Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (923)

Search Parameters:
Keywords = antitumor target protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4445 KiB  
Article
Fumiquinazolines F and G from the Fungus Penicillium thymicola Demonstrates Anticancer Efficacy Against Triple-Negative Breast Cancer MDA-MB-231 Cells by Inhibiting Epithelial–Mesenchymal Transition
by Gleb K. Rystsov, Tatiana V. Antipova, Zhanna V. Renfeld, Lidiya S. Pilguy, Michael G. Shlyapnikov, Mikhail B. Vainshtein, Igor E. Granovsky and Marina Y. Zemskova
Int. J. Mol. Sci. 2025, 26(15), 7582; https://doi.org/10.3390/ijms26157582 - 5 Aug 2025
Abstract
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F [...] Read more.
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F and G on breast and prostate cancer cells. Cancer cell proliferation and migration were monitored in real time using xCELLigence technology and flow cytometry. Alterations in mRNA and protein expression were assessed by RT-qPCR, ELISA, and Western blotting. Our data indicate that fumiquinazolines F and G are more effective in inhibiting breast cancer cell proliferation than prostate cancer cells. Fumiquinazoline F is active against both hormone-dependent epithelial MCF-7 (IC50 48 μM) and hormone-resistant triple-negative mesenchymal MDA-MB-231 breast cancer cells (IC50 54.1 μM). The metabolite has low cytotoxicity but slows cell cycle progression. In fumiquinazoline F-treated MDA-MB-231 cells, the levels of proteins implicated in epithelial–mesenchymal transition (EMT) (such as E-cadherin, vimentin, and CD44) fluctuate, resulting in a decrease in cell migratory rate and adhesion to a hyaluronic acid-coated substrate. Thus, fumiquinazolines F and G exhibit anticancer activity by inhibiting EMT, cell proliferation, and migration, hence reverting malignant cells to a less pathogenic phenotype. The compound’s multi-target anticancer profile underscores its potential for further exploration of novel EMT-regulating pathways. Full article
(This article belongs to the Special Issue Molecular Research in Natural Products)
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

29 pages, 21916 KiB  
Article
Pentoxifylline and Norcantharidin Synergistically Suppress Melanoma Growth in Mice: A Multi-Modal In Vivo and In Silico Study
by Israel Lara-Vega, Minerva Nájera-Martínez and Armando Vega-López
Int. J. Mol. Sci. 2025, 26(15), 7522; https://doi.org/10.3390/ijms26157522 - 4 Aug 2025
Abstract
Melanoma is a highly aggressive skin cancer with limited therapeutic response. Targeting intracellular signaling pathways and promoting tumor cell differentiation are promising therapeutic strategies. Pentoxifylline (PTX) and norcantharidin (NCTD) have demonstrated antitumor properties, but their combined mechanisms of action in melanoma remain poorly [...] Read more.
Melanoma is a highly aggressive skin cancer with limited therapeutic response. Targeting intracellular signaling pathways and promoting tumor cell differentiation are promising therapeutic strategies. Pentoxifylline (PTX) and norcantharidin (NCTD) have demonstrated antitumor properties, but their combined mechanisms of action in melanoma remain poorly understood. The effects of PTX (30 and 60 mg/kg) and NCTD (0.75 and 3 mg/kg), administered alone or in combination, in a DBA/2J murine B16-F1 melanoma model via intraperitoneal and intratumoral (IT) routes were evaluated. Tumor growth was monitored, and molecular analyses included RNA sequencing and immunofluorescence quantification of PI3K, AKT1, mTOR, ERBB2, BRAF, and MITF protein levels, and molecular docking simulations were performed. In the final stage of the experiment, combination therapy significantly reduced tumor volume compared to monotherapies, with the relative tumor volume decreasing from 18.1 ± 1.2 (SD) in the IT Control group to 0.6 ± 0.1 (SD) in the IT combination-treated group (n = 6 per group; p < 0.001). RNA-seq revealed over 3000 differentially expressed genes in intratumoral treatments, with enrichment in pathways related to oxidative stress, immune response, and translation regulation (KEGG and Reactome analyses). Minimal transcript-level changes were observed for BRAF and PI3K/AKT/mTOR genes; however, immunofluorescence showed reduced total and phosphorylated levels of PI3K, AKT1, mTOR, BRAF, and ERBB2. MITF protein levels and pigmentation increased, especially in PTX-treated groups, indicating enhanced melanocytic differentiation. Docking analyses predicted direct binding of both drugs to PI3K, AKT1, mTOR, and BRAF, with affinities ranging from −5.7 to −7.4 kcal/mol. The combination of PTX and NCTD suppresses melanoma progression through dual mechanisms: inhibition of PI3K/AKT/mTOR signaling and promotion of tumor cell differentiation. Full article
Show Figures

