Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,316)

Search Parameters:
Keywords = antibody targeted

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3790 KiB  
Article
Anti-CD26 Antibody Suppresses Epithelial-Mesenchymal Transition in Colorectal Cancer Stem Cells
by Takumi Iwasawa, Ryo Hatano, Satoshi Takeda, Ayumi Kurusu, Chikako Okamoto, Kazunori Kato, Chikao Morimoto and Noriaki Iwao
Int. J. Mol. Sci. 2025, 26(15), 7620; https://doi.org/10.3390/ijms26157620 - 6 Aug 2025
Abstract
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully [...] Read more.
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully elucidated. In this study, we aimed to investigate the effects of a monoclonal anti-CD26 antibody on EMT-related phenotypes and metastatic behavior in colorectal cancer cells. We evaluated changes in EMT markers by quantitative PCR and Western blotting, assessed cell motility and invasion using scratch wound-healing and Transwell assays, and examined metastatic potential in vivo using a splenic injection mouse model. Treatment with the anti-CD26 antibody significantly increased the expression of the epithelial marker E-cadherin and reduced levels of EMT-inducing transcription factors, including ZEB1, Twist1, and Snail1, at the mRNA and protein levels. Functional assays revealed that the antibody markedly inhibited cell migration and invasion in vitro without exerting cytotoxic effects. Furthermore, systemic administration of the anti-CD26 antibody significantly suppressed the formation of liver metastases in vivo. These findings suggest that CD26 may contribute to the regulation of EMT and metastatic behavior in colorectal cancer. Our data highlight the potential therapeutic utility of CD26-targeted antibody therapy for suppressing EMT-associated phenotypes and metastatic progression. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Figure 1

42 pages, 939 KiB  
Review
B7-H3 in Cancer Immunotherapy—Prospects and Challenges: A Review of the Literature
by Sylwia Mielcarska, Anna Kot, Miriam Dawidowicz, Agnieszka Kula, Piotr Sobków, Daria Kłaczka, Dariusz Waniczek and Elżbieta Świętochowska
Cells 2025, 14(15), 1209; https://doi.org/10.3390/cells14151209 - 6 Aug 2025
Abstract
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule [...] Read more.
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule modulates anti-cancer immune responses, acting through diverse signaling pathways and cell populations. It has been implicated in the pathogenesis of numerous malignancies, including melanoma, gliomas, lung cancer, gynecological cancers, renal cancer, gastrointestinal tumors, and others, fostering the immunosuppressive environment and marking worse prognosis for the patients. B7-H3 targeting therapies, such as monoclonal antibodies, antibody–drug conjugates, and CAR T-cells, present promising results in preclinical studies and are the subject of ongoing clinical trials. CAR-T therapies against B7-H3 have demonstrated utility in malignancies such as melanoma, glioblastoma, prostate cancer, and RCC. Moreover, ADCs targeting B7-H3 exerted cytotoxic effects on glioblastoma, neuroblastoma cells, prostate cancer, and craniopharyngioma models. B7-H3-targeting also delivers promising results in combined therapies, enhancing the response to other immune checkpoint inhibitors and giving hope for the development of approaches with minimized adverse effects. However, the strategies of B7-H3 blocking deliver substantial challenges, such as poorly understood molecular mechanisms behind B7-H3 protumor properties or therapy toxicity. In this review, we discuss B7-H3’s role in modulating immune responses, its significance for various malignancies, and clinical trials evaluating anti-B7-H3 immunotherapeutic strategies, focusing on the clinical potential of the molecule. Full article
Show Figures

