl. Sci. 2025, 15(14), 8029; https://doi.org/10.3390/app15148029 - 18 Jul 2025
Viewed by 743
Abstract
Optimization has always been viewed as a central component of many electrical engineering techniques, where it involves designing a complex system with various constraints and competing objectives. The method described in this work proposes a hybrid quantum–classical evolutionary optimization algorithm targeting high-frequency electromagnetic [...] Read more.
Optimization has always been viewed as a central component of many electrical engineering techniques, where it involves designing a complex system with various constraints and competing objectives. The method described in this work proposes a hybrid quantum–classical evolutionary optimization algorithm targeting high-frequency electromagnetic problems. A genetic algorithm with a quantum selection operator that applies high selection pressure while preserving selection diversity is introduced. This change means that stagnation can be reduced without compromising the speed of convergence. This was used on both real quantum hardware as well as quantum simulators. The results demonstrate that the performance of the real quantum devices was deteriorated by the noise in these devices and that simulators would be a useful option. We provide a description of the operation of the proposed evolutionary optimization method with mathematical benchmarks and electromagnetic design problems that show that it outperforms conventional evolutionary algorithms in terms of convergence behavior and robustness. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

25 pages, 1655 KB  
Article
Universal Expressions for the Polarization and the Depolarization Factor in Homogeneous Dielectric and Magnetic Spheres Subjected to an External Field of Any Form
by Dimosthenis Stamopoulos
Crystals 2025, 15(4), 331; https://doi.org/10.3390/cryst15040331 - 30 Mar 2025
Cited by 4 | Viewed by 847
Abstract
Spherical structures of dielectric and magnetic materials are studied intensively in basic research and employed widely in applications. The polarization, (P for dielectric and M for magnetic materials), is the parent physical vector of all relevant entities (e.g., moment, , and force, [...] Read more.
Spherical structures of dielectric and magnetic materials are studied intensively in basic research and employed widely in applications. The polarization, (P for dielectric and M for magnetic materials), is the parent physical vector of all relevant entities (e.g., moment, , and force, F), which determine the signals recorded by an experimental setup or diagnostic equipment and configure the motion in real space. Here, we use classical electromagnetism to study the polarization, , of spherical structures of linear and isotropic—however, not necessarily homogeneous—materials subjected to an external vector field, (Eext for dielectric and Hext for magnetic materials), dc (static), or even ac of low frequency (quasistatic limit). We tackle an integro-differential equation on the polarization, , able to provide closed-form solutions, determined solely from , on the basis of spherical harmonics, Ylm. These generic equations can be used to calculate analytically the polarization, , directly from an external field, , of any form. The proof of concept is studied in homogeneous dielectric and magnetic spheres. Indeed, the polarization, , can be obtained by universal expressions, directly applicable for any form of the external field, . Notably, we obtain the relation between the extrinsic, , and intrinsic, , susceptibilities (χeext and χeint for dielectric and χmext and χmint for magnetic materials) and clarify the nature of the depolarization factor, , which depends on the degree l—however, not on the order m of the mode (l,m) of the applied . Our universal approach can be useful to understand the physics and to facilitate applications of such spherical structures. Full article
Show Figures