Figure 1

14 pages, 1241 KiB  
Review
CD4/CD8–p56lck Induced T-Cell Receptor Signaling and Its Implications for Immunotherapy
by Andres Oroya and Christopher E. Rudd
Biomolecules 2025, 15(8), 1096; https://doi.org/10.3390/biom15081096 - 29 Jul 2025
Viewed by 388
Abstract
T-cells constitute an essential component of the adaptive immune response, mount a protective response against foreign pathogens and are important regulators of anti-tumor immunotherapy. In this context, the activation of T-cells and chimeric antigen receptor (CAR)-expressing T-cells is orchestrated by various signaling pathways, [...] Read more.
T-cells constitute an essential component of the adaptive immune response, mount a protective response against foreign pathogens and are important regulators of anti-tumor immunotherapy. In this context, the activation of T-cells and chimeric antigen receptor (CAR)-expressing T-cells is orchestrated by various signaling pathways, involving the initiation of a protein tyrosine phosphorylation cascade. For T-cells, this involves initiation of the phosphorylation cascade via src-related protein-tyrosine kinase p56lck, which we show to associate with the co-receptors CD4 and CD8 for the induction of a phosphorylation cascade needed for the activation of T-cells. Likewise, p56lck phosphorylation of the antigen receptor immunoreceptor tyrosine-based activation motifs (ITAMs) and key CD28 tyrosine motifs ensures the functionality and the survival of CARs, while their phospho-targets are also inhibited by PD-1, a key component of the immune checkpoint blockade. This review covers historic and current elements of our knowledge of CD4/CD8–p56lck-induced activation events and their importance to the development of CAR T-cell immunotherapies. Full article
(This article belongs to the Special Issue Molecular Signalling Pathways in Tumorigenesis and Tumor Suppression)
Show Figures

Figure 1

20 pages, 25333 KiB  
Article
Regulatory Effects of Codonopsis pilosula Alkali-Extracted Polysaccharide Induced Intestinal Lactobacillus Enrichment on Peripheral Blood Proteomics in Tumor-Bearing Mice
by Yuting Fan, Chenqi Yang, Yiran Zhao, Xiao Han, Hongfei Ji, Zhuohao Ren, Wenjie Ding and Haiyu Ji
Microorganisms 2025, 13(8), 1750; https://doi.org/10.3390/microorganisms13081750 - 26 Jul 2025
Viewed by 304
Abstract
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) [...] Read more.
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) were prepared, and their effects on gut microbiota compositions, metabolic pathways, and protein expressions in peripheral blood and solid tumors in mice were further evaluated. The 16S rDNA sequencing results showed that CPAP could effectively promote the enrichment of intestinal Lactobacillus in tumor-bearing mice. In addition, it could be inferred from peripheral blood and solid tumor proteomics results that CPAP might activate T cell-mediated antitumor immune functions by regulating purine metabolism and alleviate tumor-caused inflammation by promoting neutrophil degranulation, finally inducing apoptosis in tumor cells by increasing oxidative stress. These results will provide a theoretical foundation and data support for the further development of CPAP as dietary adjuvants targeting immune deficiency-related diseases. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