Figure 1

16 pages, 1169 KiB  
Review
Bispecific Antibodies—A New Hope for Patients with Diffuse Large B-Cell Lymphoma
by Romeo Gabriel Mihaila and Samuel B. Todor
J. Clin. Med. 2025, 14(15), 5534; https://doi.org/10.3390/jcm14155534 - 6 Aug 2025
Abstract
T-cell-engaging antibodies are a promising new type of treatment for patients with refractory or relapsed (R/R) diffuse large B-cell lymphoma, which has changed the prognosis and evolution of these patients in clinical trials. Bispecific antibodies (BsAbs) bind to two different targets (B and [...] Read more.
T-cell-engaging antibodies are a promising new type of treatment for patients with refractory or relapsed (R/R) diffuse large B-cell lymphoma, which has changed the prognosis and evolution of these patients in clinical trials. Bispecific antibodies (BsAbs) bind to two different targets (B and T lymphocytes) at the same time and in this way mimic the action of CAR (chimeric antigen receptor) T-cells. They are the T-cell-engaging antibodies most used in practice and are a solution for patients who do not respond to second- or later-line therapies, including chemoimmunotherapy, followed by salvage chemotherapy and hematopoietic stem cell transplantation. They are a therapeutic option for patients who are ineligible for CAR T-cell therapy and are also active in those with prior exposure to CAR T-cell treatment. A remarkable advantage of BsAbs is their rapid availability, even if the disease progresses rapidly, unlike CAR T-cell treatment, and they avoid the practical and financial challenges raised by autologous CAR T-cell therapies. CAR-T has been proven to have better efficacy compared to BsAbs, but cytokine release syndrome and neurotoxicity have appeared significantly more frequently in patients treated with CAR T-cells. The possibility of combining BsAbs with chemotherapy and their administration for relapses or as a frontline therapy is being studied to increase their efficacy. BsAbs are a life-saving therapy for many patients with diffuse large B-cell malignant non-Hodgkin’s lymphoma (NHL) who have a poor prognosis with classical therapies, but are not without adverse effects and require careful monitoring. Full article
(This article belongs to the Special Issue Immunotherapy of Hematological Malignancies: The State of the Art)
Show Figures

Figure 1

20 pages, 7055 KiB  
Article
Cardiopulmonary Bypass-Induced IL-17A Aggravates Caspase-12-Dependent Neuronal Apoptosis Through the Act1-IRE1-JNK1 Pathway
by Ruixue Zhao, Yajun Ma, Shujuan Li and Junfa Li
Biomolecules 2025, 15(8), 1134; https://doi.org/10.3390/biom15081134 - 6 Aug 2025
Abstract
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose [...] Read more.
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose deprivation/reoxygenation (OGD/R) cellular model, we demonstrated that IL-17A levels were markedly elevated in the hippocampus post-CPB, correlating with endoplasmic reticulum stress (ERS)-mediated apoptosis. Transcriptomic analysis revealed the enrichment of IL-17 signaling and apoptosis-related pathways. IL-17A-Neutralizing monoclonal antibody (mAb) and the ERS inhibitor 4-phenylbutyric acid (4-PBA) significantly attenuated neurological deficits and hippocampal neuronal damage. Mechanistically, IL-17A activated the Act1-IRE1-JNK1 axis, wherein heat shock protein 90 (Hsp90) competitively regulated Act1-IRE1 interactions. Co-immunoprecipitation confirmed the enhanced Hsp90-Act1 binding post-CPB, promoting IRE1 phosphorylation and downstream caspase-12 activation. In vitro, IL-17A exacerbated OGD/R-induced apoptosis via IRE1-JNK1 signaling, reversible by IRE1 inhibition. These findings identify the hippocampus as a key vulnerable region and delineate a novel IL-17A/Act1-IRE1-JNK1 pathway driving ERS-dependent apoptosis. Targeting IL-17A or Hsp90-mediated chaperone switching represents a promising therapeutic strategy for CPB-associated neuroprotection. This study provides critical insights into the molecular crosstalk between systemic inflammation and neuronal stress responses during cardiac surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 1472 KiB  
Article
Single-Dose Intranasal or Intramuscular Administration of Simian Adenovirus-Based H1N1 Vaccine Induces a Robust Humoral Response and Complete Protection in Mice
by Daria V. Voronina, Irina V. Vavilova, Olga V. Zubkova, Tatiana A. Ozharovskaia, Olga Popova, Anastasia S. Chugunova, Polina P. Goldovskaya, Denis I. Zrelkin, Daria M. Savina, Irina A. Favorskaya, Dmitry V. Shcheblyakov, Denis Y. Logunov and Alexandr L. Gintsburg
Viruses 2025, 17(8), 1085; https://doi.org/10.3390/v17081085 - 5 Aug 2025
Abstract
Despite the widespread accessibility of vaccines and antivirals, seasonal influenza virus epidemics continue to pose a threat to public health. In this study, we constructed a recombinant replication-deficient simian adenovirus type 25 vector carrying the full-length hemagglutinin (HA) of the H1N1 influenza virus, [...] Read more.
Despite the widespread accessibility of vaccines and antivirals, seasonal influenza virus epidemics continue to pose a threat to public health. In this study, we constructed a recombinant replication-deficient simian adenovirus type 25 vector carrying the full-length hemagglutinin (HA) of the H1N1 influenza virus, named rSAd25-H1. Both systemic and mucosal humoral immune responses, as well as the protective efficacy, were assessed in mice immunized via the intramuscular (IM) or intranasal (IN) route. A single-dose IM or IN administration of rSAd25-H1 elicited a robust systemic IgG antibody response, including hemagglutination inhibition antibodies. As expected, only IN immunization was able to induce IgA production in serum and respiratory mucosa. Notably, a single dose of rSAd25-H1 at the highest dose (1010 viral particles) conferred complete protection against lethal homologous H1N1 challenge in mice despite the route of administration. These findings demonstrate the potential of simian adenovirus type 25-based vectors as a promising candidate for intranasal vaccine development targeting respiratory pathogens. Full article
Show Figures