Figure 1

18 pages, 5335 KB  
Article
Complexity Reduction for Converter-Driven Stability Analysis in Transmission Systems
by Viswaja Yellisetti and Albert Moser
Electronics 2025, 14(1), 55; https://doi.org/10.3390/electronics14010055 - 26 Dec 2024
Viewed by 1015
Abstract
The high penetration of power electronic converters with complex control systems is changing the power system dynamics, introducing new challenges such as converter-driven stability incidents. Traditional stability analysis methods, suitable for classical problems like voltage, frequency, and rotor angle stability in large systems, [...] Read more.
The high penetration of power electronic converters with complex control systems is changing the power system dynamics, introducing new challenges such as converter-driven stability incidents. Traditional stability analysis methods, suitable for classical problems like voltage, frequency, and rotor angle stability in large systems, are insufficient for addressing the fast control dynamics of converters, which involve electromagnetic phenomena. These phenomena require detailed converter and network modeling, which can be performed in both the frequency and time domains, enabling the respective stability analyses to be carried out. However, frequency domain methods, based on small-signal impedances linearized at a single operating point, inherently ignore time domain phenomena like switching events and nonlinear behaviors. In contrast, time domain electromagnetic transient (EMT) simulations are effective for analyzing converter-driven stability but are computationally intensive when applied to large transmission systems with numerous use cases. Therefore, to reduce the simulation complexity in EMT tools, a complexity reduction procedure is proposed in this paper. Leveraging the advantages of the frequency domain, such as faster simulation times and information on wideband frequency characteristics of the system, this procedure utilizes the small-signal impedances and introduces a method for network reduction. The procedure also uses the frequency domain stability analysis method to screen for critical network use cases. Primarily, this procedure is a frequency domain toolchain encompassing frequency domain stability analysis and frequency domain network reduction. The result of the toolchain is a reduced network size and reduced network use cases that can be used for EMT simulations. The procedure is applied to an IEEE 39 bus system, where converter-driven stability is evaluated for two use cases. Furthermore, the network reduction method is tested on a critical use case, demonstrating reductions in network size and computation times without compromising the quality of stability analysis results. Full article
(This article belongs to the Special Issue New Trends in Power Electronics for Microgrids)
Show Figures

Figure 1

27 pages, 13815 KB  
Article
Unconventional Structures of Asynchronous Motors with Two Stators and Single-Rotor Radial Air Gaps in the Context of Their Applicability Assessment
by Mihail-Florin Stan, Iulian Bancuta, Elena-Otilia Virjoghe, Adela-Gabriela Husu and Cosmin Cobianu
Energies 2024, 17(24), 6237; https://doi.org/10.3390/en17246237 - 11 Dec 2024
Viewed by 1094
Abstract
The fundamental idea underlying the research presented in this paper was the desire to use less magnetically charged areas of the general construction of induction machines by increasing the active working surface by interposing a new internal stator armature. This results in a [...] Read more.
The fundamental idea underlying the research presented in this paper was the desire to use less magnetically charged areas of the general construction of induction machines by increasing the active working surface by interposing a new internal stator armature. This results in a new air gap and foreshadows the advantage of increasing the torques developed by the motor considered, compared to the equivalent standard motor, at the same volume of iron. The following research-validation methods were followed: theoretical studies (analytical simulation and FEM), an experimental model (prototype), and testing on the experimental platform. We recall obtaining solid conclusions on the technological construction, functional and energy characteristics, as well as superior performances of over 50% regarding electromagnetic torques compared to the equivalent classic version. The prototype of this type of machine was surprising due to the ease with which the rotor can be rotated, highlighting the reduced inertia. In conclusion, concerning the problem addressed and the objectives pursued, the research had, in essence, an applied and experimental nature. The recent development of permanent-magnet synchronous motor constructions has led to the concept of creating such motors in the constructive configuration specified in the paper (two stators and two radial air gaps). Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 356 KB  
Article
Accelerating Charge: Add-Ons to Rest Mass and Field Energy
by Elizabeth P. Tito and Vadim I. Pavlov
Physics 2024, 6(4), 1264-1280; https://doi.org/10.3390/physics6040078 - 19 Nov 2024
Cited by 1 | Viewed by 1671
Abstract
We present—in the framework of classical theory—a self-consistent derivation scheme which produces equations for the calculation of add-ons to the full field energy and to the effective mass of a charge moving with acceleration, which may be practically used for analyses in various [...] Read more.
We present—in the framework of classical theory—a self-consistent derivation scheme which produces equations for the calculation of add-ons to the full field energy and to the effective mass of a charge moving with acceleration, which may be practically used for analyses in various scenarios. The charge is treated as a quasi-point-like charge; this helps to resolve the complications of the “infinite” electromagnetic energy, which are avoided by the procedure of slightly “spreading” the charge. As a result, the concept of the size of the particle takes a straightforward physical interpretation. Indeed, it is within the charge spread, at scales smaller than Compton’s length, where the quantum-field-mechanics approach to be applied. Beyond this region, no “infinite” tails of quantities accumulate. The seeming divergences of the integrals at the upper limits are not physical if one takes into account that the charge moves with acceleration only for a finite duration of time; every real physical process has its beginning and its end. The key focus of this paper is on the methodological aspects of the calculations. Full article
(This article belongs to the Section Classical Physics)
7 pages, 2589 KB  
Article
Electromagnetic Modeling of Superconducting Bulks in Applied Time-Varying Magnetic Field
by Hocine Menana
Condens. Matter 2024, 9(4), 47; https://doi.org/10.3390/condmat9040047 - 9 Nov 2024
Viewed by 1191
Abstract
An integrodifferential model formulated in terms of the electric vector potential is developed for the 3D numerical modeling of the electromagnetic field in superconducting bulks, for AC losses evaluation. The Newton Raphson method is applied to accelerate the convergence. The model is validated [...] Read more.
An integrodifferential model formulated in terms of the electric vector potential is developed for the 3D numerical modeling of the electromagnetic field in superconducting bulks, for AC losses evaluation. The Newton Raphson method is applied to accelerate the convergence. The model is validated on a benchmark. The comparison results show the accuracy of the model and its performances in terms of computation time compared to classical approaches. Full article
Show Figures