26 pages, 1310 KiB  
Review
Combination Strategies with HSP90 Inhibitors in Cancer Therapy: Mechanisms, Challenges, and Future Perspectives
by Yeongbeom Kim, Su Yeon Lim, Hyun-Ouk Kim, Suk-Jin Ha, Jeong-Ann Park, Young-Wook Won, Sehyun Chae and Kwang Suk Lim
Pharmaceuticals 2025, 18(8), 1083; https://doi.org/10.3390/ph18081083 - 22 Jul 2025
Viewed by 538
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that plays a pivotal role in the stabilization and functional activation of numerous oncoproteins and signaling molecules essential for cancer cell survival and proliferation. Despite the extensive development and clinical evaluation of HSP90 inhibitors, [...] Read more.
Heat shock protein 90 (HSP90) is a molecular chaperone that plays a pivotal role in the stabilization and functional activation of numerous oncoproteins and signaling molecules essential for cancer cell survival and proliferation. Despite the extensive development and clinical evaluation of HSP90 inhibitors, their therapeutic potential as monotherapies has been limited by suboptimal efficacy, dose-limiting toxicity, and the emergence of drug resistance. Recent studies have demonstrated that combination therapies involving HSP90 inhibitors and other anticancer agents such as chemotherapeutics, targeted therapies, and immune checkpoint inhibitors can enhance anticancer activity, overcome resistance mechanisms, and modulate the tumor microenvironment. These synergistic effects are mediated by the concurrent degradation of client proteins, the disruption of signaling pathways, and the enhancement of antitumor immunity. However, the successful clinical implementation of such combination strategies requires the careful optimization of dosage, administration schedules, toxicity management, and patient selection based on predictive biomarkers. In this review, we provide a comprehensive overview of the mechanistic rationale, preclinical and clinical evidence, and therapeutic challenges associated with HSP90 inhibitor-based combination therapies. We also discuss future directions leveraging emerging technologies including multi-omics profiling, artificial intelligence, and nanoparticle-mediated delivery for the development of personalized and effective combination regimens in oncology. Full article
Show Figures

Graphical abstract

21 pages, 17488 KiB  
Article
Mechanistic Study on the Inhibitory Effect of Dandelion Extract on Breast Cancer Cell Proliferation and Its Induction of Apoptosis
by Weifeng Mou, Ping Zhang, Yu Cui, Doudou Yang, Guanjie Zhao, Haijun Xu, Dandan Zhang and Yinku Liang
Biology 2025, 14(8), 910; https://doi.org/10.3390/biology14080910 - 22 Jul 2025
Viewed by 771
Abstract
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different [...] Read more.
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different polarities. MTT assays revealed that the ethyl acetate fraction exhibited the strongest inhibitory effect on cell proliferation. LC-MS analysis identified 12 potential active compounds, including sesquiterpenes such as Isoalantolactone and Artemisinin, which showed significantly lower toxicity toward normal mammary epithelial MCF-10A cells compared to tumor cells (p < 0.01). Mechanistic studies demonstrated that the extract induced apoptosis in a dose-dependent manner, with an apoptosis rate as high as 85.04%, and significantly arrested the cell cycle at the S and G2/M phases. Label-free quantitative proteomics identified 137 differentially expressed proteins (|FC| > 2, p < 0.05). GO enrichment analysis indicated that these proteins were mainly involved in cell cycle regulation and apoptosis. KEGG pathway analysis revealed that the antitumor effects were primarily mediated through the regulation of PI3K-Akt (hsa04151), JAK-STAT (hsa04630), and PPAR (hsa03320) signaling pathways. Moreover, differential proteins such as PI3K, AKT1S1, SIRT6, JAK1, SCD, STAT3, CASP8, STAT2, STAT6, and PAK1 showed strong correlation with the core components of the EA-2 fraction of dandelion. Molecular docking results demonstrated that these active compounds exhibited strong binding affinities with key target proteins such as PI3K and JAK1 (binding energy < −5.0 kcal/mol). This study elucidates the multi-target, multi-pathway synergistic mechanisms by which dandelion extract inhibits breast cancer, providing a theoretical basis for the development of novel antitumor agents. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

