Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = antilipidemic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4832 KiB  
Article
In Vivo Antidiabetic and Antilipidemic Effect of Thiazolidine-2,4-Dione Linked Heterocyclic Scaffolds in Obesity-Induced Zebrafish Model
by Asmaa Galal-Khallaf, Dawlat Mousa, Aml Atyah, Mohamed El-Bahnsawye, Mona K. Abo Hussein, Ibrahim El Tantawy El Sayed, Elshaymaa I. Elmongy, Reem Binsuwaidan, Abdel Moneim A. K. El-Torgoman, Hamed Abdel-Bary and Khaled Mohammed-Geba
Pharmaceuticals 2025, 18(7), 1023; https://doi.org/10.3390/ph18071023 - 10 Jul 2025
Viewed by 451
Abstract
Background: Type 2 diabetes mellitus (T2DM) presents a significant global health challenge, with obesity being a major contributing risk factor alongside genetic and non-genetic elements. Current treatments focus on reducing hyperglycemia and preventing T2DM progression, often involving drug combinations for enhanced efficacy. This [...] Read more.
Background: Type 2 diabetes mellitus (T2DM) presents a significant global health challenge, with obesity being a major contributing risk factor alongside genetic and non-genetic elements. Current treatments focus on reducing hyperglycemia and preventing T2DM progression, often involving drug combinations for enhanced efficacy. This study introduces two novel nitrogen-containing heterocyclic scaffolds: neocryptolepine–thiazolidinedione (NC-TZD) 8 and acridine–thiazolidinedione (AC-TZD) 11. Methods: These compounds were synthesized and characterized using various spectroscopic techniques. Their antihyperglycemic and antihyperlipidemic effects were assessed in an obesity-induced zebrafish model. Hyperglycemia was induced by immersing zebrafish in 100 mM glucose monohydrate for two weeks. Fish were then divided into groups receiving either 20 mg or 80 mg of the drugs per kg of body weight, alongside negative and positive control groups. Results: Both doses of hybrids 8 and 11 effectively restored glucose, triglyceride, insulin, and nuclear factor kappa beta (nfκβ) mRNA levels to normal. However, only the lower doses restored peroxisomal acyl-CoA oxidase (acox1) mRNA levels, with higher doses proving less effective. A molecular modeling study supported the antidiabetic potential of hybrids 8 and 11, suggesting interactions with target proteins PPAR-α and acox1. In silico ADMET analysis revealed promising oral bioavailability and drug likeness for both compounds. Conclusions: The findings indicate that both hybrids exhibit significant antihyperglycemic and antihypertriglyceridemic effects, particularly at lower doses. These results highlight the promising therapeutic potential of these novel oral bioavailable compounds in managing T2DM. Further research is warranted to elucidate their mechanisms of action. Full article
Show Figures