Figure 1

22 pages, 375 KB  
Article
Covariant Representation of Spin and Entanglement—A Review and Reformulation
by Martin Land
Symmetry 2024, 16(11), 1465; https://doi.org/10.3390/sym16111465 - 4 Nov 2024
Viewed by 1485
Abstract
A consistent theory of quantum entanglement requires that constituent single-particle states belong to the same Hilbert space, the coherent eigenstates of a complete set of operators in a given representation, defined with respect to a shared continuous parameterization. Formulating such eigenstates for a [...] Read more.
A consistent theory of quantum entanglement requires that constituent single-particle states belong to the same Hilbert space, the coherent eigenstates of a complete set of operators in a given representation, defined with respect to a shared continuous parameterization. Formulating such eigenstates for a single relativistic particle with spin, and applying them to the description of many-body states, presents well-known challenges. In this paper, we review the covariant theory of relativistic spin and entanglement in a framework first proposed by Stueckelberg and developed by Horwitz, Piron, et al. This approach modifies Wigner’s method by introducing an arbitrary timelike unit vector nμ and then inducing a representation of SL(2,C), based on pμ rather than on the spacetime momentum. Generalizing this approach, we construct relativistic spin states on an extended phase space {(xμ,pμ),(ζμ,πμ)}, inducing a representation on the momentum πμ, thus providing a novel dynamical interpretation of the timelike unit vector nμ=πμ/M. Studying the unitary representations of the Poincaré group on the extended phase space allows us to define basis quantities for quantum states and develop the gauge invariant electromagnetic Hamiltonian in classical and quantum mechanics. We write plane wave solutions for free particles and construct stable singlet states, and relate these to experiments involving temporal interference, analogous to the spatial interference known from double slit experiments. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

22 pages, 3700 KB  
Article
Applying the Adomian Method to Solve the Fokker–Planck Equation: A Case Study in Astrophysics
by Melina Silva de Lima, José Vicente Cardoso Santos, José Humberto de Souza Prates, Celso Barreto Silva, Davidson Moreira and Marcelo A. Moret
AppliedMath 2024, 4(4), 1306-1327; https://doi.org/10.3390/appliedmath4040070 - 11 Oct 2024
Cited by 3 | Viewed by 1287
Abstract
The objective of this study is to model astrophysical systems using the nonlinear Fokker–Planck equation, with the Adomian method chosen for its iterative and precise solutions in this context, applying boundary conditions relevant to data from the Rossi X-ray Timing Explorer (RXTE). The [...] Read more.
The objective of this study is to model astrophysical systems using the nonlinear Fokker–Planck equation, with the Adomian method chosen for its iterative and precise solutions in this context, applying boundary conditions relevant to data from the Rossi X-ray Timing Explorer (RXTE). The results include analysis of 156 X-ray intensity distributions from X-ray binaries (XRBs), exhibiting long-tail profiles consistent with Tsallis q-Gaussian distributions. The corresponding q-values align with the principles of Tsallis thermostatistics. Various diffusion hypotheses—classical, linear, nonlinear, and anomalous—are examined, with q-values further supporting Tsallis thermostatistics. Adjustments in the parameter α (related to the order of fractional temporal derivation) reveal the extent of the memory effect, strongly correlating with fractal properties in the diffusive process. Extending this research to other XRBs is both possible and recommended to generalize the characteristics of X-ray scattering and electromagnetic waves at different frequencies originating from similar astronomical objects. Full article
Show Figures