32 pages, 1691 KiB  
Review
Aptamers Targeting Immune Checkpoints for Tumor Immunotherapy
by Amir Mohammed Abker Abdu, Yanfei Liu, Rami Abduljabbar, Yunqi Man, Qiwen Chen and Zhenbao Liu
Pharmaceutics 2025, 17(8), 948; https://doi.org/10.3390/pharmaceutics17080948 - 22 Jul 2025
Viewed by 466
Abstract
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such [...] Read more.
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such as treatment resistance, immune-related adverse effects, and high costs highlight the need for novel therapeutic approaches. Aptamers, short, single-stranded oligonucleotides with high specificity and affinity for target molecules, have emerged as promising alternatives to conventional antibody-based therapies. This review provides a comprehensive analysis of aptamer-based strategies targeting immune checkpoints, with a particular focus on PD-1/PD-L1 and CTLA-4. We summarize recent advances in aptamer design, including bispecific and multifunctional aptamers, and explore their potential in overcoming immune resistance and improving therapeutic efficacy. Additionally, we discuss strategies to enhance aptamer stability, bioavailability, and tumor penetration through chemical modifications and nanoparticle conjugation. Preclinical and early clinical studies have demonstrated that aptamers can effectively block immune checkpoint pathways, restore T-cell activity, and synergize with other immunotherapeutic agents to achieve superior anti-tumor responses. By systematically reviewing the current research landscape and identifying key challenges, this review aims to provide valuable insights into the future directions of aptamer-based cancer immunotherapy, paving the way for more effective and personalized treatment strategies. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Graphical abstract

20 pages, 1400 KiB  
Review
Novel Therapeutics and the Path Toward Effective Immunotherapy in Malignant Peripheral Nerve Sheath Tumors
by Joshua J. Lingo, Elizabeth C. Elias and Dawn E. Quelle
Cancers 2025, 17(14), 2410; https://doi.org/10.3390/cancers17142410 - 21 Jul 2025
Viewed by 485
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor [...] Read more.
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor size and location and/or the presence of metastases. Radiation or chemotherapy may be combined with surgery, but patient responses are poor. Targeted treatments, including small-molecule inhibitors of oncogenic proteins such as mitogen-activated protein kinase kinase (MEK), cyclin-dependent kinases 4 and 6 (CDK4/6), and Src-homology 2 domain-containing phosphatase 2 (SHP2), are promising therapeutics for MPNSTs, especially when combined together, but they have yet to gain approval. Immunotherapeutic approaches have been revolutionary for the treatment of some other cancers, but their utility as single agents in sarcoma is limited and not approved for MPNSTs. The immunosuppressive niche of MPNSTs is thought to confer inherent treatment resistance, particularly to immunotherapies. Remodeling an inherently “cold” tumor microenvironment into a “hot” immune milieu to bolster the anti-tumor activity of immunotherapies is of great interest throughout the cancer community. This review focuses on novel therapeutics that target dysregulated factors and pathways in MPNSTs, as well as different types of immunotherapies currently under investigation for this disease. We also consider how certain therapeutics may be combined to remodel the MPNST immune microenvironment and thereby generate a durable anti-tumor immune response to immunotherapy. Full article
(This article belongs to the Special Issue Next-Generation Cancer Therapies)
Show Figures