Figure 1

22 pages, 4797 KiB  
Article
Silver Nanoparticles Synthesized from Enicostemma littorale Exhibit Gut Tight Junction Restoration and Hepatoprotective Activity via Regulation of the Inflammatory Pathway
by Hiral Aghara, Simran Samanta, Manali Patel, Prashsti Chadha, Divyesh Patel, Anamika Jha and Palash Mandal
Pharmaceutics 2025, 17(7), 895; https://doi.org/10.3390/pharmaceutics17070895 - 9 Jul 2025
Viewed by 504
Abstract
Background: Alcohol-associated liver disease (ALD) is a primary global health concern, exacerbated by oxidative stress, inflammation, and gut barrier dysfunction. Conventional phytocompounds exhibit hepatoprotective potential but are hindered by low bioavailability. This study aimed to evaluate the hepatoprotective and gut-barrier-restorative effects of green-synthesized [...] Read more.
Background: Alcohol-associated liver disease (ALD) is a primary global health concern, exacerbated by oxidative stress, inflammation, and gut barrier dysfunction. Conventional phytocompounds exhibit hepatoprotective potential but are hindered by low bioavailability. This study aimed to evaluate the hepatoprotective and gut-barrier-restorative effects of green-synthesized silver nanoparticles (AgNPs) derived from Enicostemma littorale, a medicinal plant known for its antioxidant and anti-inflammatory properties. Methods: AgNPs were synthesized using aqueous leaf extract of E. littorale and characterized using UV-Vis, XRD, FTIR, DLS, and SEM. HepG2 (liver) and Caco-2 (colon) cells were exposed to 0.2 M ethanol, AgNPs (1–100 µg/mL), or both, to simulate ethanol-induced toxicity. A range of in vitro assays was performed to assess cell viability, oxidative stress (H2DCFDA), nuclear and morphological integrity (DAPI and AO/EtBr staining), lipid accumulation (Oil Red O), and gene expression of pro- and anti-inflammatory, antioxidant, and tight-junction markers using RT-qPCR. Results: Ethanol exposure significantly increased ROS, lipid accumulation, and the expression of inflammatory genes, while decreasing antioxidant enzymes and tight-junction proteins. Green AgNPs at lower concentrations (1 and 10 µg/mL) restored cell viability, reduced ROS levels, preserved nuclear morphology, and downregulated CYP2E1 and SREBP expression. Notably, AgNPs improved the expression of Nrf2, HO-1, ZO-1, and IL-10, and reduced TNF-α and IL-6 expression in both cell lines, indicating protective effects on both liver and intestinal cells. Conclusions: Green-synthesized AgNPs from E. littorale exhibit potent hepatoprotective and gut-barrier-restoring effects through antioxidant, anti-inflammatory, and antilipidemic mechanisms. These findings support the therapeutic potential of plant-based nanoparticles in mitigating ethanol-induced gut–liver axis dysfunction. Full article
(This article belongs to the Special Issue Nanoparticles for Liver Diseases Therapy)
Show Figures

Figure 1

48 pages, 1375 KiB  
Review
Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas
by Ochuko L. Erukainure, Chika I. Chukwuma, Jennifer Nambooze, Satyajit Tripathy, Veronica F. Salau, Kolawole Olofinsan, Akingbolabo D. Ogunlakin, Osaretin A. T. Ebuehi and Jeremiah O. Unuofin
Plants 2025, 14(13), 1898; https://doi.org/10.3390/plants14131898 - 20 Jun 2025
Viewed by 1400
Abstract
Diabetes is one of the major non-communicable diseases whose physiological complications are linked with a higher risk of mortality amongst the adult age group of people living globally. This review article documents updated pharmacological evidence and insights into the antidiabetic mechanisms of green, [...] Read more.
Diabetes is one of the major non-communicable diseases whose physiological complications are linked with a higher risk of mortality amongst the adult age group of people living globally. This review article documents updated pharmacological evidence and insights into the antidiabetic mechanisms of green, black, white, oolong, and pu-erh teas via reported experimental and clinical models toward encouraging their use as a complementary nutraceutical in managing the biochemical alterations found in the onset and progression of diabetes. Peer-reviewed articles published in “PubMed”, “Google Scholar”, and “ScienceDirect” from 2010 and beyond that reported the antidiabetic, antilipidemic, and digestive enzyme inhibitory effects of the selected tea types were identified. The keywords used for the literature search comprise the common or scientific names of the tea and their corresponding bioactivity. Although teas portrayed different antidiabetic pharmacological properties linked to their bioactive components, including polyphenols, polysaccharides, and amino acids, the type of phytochemical found in each tea type depends on their processing. Green tea’s strong carbohydrate digestive enzyme inhibitory effect was linked with Ellagitannins and catechins, whereas theaflavin, a main ingredient in black tea, increases insulin sensitivity via enhancing GLUT4 translocation. Theabrownin in pu-erh tea improves FBG and lipid metabolism, while chemical components in white tea attenuate prediabetes-mediated reproductive dysfunctions by improving testicular tissue antioxidant capabilities. Based on the body of findings presented in this article, it is evident that integrating tea intake into daily food consumption routines could offer a promising practical solution to support human health and well-being against diabetes disease. Full article
Show Figures