Figure 1

16 pages, 1701 KiB  
Article
Aromatase Inhibitor-Induced Carpal Tunnel Syndrome Immunohistochemical Analysis and Clinical Evaluation: An Observational, Cross-Sectional, Case–Control Study
by Iakov Molayem, Lucian Lior Marcovici, Roberto Gradini, Massimiliano Mancini, Silvia Taccogna and Alessia Pagnotta
J. Clin. Med. 2025, 14(15), 5513; https://doi.org/10.3390/jcm14155513 - 5 Aug 2025
Abstract
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced [...] Read more.
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced carpal tunnel syndrome represents one of the main causes of aromatase inhibitor discontinuation, with a non-compliance rate of up to 67%, potentially leading to increased cancer mortality. This study investigates estrogen receptor expression in aromatase-inhibitor-induced carpal tunnel syndrome tissues, in order to better define its etiopathogenesis and derive preventive or therapeutic measures that can improve aromatase inhibitor patient compliance. To our knowledge, there is no study on this subject in the literature. Methods: Between 2023 and 2024, we recruited 14 patients at the Jewish Hospital of Rome, including seven patients with aromatase-inhibitor-induced carpal tunnel syndrome (study group) and seven with postmenopausal idiopathic carpal tunnel syndrome (control group). Each patient was evaluated based on a clinical visit, a questionnaire, instrumental exams, and serum hormone dosages and were treated with open carpal tunnel release surgery, during which transverse carpal ligament and flexor tenosynovium samples were collected. For immunohistochemical experiments, sections were treated with anti-estrogen receptor α and anti-estrogen receptor β antibodies. Results: The immunohistochemical features in the study and control groups were similar, demonstrating that tissues affected by aromatase-inhibitor-induced carpal tunnel syndrome are targets of direct estrogen action and that estrogen deprivation is correlated with disease etiogenesis. Surgery was effective in patient treatment. Conclusions: Aromatase-inhibitor-induced carpal tunnel syndrome represents a newly defined form of the disease. This syndrome represents one of the main causes of aromatase inhibitor discontinuation, due to its negative impact on the patient’s quality of life. The identification by clinicians of aromatase inhibitor use as a possible risk factor for carpal tunnel syndrome development is of essential importance, as early diagnosis and prompt management can improve patient compliance and overall breast cancer treatment outcomes. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