Figure 1

20 pages, 6470 KB  
Article
PID Controller Design for an E. coli Fed-Batch Fermentation Process System Using Chaotic Electromagnetic Field Optimization
by Olympia Roeva, Tsonyo Slavov and Jordan Kralev
Processes 2024, 12(9), 1795; https://doi.org/10.3390/pr12091795 - 23 Aug 2024
Cited by 1 | Viewed by 2009
Abstract
This paper presents an optimal tuning of a proportional integral differential (PID) controller used to maintain glucose concentration at a desired set point. The PID controller synthesizes an appropriate feed rate profile for an E. coli fed-batch cultivation process. Mathematical models are developed [...] Read more.
This paper presents an optimal tuning of a proportional integral differential (PID) controller used to maintain glucose concentration at a desired set point. The PID controller synthesizes an appropriate feed rate profile for an E. coli fed-batch cultivation process. Mathematical models are developed based on dynamic mass balance equations for biomass, substrate, and product concentration of the E. coli BL21(DE3)pPhyt109 fed-batch cultivation for bacterial phytase extracellular production. For model parameter identification and PID tuning, a hybrid metaheuristic technique—chaotic electromagnetic field optimization (CEFO)—is proposed. In the hybridization, a chaotic map is used for the generation of a new electromagnetic particle instead of the electromagnetic field optimization (EFO) search strategy. The CEFO combines the exploitation capability of the EFO algorithm and the exploration power of ten different chaotic maps. The comparison of the results with classical EFO shows the superior behaviour of the designed CEFO. An improvement of 30% of the objective function is achieved by applying CEFO. Based on the obtained mathematical models, 10 PID controllers are tuned. The simulation experiments show that the designed controllers are robust, resulting in a good control system performance. The closed-loop transient responses for the corresponding controllers are similar to the estimated models. The settling time of the control system based on the third PID controller for all estimated models is approximately 9 min and the overshoot is approximately 15%. The proposed CEFO algorithm can be considered an effective methodology for mathematical modelling and achievement of high quality and better performance of the designed closed-loop system for cultivation processes. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

12 pages, 3508 KB  
Article
A Deep Learning Estimation for Probing Depth of Transient Electromagnetic Observation
by Lu Gan, Rongjiang Tang, Fusheng Li and Fengli Shen
Appl. Sci. 2024, 14(16), 7123; https://doi.org/10.3390/app14167123 - 14 Aug 2024
Cited by 4 | Viewed by 1469
Abstract
The probing depth of the transient electromagnetic method (TEM) refers to the depth range at which the underground conductivity changes can be effectively detected. It typically ranges from tens of meters to several kilometers and is influenced by factors such as instrument parameters [...] Read more.
The probing depth of the transient electromagnetic method (TEM) refers to the depth range at which the underground conductivity changes can be effectively detected. It typically ranges from tens of meters to several kilometers and is influenced by factors such as instrument parameters and the conductivity of the subsurface structure. Rapid and accurate probing depth is useful for the selection of appropriate inversion parameters and improving survey accuracy. However, mainstream methods suffer from issues such as low computational precision, large uncertainties, or high computational requirements, making them unsuitable for processing massive airborne electromagnetic data. In this study, we propose a prediction model based on deep learning that can directly compute the probing depth from the TEM responses, and its effectiveness and accuracy are validated through synthetic models and field measurements. We compared the performance of classic deep learning models, including CNN, RESNET, and RNN, and found that RNN performed the best overall on both synthetic and field data. Furthermore, we apply this algorithm to deep learning-based ATEM inversion by constraining the one-dimensional resistivity model depths in the training set, to reduce the non-uniqueness of the inversion, accelerate the convergence, and improve its prediction accuracy. Full article
Show Figures