Figure 1

19 pages, 8263 KiB  
Article
Dissecting the tRNA Fragment tRF3E–Nucleolin Interaction: Implications in Breast Cancer
by Maurizio Falconi, Junbiao Wang, Andrea Costamagna, Mara Giangrossi, Sunday Segun Alimi, Emilia Turco, Massimo Bramucci, Luana Quassinti, Rossana Petrilli, Michela Buccioni, Gabriella Marucci, Augusto Amici, Paola Defilippi, Roberta Galeazzi and Cristina Marchini
Biomolecules 2025, 15(7), 1054; https://doi.org/10.3390/biom15071054 - 21 Jul 2025
Viewed by 781
Abstract
Nucleolin (NCL), an RNA-binding protein which regulates critical cellular processes, is frequently dysregulated in human cancers, including breast cancer, making it an attractive therapeutic target. However, molecular details of the RNA-NCL interaction have not been investigated yet. A tRNA fragment named tRF3E, displaying [...] Read more.
Nucleolin (NCL), an RNA-binding protein which regulates critical cellular processes, is frequently dysregulated in human cancers, including breast cancer, making it an attractive therapeutic target. However, molecular details of the RNA-NCL interaction have not been investigated yet. A tRNA fragment named tRF3E, displaying tumor suppressor roles in breast cancer, was found to bind NCL with high affinity displacing NCL-controlled transcripts. Here, we investigated the determinants and cooperativity of tRF3E-NCL interaction by Electrophoretic Mobility Shift Assays and in silico docking analysis, using wild-type or mutated tRF3E. We found that NCL, through its RNA-binding domains (RBD1–2 and RBD3–4), binds simultaneously two tRF3E molecules, giving rise to an energetically favored complex. Instead, a mutant form of tRF3E (M19–24), in which the NCL recognition element in position 19–24 has been disrupted, contacts NCL exclusively at RBD3–4, causing the loss of cooperativity among RBDs. Importantly, when expressed in MCF7 breast cancer cells, tRF3E significantly reduced cell proliferation and colony formation, confirming its role as tumor suppressor, but tRF3E functional properties were lost when the 19–24 motif was mutated, suggesting that cooperativity among multiple domains is required for the NCL-mediated tRF3E antitumor function. This study sheds light on the dynamic of RNA-NCL interaction and lays the foundations for using tRF3E as a promising NCL-targeted biodrug candidate. Full article
Show Figures

Figure 1

17 pages, 3121 KiB  
Article
Hydroxytyrosol Reprograms the Tumor Microenvironment in 3D Melanoma Models by Suppressing ERBB Family and Kinase Pathways
by David Tovar-Parra and Marion Zammit Mangion
Int. J. Mol. Sci. 2025, 26(14), 6957; https://doi.org/10.3390/ijms26146957 - 20 Jul 2025
Viewed by 401
Abstract
Malignant cutaneous melanoma is among the most aggressive forms of skin cancer, characterized by high metastatic potential and frequent resistance to standard therapies. Hydroxytyrosol, a phenolic compound derived from extra virgin olive oil, has shown promising anticancer properties in various models, yet its [...] Read more.
Malignant cutaneous melanoma is among the most aggressive forms of skin cancer, characterized by high metastatic potential and frequent resistance to standard therapies. Hydroxytyrosol, a phenolic compound derived from extra virgin olive oil, has shown promising anticancer properties in various models, yet its effects in 3D melanoma systems remain poorly understood. In this study, we used paired 3D spheroid models of non-tumorigenic (HEMa) and melanoma (C32) to assess the therapeutic potential of hydroxytyrosol. To evaluate the anti-tumoral effect of hydroxytyrosol, we performed cytotoxicity, metastasis, invasiveness, cell cycle arrest, apoptotic, and proteomic assays. Hydroxytyrosol treatment significantly impaired spheroid growth, reduced cell viability, and induced cell cycle arrest and apoptosis in C32 spheroids, with minimal cytotoxicity observed in HEMa models. Proteomic profiling further demonstrated that hydroxytyrosol selectively downregulated a network of oncogenic proteins, including ERBB2, ERBB3, ERBB4, VEGFR-2, and WIF-1, along with suppression of downstream PI3K-Akt and MAPK/ERK signaling pathways. In conclusion, compared to dabrafenib, hydroxytyrosol exerted a broader range of molecular effects and was more selective toward tumor cells. These findings support the use of hydroxytyrosol as a multi-targeted agent capable of attenuating melanoma progression through suppression of kinase signaling and tumor-stromal interactions. Full article
Show Figures