17 pages, 4116 KiB  
Article
A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment
by Lidi Nan, Yuting Qin, Xiao Huang, Mingzhu Pan, Xiaomu Wang, Yanqing Lv, Annette Sorensen, Xiaoqiang Kang, Hong Ling and Juan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7567; https://doi.org/10.3390/ijms26157567 - 5 Aug 2025
Abstract
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target [...] Read more.
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target PD-1 and TGF-β signalling have entered clinical trials and shown encouraging efficacy, but the mechanistic basis of their synergy is not fully understood. Here, we engineered 015s, a bifunctional fusion antibody that simultaneously targets murine PD-1 and TGF-β and evaluated its antitumour efficacy and mechanistic impact in pre-clinical models. Antibody 015s exhibited high affinity, dual target binding, and the effective inhibition of PD-1 and TGF-β signalling. In vivo, 015s significantly suppressed tumour growth compared with anti-mPD-1 or TGF-β receptor II (TGF-βRII) monotherapy. When combined with the CD24-targeted ADC, 015s produced even greater antitumour activity and achieved complete tumour regression. Mechanistic studies demonstrated that 015s significantly reduced tumour cell migration and invasion, reversed epithelial–mesenchymal transition (EMT), decreased microvascular density, and attenuated collagen deposition within the TME. Antibody 015s also decreased bioactive TGF-β1 and increased intratumoural IFN-γ, creating a more immunostimulatory milieu. These findings support further development of PD-1/TGF-β bifunctional antibodies for cancers with high TGF-β activity or limited response to immune checkpoint blockade. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

35 pages, 1233 KiB  
Review
Emerging Strategies for Targeting Angiogenesis and the Tumor Microenvironment in Gastrointestinal Malignancies: A Comprehensive Review
by Emily Nghiem, Briana Friedman, Nityanand Srivastava, Andrew Takchi, Mahshid Mohammadi, Dior Dedushi, Winfried Edelmann, Chaoyuan Kuang and Fernand Bteich
Pharmaceuticals 2025, 18(8), 1160; https://doi.org/10.3390/ph18081160 - 5 Aug 2025
Abstract
Gastrointestinal (GI) cancers represent a significant global health burden, with high morbidity and mortality often linked to late-stage detection and metastatic disease. The progression of these malignancies is critically driven by angiogenesis, the formation of new blood vessels, and the surrounding dynamic tumor [...] Read more.
Gastrointestinal (GI) cancers represent a significant global health burden, with high morbidity and mortality often linked to late-stage detection and metastatic disease. The progression of these malignancies is critically driven by angiogenesis, the formation of new blood vessels, and the surrounding dynamic tumor microenvironment (TME), a complex ecosystem comprising various cell types and non-cellular components. This comprehensive review, based on a systematic search of the PubMed database, synthesizes the existing literature to define the intertwined roles of angiogenesis and the TME in GI tumorigenesis. The TME’s influence creates conditions favorable for tumor growth, invasion, and metastasis, but sometimes induces resistance to current therapies. Available therapeutic strategies for inhibiting angiogenesis involve antibodies and oral tyrosine kinase inhibitors, while immune modulation within the tumor microenvironment is mainly achieved through checkpoint inhibitor antibodies and chemotherapy. Creative emerging strategies encompassing cellular therapies, bispecific antibodies, and new targets such as CD40, DLL4, and Ang2, amongst others, are focused on inhibiting proangiogenic pathways more profoundly, reversing resistance to prior drugs, and modulating the TME to enhance therapeutic efficacy. A deeper understanding of the complex interactions between components of the TME is crucial for addressing the unmet need for novel and effective therapeutic interventions against aggressive GI cancers. Full article
(This article belongs to the Special Issue Multitargeted Compounds: A Promising Approach in Medicinal Chemistry)
Show Figures