Graphical abstract

10 pages, 882 KiB  
Article
Association Between Lipid Profile and COVID-19 Severity: Insights from a Single-Center Cross-Sectional Study in Northern Greece
by Athena Myrou, Konstantinos Barmpagiannos, Erofili Papathanasiou, Vasileios Kachtsidis, Christina Kiouli and Konstantinos Tziomalos
J. Clin. Med. 2025, 14(12), 4082; https://doi.org/10.3390/jcm14124082 - 9 Jun 2025
Viewed by 428
Abstract
Objective: To examine the relationship between lipid profile components—including low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides—and clinical outcomes in hospitalized COVID-19 patients in Northern Greece. Methods: A retrospective analysis was performed using data from 208 COVID-19 patients. Lipid profiles [including LDL (low-density [...] Read more.
Objective: To examine the relationship between lipid profile components—including low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides—and clinical outcomes in hospitalized COVID-19 patients in Northern Greece. Methods: A retrospective analysis was performed using data from 208 COVID-19 patients. Lipid profiles [including LDL (low-density lipoprotein cholesterol), HDL (high-density lipoprotein cholesterol), and triglycerides], prior antilipidemic treatment, and clinical outcomes were evaluated. Statistical analysis was conducted using SPSS version 19. Patients: A total of 208 COVID-19 patients from Northern Greece. Results: The mean LDL level was 84.12 mg/dL, with no significant differences observed between survivors and non-survivors. Prior antilipidemic treatment did not significantly affect outcomes. Elevated triglyceride levels were noted in obese patients (BMI ≥ 30 kg/m2) and lower HDL levels were associated with higher CRP (C-reactive protein) levels. Although LDL levels declined over time in non-survivors, this decrease was not statistically significant. Longitudinal analysis showed normalization of LDL levels post-recovery, while HDL levels remained persistently low. Conclusions: Despite observable alterations in lipid profiles, their prognostic significance in this cohort was limited. These findings highlight the need for further investigation into the role of lipid metabolism in the pathophysiology of COVID-19. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

29 pages, 405 KiB  
Review
Insects as Source of Nutraceuticals with Antioxidant, Antihypertensive, and Antidiabetic Properties: Focus on the Species Approved in Europe up to 2024
by Annalaura Brai, Claudia Pasqualini, Federica Poggialini, Chiara Vagaggini and Elena Dreassi
Foods 2025, 14(8), 1383; https://doi.org/10.3390/foods14081383 - 17 Apr 2025
Viewed by 1152
Abstract
Insects represent a traditional food in different parts of the world, where eating insects is not only related to nutrition, but also results from a variety of sociocultural customs. Insects’ nutritional profiles typically vary by species. Nevertheless, in terms of nutrition, edible insects [...] Read more.
Insects represent a traditional food in different parts of the world, where eating insects is not only related to nutrition, but also results from a variety of sociocultural customs. Insects’ nutritional profiles typically vary by species. Nevertheless, in terms of nutrition, edible insects can be a rich source of protein, dietary fiber, healthy fatty acids, and micronutrients, including minerals and vitamins. Insects have a low carbon footprint and require fewer resources in terms of land, water, and food with respect to animal livestock. Interestingly, insects are a source of bioactive compounds with different pharmacological activities, including antioxidant, antimicrobial, antidiabetic, antiobesity, antihypertensive, and antilipidemic. Among the bioactive compounds, polyphenols, chitosan, and protein hydrolysates are the most important ones, with direct activity on ROS quenching and enzymatic inhibition. Glucosidase, DPP-IV, ACE, and lipases are directly inhibited by insects’ bioactive peptides. Lipids and tocopherols reduce inflammation and lipid peroxidation by acting on LOX and COX-2 enzymes and on ROS quenching. The insects’ nutrient composition, coupled with their easy and economical breeding, is the cause of the growing interest in edible insects. During the last 20 years, the study and development of novel insect-based products increased, with relevant effects on the market. This review focuses on the edible insects currently approved in Europe, namely, Acheta domesticus, Alphitobus diaperinus, Locusta migratoria, and Tenebrio molitor. The nutrient profile and the functional compounds are examined, with an eye on market trends and on the patent applications filed in the last decades. Full article
(This article belongs to the Section Food Security and Sustainability)
15 pages, 11912 KiB  
Article
Isofraxidin Attenuates Lipopolysaccharide-Induced Cytokine Release in Mice Lung and Liver Tissues via Inhibiting Inflammation and Oxidative Stress
by Marwa Salih Al-Naimi, Ahmed R. Abu-Raghif, Ahmed F. Abed Mansoor and Hayder Adnan Fawzi
Biomedicines 2025, 13(3), 653; https://doi.org/10.3390/biomedicines13030653 - 7 Mar 2025
Viewed by 861
Abstract
Background: Isofraxidin is a hydroxylcoumarin derived from herbal Fraxinus and Eleutherococcus. It has been shown that isofraxidin has antioxidant, anti-inflammatory, anti-diabetic, and anti-lipidemic effects. The study aimed to examine the therapeutic effects of isofraxidin with and without methylprednisolone to ameliorate lipopolysaccharide (LPS)-induced [...] Read more.
Background: Isofraxidin is a hydroxylcoumarin derived from herbal Fraxinus and Eleutherococcus. It has been shown that isofraxidin has antioxidant, anti-inflammatory, anti-diabetic, and anti-lipidemic effects. The study aimed to examine the therapeutic effects of isofraxidin with and without methylprednisolone to ameliorate lipopolysaccharide (LPS)-induced cytokine-releasing syndrome. Methods: The study comprised two phases: preventive and therapeutic. In all the experiments that involved LPS induction, a single dose of LPS (5 mg/kg) was used. The preventive phase involved the administration of the agents before LPS induction, in which 50 mg/kg of methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given daily for 3 days before induction. The therapeutic phase involved the administration of the following agents after LPS induction: 50 mg/kg methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given once daily was given for 7 days. Results: Isofraxidin treatment with or without methylprednisolone ameliorates LPS-induced inflammatory and oxidative stress damage in mice; it reduces the inflammatory (IL-6, TNF-α, IL-1β, IL-8, Malondialdehyde, and IFN-γ) and oxidative stress markers. Additionally, isofraxidin treatment with or without methylprednisolone prevented liver and lung tissue damage induced by LPS. Conclusions: Isofraxidin exhibited preventive and therapeutic properties against lipopolysaccharide-induced cytokine storms in mice via anti-inflammatory and antioxidant pathways, and its combination with methylprednisolone demonstrated synergistic outcomes. Full article
Show Figures