Figure 1

19 pages, 401 KiB  
Review
The Role of Protein Kinases in the Suppressive Phenotype of Myeloid-Derived Suppressor Cells
by Aikyn Kali, Nurshat Abdolla, Yuliya V. Perfilyeva, Yekaterina O. Ostapchuk and Raikhan Tleulieva
Int. J. Mol. Sci. 2025, 26(14), 6936; https://doi.org/10.3390/ijms26146936 - 19 Jul 2025
Viewed by 364
Abstract
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid [...] Read more.
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid cells to the various inflammatory signals derived from inflamed tissue could lead to the generation of myeloid cells with an immunosuppressive state, called myeloid-derived suppressor cells (MDSCs), which can exert protective or deleterious functions depending on the nature of signals and the specific inflammatory conditions created by different pathophysiological contexts. Initially identified in various tumor models and cancer patient samples, these cells have long been recognized as negative regulators of anti-tumor immunity. Consequently, researchers have focused on elucidating the molecular mechanisms underlying their potent immunosuppressive activity. As a key component of the signal transducing processes, protein kinases play a central role in regulating the signal transduction mechanisms of many cellular activities, including differentiation and immunosuppression. Over the past decade, at least a dozen kinases, including mechanistic target of rapamycin (mTOR), phosphoinositide 3-kinases (PI3Ks), TAM (Tyro3, Axl, Mer) family of receptor tyrosine kinases (TAM RTKs), mitogen-activated protein kinases (MAPKs), and others, have emerged as key contributors to the generation and differentiation of MDSCs. Here, we discuss the recent findings on these kinases that directly contribute to the immunosuppressive functions of MDSCs. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 1548 KiB  
Article
CD19-ReTARGTPR: A Novel Fusion Protein for Physiological Engagement of Anti-CMV Cytotoxic T Cells Against CD19-Expressing Malignancies
by Anne Paulien van Wijngaarden, Isabel Britsch, Matthias Peipp, Douwe Freerk Samplonius and Wijnand Helfrich
Cancers 2025, 17(14), 2300; https://doi.org/10.3390/cancers17142300 - 10 Jul 2025
Viewed by 411
Abstract
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current [...] Read more.
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current immunotherapies for CD19-expressing hematological malignancies, such as chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs), bypass TCR/pHLA interactions, resulting in CTL hyperactivation and excessive cytokine release, which frequently cause severe immune-related adverse events (irAEs). Thus, there is a pressing need for T cell-based therapies that preserve physiological activation while maintaining antitumor efficacy. Methods: To address this, we developed CD19-ReTARGTPR, a novel fusion protein consisting of the immunodominant cytomegalovirus (CMV) pp65-derived peptide TPRVTGGAM (TPR) covalently presented by a soluble HLA-B*07:02/β2-microglobulin complex fused to a high-affinity CD19-targeting Fab antibody fragment. The treatment of CD19-expressing cancer cells with CD19-ReTARGTPR makes them recognizable for pre-existing anti-CMVpp65 CTLs via physiological TCR-pHLA engagement. Results: Our preclinical data demonstrate that CD19-ReTARGTPR efficiently redirects anti-CMV CTLs to eliminate CD19-expressing cancer cells, including both established cell lines and primary chronic lymphocytic leukemia (CLL) cells. Unlike CD19-directed CAR T cells or the CD19/CD3 BiTE blinatumomab, CD19-ReTARGTPR mediated robust cytotoxic activity without triggering supraphysiological cytokine release. Importantly, this approach retained efficacy even against cancer cells with low CD19 expression. Conclusions: In summary, we provide a robust proof-of-concept study and show that CD19-ReTARGTPR offers a promising alternative strategy for T cell redirection, enabling the selective and effective killing of CD19-expressing malignancies while minimizing cytokine-driven toxicities through physiological CTL activation pathways. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Graphical abstract