Figure 1

30 pages, 10023 KB  
Article
A Study on a Compact Double Layer Sub-GHz Reflectarray Design Suitable for Wireless Power Transfer
by Romans Kusnins, Darja Cirjulina, Janis Eidaks, Kristaps Gailis, Ruslans Babajans, Anna Litvinenko, Deniss Kolosovs and Dmitrijs Pikulins
Electronics 2024, 13(14), 2754; https://doi.org/10.3390/electronics13142754 - 13 Jul 2024
Cited by 1 | Viewed by 1480
Abstract
The paper presents a novel small-footprint varactor diode-based reconfigurable reflectarray (RRA) design and investigates its power reflection efficiency theoretically and experimentally in a real-life indoor environment. The surface is designed to operate at 865.5 MHz and is intended for simultaneous use with other [...] Read more.
The paper presents a novel small-footprint varactor diode-based reconfigurable reflectarray (RRA) design and investigates its power reflection efficiency theoretically and experimentally in a real-life indoor environment. The surface is designed to operate at 865.5 MHz and is intended for simultaneous use with other wireless power transfer (WPT) efficiency-improving techniques that have been recently reported in the literature. To the best of the authors’ knowledge, no RRA intended to improve the performance of antenna-based WPT systems operating in the sub-GHz range has been designed and studied both theoretically and experimentally so far. The proposed RRA is a two-layer structure. The top layer contains electronically tunable phase shifters for the local phase control of an incoming electromagnetic wave, while the other one is fully covered by metal to reduce the phase shifter size and RRA’s backscattering. Each phase shifter is a pair of diode-loaded 8-shaped metallic patches. Extensive numerical studies are conducted to ascertain a suitable set of RRA unit cell parameters that ensure both adequate phase agility and reflection uniformity for a given varactor parameter. The RRA design parameter finding procedure followed in this paper comprises several steps. First, the phase and amplitude responses of a virtual infinite double periodic RRA are computed using full-wave solver Ansys HFSS. Once the design parameters are found for a given set of physical constraints, the phase curve of the corresponding finite array is retrieved to estimate the side lobe level due to the finiteness of the RRA aperture. Then, a diode reactance combination is found for several different RRA reflection angles, and the corresponding RRA radiation pattern is computed. The numerical results show that the side lobe level and the deviation of the peak reflected power angles from the desired ones are more sensitive to the reflection coefficient magnitude uniformity than to the phase agility. Furthermore, it is found that for scanning angles less than 50°, satisfactory reflection efficiency can be achieved by using the classical reactance profile synthesis approach employing the generalized geometrical optics (GGO) approximation, which is in accord with the findings of other studies. Additionally, for large reflection angles, an alternative synthesis approach relying on the Floquet mode amplitude optimization is utilized to verify the maximum achievable efficiency of the proposed RRA at large angles. A prototype consisting of 36 elements is fabricated and measured to verify the proposed reflectarray design experimentally. The initial diode voltage combination is found by applying the GGO-based phase profile synthesis method to the experimentally obtained phase curve. Then, the voltage combination is optimized in real time based on power measurement. Finally, the radiation pattern of the prototype is acquired using a pair of identical 4-director printed Yagi antennas with a gain of 9.17 dBi and compared with the simulated. The calculated results are consistent with the measured ones. However, some discrepancies attributed to the adverse effects of biasing lines are observed. Full article
(This article belongs to the Special Issue Wireless Power Transfer System: Latest Advances and Prospects)
Show Figures