Figure 1

18 pages, 3715 KiB  
Article
Biosynthesis and Characterization of Silver Nanoparticles and Simvastatin Association in Titanium Biofilms
by Sindy Magri Roque, Ana Carolina Furian, Marcela Kim Takemoto, Marta Cristina Teixeira Duarte, Rafaela Durrer Parolina, Adriano Luís Roque, Nelson Duran, Janaína de Cássia Orlandi Sardi, Renata Maria Teixeira Duarte and Karina Cogo Muller
Pharmaceuticals 2024, 17(12), 1612; https://doi.org/10.3390/ph17121612 - 29 Nov 2024
Viewed by 1134
Abstract
Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the [...] Read more.
Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs. Methods: Silver nanoparticles were first biosynthesized using the fungus Fusarium oxysporum and then characterized using Dynamic Light Scattering, X-ray Diffraction, Transmission Electron Microscopy, and energy dispersive spectroscopy. Species of Streptococcus oralis, Streptococcus mutans, Porphyromonas gingivalis, Methicillin-sensitive Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus were used and tested using Minimum Inhibitory Concentration assays with concentrations of silver nanoparticles and simvastatin alone and in combination. Biofilm inhibition and viability tests were performed on titanium surfaces. Toxicity tests were also performed on Galleria mellonella moth larvae. Results: The silver nanoparticles had a spherical shape without the formation of aggregates as confirmed by Transmission Electron Microscopy. Dynamic Light Scattering revealed nanoparticles with an average diameter of 53.8 nm (±1.23 nm), a polydispersity index of 0.23 and a zeta potential of −25 mV (±2.19 mV). The silver nanoparticles inhibited the growth of the strains tested in the range of 0.001592 and 63.75, while simvastatin alone inhibited the growth of the same strains in the range of 3.125–62.5 µg/mL. The antibacterial activity test of the combination of the two substances showed a reduction in the Minimum Inhibitory Concentration of about two to eight times, showing synergistic effects on Staphylococcus aureus and additive effects on Streptococcus oralis and Porphyromonas gingivalis. As for biofilm, sub-inhibitory concentrations of the combination of substances showed better antibacterial activity in inhibiting the formation of Streptococcus oralis biofilm, and this combination also proved effective in eradicating already established biofilms compared to the substances alone. The combination of silver nanoparticles and simvastatin showed low toxicity to Galleria mellonella moth larvae. Conclusions: The results presented indicate that the combination of the two substances could be an alternative for the prevention and reduction of biofilms on implants. These findings open up new possibilities in the search for alternatives for the treatment of peri-implant infections, as well as the possibility of using lower doses compared to single drugs, achieving the same results and reducing potential toxic effects. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs))
Show Figures