32 pages, 13931 KiB  
Article
Alisertib and Barasertib Induce Cell Cycle Arrest and Mitochondria-Related Cell Death in Multiple Myeloma with Enhanced Efficacy Through Sequential Combination with BH3-Mimetics and Panobinostat
by Andrea Benedi, Manuel Beltrán-Visiedo, Nelia Jiménez-Alduán, Alfonso Serrano-Del Valle, Alberto Anel, Javier Naval and Isabel Marzo
Cancers 2025, 17(14), 2290; https://doi.org/10.3390/cancers17142290 - 9 Jul 2025
Viewed by 633
Abstract
Background: The treatment landscape for multiple myeloma (MM) has significantly evolved in recent decades with novel therapies like proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies. However, MM remains incurable, necessitating new pharmacological strategies. Mitotic kinases, such as Aurora proteins, have emerged as potential [...] Read more.
Background: The treatment landscape for multiple myeloma (MM) has significantly evolved in recent decades with novel therapies like proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies. However, MM remains incurable, necessitating new pharmacological strategies. Mitotic kinases, such as Aurora proteins, have emerged as potential targets. Selective inhibitors of Aurora A and B,- alisertib (MLN8237) and barasertib (AZD1152), respectively, have shown anti-myeloma activity in preclinical studies, with alisertib demonstrating modest efficacy in early clinical trials. Methods and Results: This study investigated the mechanisms of action of alisertib and barasertib and their combination with antitumor agents in a panel of five MM cells lines. Both drugs induced cell cycle arrest phase and abnormal nuclear morphologies. Alisertib caused prolonged mitotic arrest, whereas barasertib induced transient arrest, both resulting in the activation of mitotic catastrophe. These findings revealed three potential outcomes: cell death, senescence, or polyploidy. High mitochondrial reactive oxygen species (mROS) were identified as possible drivers of cell death. Caspase inhibition reduced caspase-3 activation but did not prevent cell death. Interestingly, alisertib at low doses remained toxic to Bax/BakDKO cells, although mitochondrial potential disruption and cytochrome c release were observed. Sequential combinations of high-dose Aurora kinase inhibitors with BH3-mimetics, and in specific cases with panobinostat, showed a synergistic effect. Conversely, the simultaneous combination of alisertib and barasertib showed mostly antagonistic effects. Conclusions: Alisertib and barasertib emerge as potential in vitro candidates against MM, although further studies are needed to validate their efficacy and to find the best combinations with other molecules. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology and Therapeutics)
Show Figures

Figure 1

21 pages, 5329 KiB  
Article
Development of Immune-Regulatory Pseudo-Protein-Coated Iron Oxide Nanoparticles for Enhanced Treatment of Triple-Negative Breast Tumor
by Ying Ji, Juan Li, Li Ma, Zhijie Wang, Bochu Du, Hiu Yee Kwan, Zhaoxiang Bian and Chih-Chang Chu
Nanomaterials 2025, 15(13), 1006; https://doi.org/10.3390/nano15131006 - 30 Jun 2025
Viewed by 460
Abstract
Triple-negative breast cancer (TNBC) frequently evades immune recognition and elimination, resulting in an immunosuppressive microenvironment. The phagocytic activity of tumor-associated macrophages underscores the development of nanomaterials as a promising strategy to target these macrophages and modulate their polarization, thereby advancing immunotherapy against TNBC. [...] Read more.
Triple-negative breast cancer (TNBC) frequently evades immune recognition and elimination, resulting in an immunosuppressive microenvironment. The phagocytic activity of tumor-associated macrophages underscores the development of nanomaterials as a promising strategy to target these macrophages and modulate their polarization, thereby advancing immunotherapy against TNBC. This research developed functional polymers that are complexed with therapeutic molecules as a coating strategy for iron oxide nanoparticles. An arginine-based poly (ester urea urethane) polymer complexed with a macrophage-polarizing molecule (APU-R848) could provide a synergistic effect with iron oxide nanoparticles (IONPs) to stimulate the M1-polarization of macrophages at the tumor site, resulting in a versatile nano-platform for immune regulation of TNBC. In the 4T1 in vivo breast tumor model, the APU-R848-IONPs demonstrated an improved intratumoral biodistribution compared to IONPs without a polymer coating. APU-R848-IONPs significantly reversed the immune-suppressive tumor environment by reducing the M2/M1 macrophage phenotype ratio by 51%, associated with an elevated population of cytotoxic T cells and a significantly enhanced production of tumoricidal cytokines. The activated immune response induced by APU-R848-IONP resulted in a significant anti-tumor effect, demonstrating an efficacy that was more than 3.2-fold more efficient compared to the controls. These immune-regulatory pseudo-protein-coated iron oxide nanoparticles represent an effective nano-strategy for macrophages’ regulation and the activation of anti-tumor immunity, providing a new treatment modality for triple-negative breast cancer. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

Back to TopTop