Figure 1

29 pages, 49336 KB  
Article
Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
by Marcelo R. Romero, Alicia V. Veglia, Maria Valeria Amé and Angel Guillermo Bracamonte
Crystals 2024, 14(4), 338; https://doi.org/10.3390/cryst14040338 - 31 Mar 2024
Cited by 4 | Viewed by 1742
Abstract
In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core–shell nanoparticles with silica shells were modified via multilayered addition [...] Read more.
In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core–shell nanoparticles with silica shells were modified via multilayered addition and the incorporation of a covalently linked laser dye to develop MEF. Their inter-nanoparticle interactions were evaluated by using additional silica shell multilayers and modified cyclodextrin macrocycles. In this manner, the sizes and chemical surface interactions on the multilayered nanoarchitectures were varied. These optical active nanoplatforms led to the development of different nanoassembly sizes and luminescence behaviors. Therefore, the interactions and nanoassembly properties were evaluated by using various spectroscopic and nanoimaging techniques. Highly dispersible gold core–shell nanoparticles with diameters of 50–60 nm showed improved colloidal dispersion that led to single ultraluminescent gold core–shell nanoparticles with MEF. Then, the addition of variable silica lengths produced increased interactions and consequent nanoaggregation. However, the silanized nanoparticles were easily dispersible after agitation or sonication. Thus, their sizes were proportional only to the diameter and the van de Waals interaction did not affect their sizes in bulk. Then, the covalent linking of different concentrations of modified cyclodextrins was applied to the chemical surfaces by incorporating additional hydroxyl groups from the glucose monomeric unities of cyclodextrins. In this manner, variable larger-sized and inter-branched grafted gold core–shell silica nanoparticles were generated. The ultraluminescent properties were conserved due to the non-optical activity of the cyclodextrins. However, they generated enhanced ultraluminescence phenomena. Laser fluorescence microscopy nanoimaging showed enhanced resolutions in comparison to non-grafted supramolecular gold core–shell nanoparticles. The differences in their interactions and the sizes of the nanoassemblies were explained by their single nanoparticle diameters and the interacting chemical groups on their nanosurfaces. While the varied luminescence emissions generated were tuned by plasmonics, enhanced plasmonic phenomena and light scattering properties were seen depending on the type of nanoassembly. Thus, optically active and non-optically active materials led to different optical properties in the bright field and enhanced the excited state within the electromagnetic near-field of the gold nanotemplates. In this manner, it was possible to achieve high sensitivity by varying the spacer lengths and optical properties. Therefore, further perspectives regarding the design of nano-tools composed of light for various applications were discussed. Full article
(This article belongs to the Special Issue Solution Processing and Properties of Oxide Films and Nanostructures)
Show Figures

Figure 1

34 pages, 808 KB  
Article
Explicit P1 Finite Element Solution of the Maxwell-Wave Equation Coupling Problem with Absorbing b. c.
by Larisa Beilina and Vitoriano Ruas
Mathematics 2024, 12(7), 936; https://doi.org/10.3390/math12070936 - 22 Mar 2024
Viewed by 1413
Abstract
In this paper, we address the approximation of the coupling problem for the wave equation and Maxwell’s equations of electromagnetism in the time domain in terms of electric field by means of a nodal linear finite element discretization in space, combined with a [...] Read more.
In this paper, we address the approximation of the coupling problem for the wave equation and Maxwell’s equations of electromagnetism in the time domain in terms of electric field by means of a nodal linear finite element discretization in space, combined with a classical explicit finite difference scheme for time discretization. Our study applies to a particular case where the dielectric permittivity has a constant value outside a subdomain, whose closure does not intersect the boundary of the domain where the problem is defined. Inside this subdomain, Maxwell’s equations hold. Outside this subdomain, the wave equation holds, which may correspond to Maxwell’s equations with a constant permittivity under certain conditions. We consider as a model the case of first-order absorbing boundary conditions. First-order error estimates are proven in the sense of two norms involving first-order time and space derivatives under reasonable assumptions, among which lies a CFL condition for hyperbolic equations. The theoretical estimates are validated by numerical computations, which also show that the scheme is globally of the second order in the maximum norm in time and in the least-squares norm in space. Full article
(This article belongs to the Special Issue Computational Mathematics and Numerical Analysis)
Show Figures