Figure 1

14 pages, 1619 KiB  
Article
Capsaicin Improves Systemic Inflammation, Atherosclerosis, and Macrophage-Derived Foam Cells by Stimulating PPAR Gamma and TRPV1 Receptors
by Danielle Lima Ávila, Weslley Fernandes-Braga, Janayne Luihan Silva, Elandia Aparecida Santos, Gianne Campos, Paola Caroline Lacerda Leocádio, Luciano Santos Aggum Capettini, Edenil Costa Aguilar and Jacqueline Isaura Alvarez-Leite
Nutrients 2024, 16(18), 3167; https://doi.org/10.3390/nu16183167 - 19 Sep 2024
Cited by 2 | Viewed by 2350
Abstract
Background: Capsaicin, a bioactive compound found in peppers, is recognized for its anti-inflammatory, antioxidant, and anti-lipidemic properties. This study aimed to evaluate the effects of capsaicin on atherosclerosis progression. Methods: Apolipoprotein E knockout mice and their C57BL/6 controls were utilized to assess blood [...] Read more.
Background: Capsaicin, a bioactive compound found in peppers, is recognized for its anti-inflammatory, antioxidant, and anti-lipidemic properties. This study aimed to evaluate the effects of capsaicin on atherosclerosis progression. Methods: Apolipoprotein E knockout mice and their C57BL/6 controls were utilized to assess blood lipid profile, inflammatory status, and atherosclerotic lesions. We also examined the influence of capsaicin on cholesterol influx and efflux, and the role of TRPV1 and PPARγ signaling pathways in bone marrow-derived macrophages. Results: Capsaicin treatment reduced weight gain, visceral adiposity, blood triglycerides, and total and non-HDL cholesterol. These improvements were associated with a reduction in atherosclerotic lesions in the aorta and carotid. Capsaicin also improved hepatic oxidative and inflammatory status. Systemic inflammation was also reduced, as indicated by reduced leukocyte rolling and adhesion on the mesenteric plexus. Capsaicin decreased foam cell formation by reducing cholesterol influx through scavenger receptor A and increasing cholesterol efflux via ATP-binding cassette transporter A1, an effect primarily linked to TRPV1 activation. Conclusions: These findings underscore the potential of capsaicin as a promising agent for atherosclerosis prevention, highlighting its comprehensive role in modulating lipid metabolism, foam cell formation, and inflammatory responses. Full article
Show Figures

Graphical abstract

54 pages, 2198 KiB  
Review
Medicinal Plant Extracts against Cardiometabolic Risk Factors Associated with Obesity: Molecular Mechanisms and Therapeutic Targets
by Jorge Gutiérrez-Cuevas, Daniel López-Cifuentes, Ana Sandoval-Rodriguez, Jesús García-Bañuelos and Juan Armendariz-Borunda
Pharmaceuticals 2024, 17(7), 967; https://doi.org/10.3390/ph17070967 - 21 Jul 2024
Cited by 8 | Viewed by 4706
Abstract
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and [...] Read more.
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed. Full article
(This article belongs to the Special Issue Anti-obesity and Anti-aging Natural Products)
Show Figures

Figure 1

17 pages, 5449 KiB  
Article
Croton gratissimus Burch Herbal Tea Exhibits Anti-Hyperglycemic and Anti-Lipidemic Properties via Inhibition of Glycation and Digestive Enzyme Activities
by Veronica F. Salau, Kolawole A. Olofinsan, Abhay P. Mishra, Olufemi A. Odewole, Corinne R. Ngnameko and Motlalepula G. Matsabisa
Plants 2024, 13(14), 1952; https://doi.org/10.3390/plants13141952 - 17 Jul 2024
Cited by 2 | Viewed by 1470
Abstract
Over the years, the world has continued to be plagued by type 2 diabetes (T2D). As a lifestyle disease, obese individuals are at higher risk of developing the disease. Medicinal plants have increasingly been utilized as remedial agents for managing metabolic syndrome. The [...] Read more.
Over the years, the world has continued to be plagued by type 2 diabetes (T2D). As a lifestyle disease, obese individuals are at higher risk of developing the disease. Medicinal plants have increasingly been utilized as remedial agents for managing metabolic syndrome. The aim of the present study was to investigate the in vitro anti-hyperglycemic and anti-lipidemic potential of Croton gratissimus herbal tea infusion. The inhibitory activities of C. gratissimus on carbohydrate (α-glucosidase and α-amylase) and lipid (pancreatic lipase) hydrolyzing enzymes were determined, and the mode of inhibition of the carbohydrate digestive enzymes was analyzed and calculated via Lineweaver–Burk plots and Michaelis Menten’s equation. Its effect on Advanced Glycation End Product (AGE) formation, glucose adsorption, and yeast glucose utilization were also determined. High-performance liquid chromatography (HPLC) was used to quantify the possible phenolic compounds present in the herbal tea infusion, and the compounds were docked with the digestive enzymes. C. gratissimus significantly (p < 0.05) inhibited α-glucosidase (IC50 = 60.56 ± 2.78 μg/mL), α-amylase (IC50 = 35.67 ± 0.07 μg/mL), as well as pancreatic lipase (IC50 = 50.27 ± 1.51 μg/mL) in a dose-dependent (15–240 µg/mL) trend. The infusion also inhibited the non-enzymatic glycation process, adsorbed glucose effectively, and enhanced glucose uptake in yeast cell solutions at increasing concentrations. Molecular docking analysis showed strong binding affinity between HPLC-quantified compounds (quercetin, caffeic acid, gallic acid, and catechin) of C. gratissimus herbal tea and the studied digestive enzymes. Moreover, the herbal tea product did not present cytotoxicity on 3T3-L1 cell lines. Results from this study suggest that C. gratissimus herbal tea could improve glucose homeostasis and support its local usage as a potential anti-hyperglycemic and anti-obesogenic agent. Further in vivo and molecular studies are required to bolster the results from this study. Full article
Show Figures

Figure 1

2 pages, 143 KiB  
Abstract
Human Gut Commensal-Derived Exopolysaccharide-Mediated Short-Chain Fatty Acid Production by In Vitro Gastrointestinal Digestion and Its Enzymatic Inhibitory Mechanism Targeting the Microbial Composition of Irritable Bowel Disease (IBD)
by Deepthi Ramya Ravindran and Murugan Marudhamuthu
Proceedings 2024, 103(1), 52; https://doi.org/10.3390/proceedings2024103052 - 12 Apr 2024
Viewed by 649
Abstract
The intestinal microbiome is important for synthesising nutrients, breaking down polysaccharides, protecting against foreign microbes, and aiding immune system development by producing short-chain fatty acids (SCFAs). SCFAs are formed through the interaction between the gut microbiota and the diet in the gut lumen. [...] Read more.
The intestinal microbiome is important for synthesising nutrients, breaking down polysaccharides, protecting against foreign microbes, and aiding immune system development by producing short-chain fatty acids (SCFAs). SCFAs are formed through the interaction between the gut microbiota and the diet in the gut lumen. This study aims to extract exopolysaccharide (EPS) from the gut isolate Proteus mirabilis DMTMMR-11, a probiotic species which was optimised to improvise the yield of EPS through one-factor-at-a-time (OFAT) and response surface methodology. The central composite design (CCD) increased the yield up to 2.32 ± 0.4 g/L, abd characterization was performed to study the structural and functional moieties of EPS by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) for proton and carbon (1H and C13-NMR). The EPS was subjected to artificial simulated gastrointestinal digestion by mimicking the gut conditions of healthy humans. These data reveal the higher concentrations of SCFA derivatives such as propionate, acetate, and other bioactive metabolites. The in vitro experiments in IBD (irritable bowel syndrome) patients’ gut homogenates were treated with EPS digest with SCFA, revealing that dysbiosis is reinstated, by improvising the colonisation of probiotic and gut symbionts by inhibiting the growth of pathogenic bacteria, which was studied by the metagenomic sequencing (V3–V4) region of the 16S rRNA gene. The EPS digest with SCFA was subjected to biological activities such as scavenging and reducing power, which showed 32.03 ± 0.21 and 13.04 ± 0.3 µg/mL. The anti-diabetic activity, like α-amylase, α-glucosidase and DPP-IV, was studied, expressing reduced IC50 values at (9.21 ± 0.3, 4.43 ± 0.4, 21.4 ± 0.33) µg/mL. Anti-inflammatory activity was higher up to 75%, and the anti-lipidemic inhibition property expressed inhibition up to 40% in cholesterol esterase and pancreatic lipase. These results indicate that EPS digest with SCFA is a beneficial substrate and can be administered for combinational IBD therapies. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
16 pages, 1224 KiB  
Review
Functionality and Health-Promoting Properties of Polysaccharide and Plant-Derived Substances from Mesona chinensis
by Romson Seah, Sunisa Siripongvutikorn, Santad Wichienchot and Worapong Usawakesmanee
Foods 2024, 13(7), 1134; https://doi.org/10.3390/foods13071134 - 8 Apr 2024
Cited by 2 | Viewed by 4285
Abstract
Mesona chinensis, in Thai called Chao Kuay and in Chinese Hsian-tsao, belongs to the Lamiaceae family. This herbal plant grows widely in Southern China, Taiwan (China), Malaysia, the Philippines, Indonesia, Vietnam, and Thailand. The Mesona plant is used to make functional products [...] Read more.
Mesona chinensis, in Thai called Chao Kuay and in Chinese Hsian-tsao, belongs to the Lamiaceae family. This herbal plant grows widely in Southern China, Taiwan (China), Malaysia, the Philippines, Indonesia, Vietnam, and Thailand. The Mesona plant is used to make functional products such as drinks and soft textured sweet treats, and also traditional medicine, to treat heat stroke, high blood pressure, heart attack, high blood sugar, hepatic diseases, colon diseases, inflammatory conditions, and to alleviate myalgia. The proximate composition of M. chinensis is a mixture of protein, fat, fiber, ash, and minerals. The main biological compounds in M. chinensis extracts are polysaccharides, terpenoids, flavonoids, and polyphenols, with wide-ranging pharmacological properties including antioxidant, antidiabetic, antilipidemic, carcinoma-inhibitory, renal-protective, antihypertensive, DNA damage-protective, and anti-inflammatory effects. This review investigated the proximate composition, polysaccharide type, and pharmacological properties of M. chinensis extracts. Phytochemical properties enhance the actions of the gut microbiota and improve health benefits. This review assessed the functional and medicinal activities of M. chinensis extracts. Future studies should further elucidate the in vitro/in vivo mechanisms of this plant extract and its impact on gut health. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