Figure 1

25 pages, 2100 KB  
Article
Special Relativity in Terms of Hyperbolic Functions with Coupled Parameters in 3+1 Dimensions
by Nikolai S. Akintsov, Artem P. Nevecheria, Gennadii F. Kopytov, Yongjie Yang and Tun Cao
Symmetry 2024, 16(3), 357; https://doi.org/10.3390/sym16030357 - 15 Mar 2024
Cited by 9 | Viewed by 2563
Abstract
This paper presents a method for parameterizing new Lorentz spacetime coordinates based on coupled parameters. The role of symmetry in rapidity in special relativity is explored, and invariance is obtained for new spacetime intervals with respect to the Lorentz transformation. Using the Euler–Hamilton [...] Read more.
This paper presents a method for parameterizing new Lorentz spacetime coordinates based on coupled parameters. The role of symmetry in rapidity in special relativity is explored, and invariance is obtained for new spacetime intervals with respect to the Lorentz transformation. Using the Euler–Hamilton equations, an additional angular rapidity and perpendicular rapidity are obtained, and the Hamiltonian and Lagrangian of a relativistic particle are expanded into rapidity spectra. A so-called passage to the limit is introduced that makes it possible to decompose physical quantities into spectra in terms of elementary functions when explicit decomposition is difficult. New rapidity-dependent Lorentz spacetime coordinates are obtained. The descriptions of particle motion using the old and new Lorentz spacetime coordinates as applied to plane laser pulses are compared in terms of the particle kinetic energy. Based on a classical model of particle motion in the field of a plane monochromatic electromagnetic wave and that of a plane laser pulse, rapidity-dependent spectral decompositions into elementary functions are presented, and the Euler–Hamilton equations are derived as rapidity functions in 3+1 dimensions. The new and old Lorentz spacetime coordinates are compared with the Fermi spacetime coordinates. The proper Lorentz groups SO(1,3) with coupled parameters using the old and new Lorentz spacetime coordinates are also compared. As a special case, the application of Lorentz spacetime coordinates to a relativistic hydrodynamic system with coupled parameters in 1+1 dimensions is demonstrated. Full article
(This article belongs to the Special Issue Lorentz Symmetry and General Relativity)
Show Figures

Figure 1

23 pages, 43963 KB  
Article
A Clutter Removal Method Based on the F-K Domain for Ground-Penetrating Radar in Complex Scenarios
by Qingyang Kong, Shengbo Ye, Xiao Liang, Xu Li, Xiaojun Liu, Guangyou Fang and Guixing Si
Remote Sens. 2024, 16(6), 935; https://doi.org/10.3390/rs16060935 - 7 Mar 2024
Cited by 6 | Viewed by 2490
Abstract
Ground-penetrating radar (GPR) is a classic geophysical exploration method that utilizes the emission and reception of electromagnetic waves to non-destructively detect target objects in the target medium. It has been widely applied in various fields such as pipeline detection, cavity detection, and rebar [...] Read more.
Ground-penetrating radar (GPR) is a classic geophysical exploration method that utilizes the emission and reception of electromagnetic waves to non-destructively detect target objects in the target medium. It has been widely applied in various fields such as pipeline detection, cavity detection, and rebar detection. However, GPR systems are susceptible to environmental clutter interference, which poses challenges for data interpretation and subsequent processing. In this paper, the separability of clutter and target signal in the frequency-wavenumber (F-K) domain is validated through modeling, leading to the proposal of a comprehensive clutter removal method based on the F-K domain for complex scenarios. The direct coupling wave is initially eliminated by applying a peak matching mean subtraction filter, which avoids the artifacts. Subsequently, the F-K domain transformation is performed and surface clutter undulations are effectively removed using a method based on singular value decomposition and k-means clustering. Finally, an angle filter with Gaussian tapering at the edges is designed based on physical models to efficiently eliminate linear interference without undesired ringing interference. The commonly used clutter removal algorithms, including mean subtraction (MS), singular value decomposition (SVD), robust principal component analysis (RPCA), and traditional F-K filtering methods, are compared with the proposed algorithm on both the numerical simulated data and actual GPR data. The results from visual and quantitative analysis confirm that our proposed method is more effective than current commonly used clutter suppression algorithms. We have successfully enhanced the Signal-to-Clutter Ratio (SCR) of the GPR data, resulting in an Improvement Factor (IF) of 30.63 dB, 23.59 dB, and 30.60 dB for simulated data, experimental data, and TU1208 public data, respectively. The detection capability of buried targets is enhanced, thereby establishing a solid foundation for subsequent data interpretation and target identification. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

Back to TopTop