16 pages, 2917 KiB  
Article
A Robust and Reliable UPLC Method for the Simultaneous Quantification of Rosuvastatin Calcium, Glibenclamide, and Candesartan Cilexetil
by Mohamed Abbas Ibrahim, Abdelrahman Y. Sherif, Doaa Alshora and Badr Alsaadi
Separations 2024, 11(4), 113; https://doi.org/10.3390/separations11040113 - 7 Apr 2024
Cited by 3 | Viewed by 1796
Abstract
Metabolic syndrome is an associated condition that occurs together and increases the risk of heart disease and diabetes. These conditions include high blood pressure, high blood sugar, and high body mass index (BMI) in terms of cholesterol and triglyceride levels. Most of the [...] Read more.
Metabolic syndrome is an associated condition that occurs together and increases the risk of heart disease and diabetes. These conditions include high blood pressure, high blood sugar, and high body mass index (BMI) in terms of cholesterol and triglyceride levels. Most of the elderly population may administer three drugs to control the above conditions. Therefore, this study aims to develop an analytical assay for the precise analysis of three components and to formulate a Self-Nanoemulsifying Drug-Delivery System (SNEDDS) loaded with three drugs: Rosuvastatin Calcium (RC; antilipidemic), Glibenclamide (GB; antidiabetic), and Candesartan Cilexetil (CC; antihypertensive). A design of the experiment was developed at a level of 32, and the influence of column temperature and flow rate was studied in terms of retention time, peak area, peak asymmetry, and resolution. The assay was subjected to several studies to ensure its validation. Under the optimized conditions—column temperature at 50 °C and flow rate at 0.25 mL/min—the three drugs, RC, GB, and CC, are separated. Their retention times are 0.840, 1.800, and 5.803 min, respectively. The assay was valid in terms of linearity, accuracy, and precision. Moreover, the developed assay shows a good tolerance against any change in the condition. The assay was tested also to separate the drugs in a pharmaceutical formulation as SNEDDs. The assay successfully separates the drug with a good resolution. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

14 pages, 3995 KiB  
Article
Pennogenin 3-O-β-Chacotrioside Attenuates Hypertrophied Lipid Accumulation by Enhancing Mitochondrial Oxidative Capacity
by Seungmin Yu, Hee Min Lee, Jangho Lee, Jin-Taek Hwang, Hyo-Kyoung Choi and Yu Geon Lee
Int. J. Mol. Sci. 2024, 25(5), 2970; https://doi.org/10.3390/ijms25052970 - 4 Mar 2024
Cited by 3 | Viewed by 1728
Abstract
Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to [...] Read more.
Excessive lipid accumulation in adipocytes is a primary contributor to the development of metabolic disorders, including obesity. The consumption of bioactive compounds derived from natural sources has been recognized as being safe and effective in preventing and alleviating obesity. Therefore, we aimed to explore the antilipidemic effects of pennogenin 3-O-β-chacotrioside (P3C), a steroid glycoside, on hypertrophied 3T3-L1 adipocytes. Oil Red O and Nile red staining demonstrated a P3C-induced reduction in lipid droplet accumulation. Additionally, the increased expression of adipogenic and lipogenic factors, including PPARγ and C/EBPα, during the differentiation process was significantly decreased by P3C treatment at both the protein and mRNA levels. Furthermore, P3C treatment upregulated the expression of fatty acid oxidation-related genes such as PGC1α and CPT1a. Moreover, mitochondrial respiration and ATP generation increased following P3C treatment, as determined using the Seahorse XF analyzer. P3C treatment also increased the protein expression of mitochondrial oxidative phosphorylation in hypertrophied adipocytes. Our findings suggest that P3C could serve as a natural lipid-lowering agent, reducing lipogenesis and enhancing mitochondrial oxidative capacity. Therefore, P3C may be a promising candidate as a therapeutic agent for obesity-related diseases. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease)
Show Figures

Graphical abstract

15 pages, 21439 KiB  
Review
Bergaptol, a Major Furocoumarin in Citrus: Pharmacological Properties and Toxicity
by Pakkapong Phucharoenrak and Dunyaporn Trachootham
Molecules 2024, 29(3), 713; https://doi.org/10.3390/molecules29030713 - 4 Feb 2024
Cited by 8 | Viewed by 3555
Abstract
Bergaptol (5-hydroxypsoralen or 5-hydroxyfuranocoumarin) is a naturally occurring furanocoumarin widely found in citrus fruits, which has multiple health benefits. Nonetheless, no specific review articles on bergaptol have been published. Compiling updated information on bergaptol is crucial in guiding future research direction and application. [...] Read more.
Bergaptol (5-hydroxypsoralen or 5-hydroxyfuranocoumarin) is a naturally occurring furanocoumarin widely found in citrus fruits, which has multiple health benefits. Nonetheless, no specific review articles on bergaptol have been published. Compiling updated information on bergaptol is crucial in guiding future research direction and application. The present review focuses on the research evidence related to the pharmacological properties and toxicity of bergaptol. Bergaptol has anti-inflammatory, antioxidant, anti-cancer, anti-osteoporosis, anti-microbial, and anti-lipidemic effects. It can inhibit the activities of cytochrome P450s (CYP), especially CYP2C9 and CYP3A4, thereby affecting the metabolism and concentrations of some drugs and toxins. Compared with other coumarins, bergaptol has the least potency to inhibit CYP3A4 in cancer cells. Instead, it can suppress drug efflux transporters, such as P-glycoprotein, thereby overcoming chemotherapeutic drug resistance. Furthermore, bergaptol has antimicrobial effects with a high potential for inhibition of quorum sensing. In vivo, bergaptol can be retained in plasma for longer than other coumarins. Nevertheless, its toxicity has not been clearly reported. In vitro study suggests that, unlike most furocoumarins, bergaptol is not phototoxic or photomutagenic. Existing research on bergaptol has mostly been conducted in vitro. Further in vivo and clinical studies are warranted to identify the safe and effective doses of bergaptol for its multimodal application. Full article
(This article belongs to the Special Issue Biological Activity of Phenolics and Polyphenols in Nature Products)
Show Figures

Figure 1

Back to TopTop