Figure 1

24 pages, 2475 KiB  
Article
An Immunomodulating Peptide with Potential to Promote Anticancer Immunity Without Compromising Immune Tolerance
by Michael Agrez, Christopher Chandler, Amanda L. Johnson, Marlena Sorensen, Kirstin Cho, Stephen Parker, Benjamin Blyth, Darryl Turner, Justyna Rzepecka, Gavin Knox, Anastasia Nika, Andrew M. Hall, Hayley Gooding and Laura Gallagher
Biomedicines 2025, 13(8), 1908; https://doi.org/10.3390/biomedicines13081908 - 5 Aug 2025
Abstract
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the [...] Read more.
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the interleukin-12 isoform, IL-12p40. Paradoxically, both cytokines and the anti-PD-1 antibody worsen psoriasis. We previously reported an immunomodulating peptide, designated IK14004, that inhibits progression of Lewis lung cancer in mice yet uncouples IFN-γ from IL-12p40 production in human immune cells. Methods: Immune cells obtained from healthy donors were exposed to IK14004 in vitro to further characterise the signalling pathways affected by this peptide. Using C57BL/6 immunocompetent mice, the effect of IK14004 was tested in models of lung melanoma and psoriatic skin. Results: Differential effects of IK14004 on the expression of IFN-α/β, the interleukin-15 (IL-15) receptor and signal transducers and activators of transcription were consistent with immune responses relevant to both cancer surveillance and immune tolerance. Moreover, both melanoma and psoriasis were inhibited by the peptide. Conclusions: Taken together, these findings suggest mechanisms underlying immune homeostasis that could be exploited in the setting of cancer and autoimmune pathologies. Peptide administered together with checkpoint blockers in relevant models of autoimmunity and cancer may offer an opportunity to gain further insight into how immune tolerance can be retained in patients receiving cancer immunotherapy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

26 pages, 1034 KiB  
Review
Metabolic Interactions in the Tumor Microenvironment of Classical Hodgkin Lymphoma: Implications for Targeted Therapy
by Michał Kurlapski, Alicja Braczko, Paweł Dubiela, Iga Walczak, Barbara Kutryb-Zając and Jan Maciej Zaucha
Int. J. Mol. Sci. 2025, 26(15), 7508; https://doi.org/10.3390/ijms26157508 - 4 Aug 2025
Viewed by 122
Abstract
Classical Hodgkin lymphoma (cHL) is a biologically and clinically unique malignancy characterized by rare Hodgkin and Reed–Sternberg (HRS) cells surrounded by a dense and diverse inflammatory infiltrate. These malignant cells actively reshape the tumor microenvironment (TME) through metabolic reprogramming and immune evasion strategies. [...] Read more.
Classical Hodgkin lymphoma (cHL) is a biologically and clinically unique malignancy characterized by rare Hodgkin and Reed–Sternberg (HRS) cells surrounded by a dense and diverse inflammatory infiltrate. These malignant cells actively reshape the tumor microenvironment (TME) through metabolic reprogramming and immune evasion strategies. This review synthesizes current knowledge on how metabolic alterations contribute to tumor survival, immune dysfunction, and therapeutic resistance in cHL. We discuss novel therapeutic approaches aimed at disrupting these processes and examine the potential of combining metabolic interventions with immune-based strategies—such as immune checkpoint inhibitors (CPIs), epigenetic modulators, bispecific antibodies, and CAR-T/CAR-NK cell therapies—which may help overcome resistance and enhance anti-tumor responses. Several agents are currently under investigation for their ability to modulate immune cell metabolism and restore effective immune surveillance. Altogether, targeting metabolic vulnerabilities within both tumor and immune compartments offers a promising, multifaceted strategy to improve clinical outcomes in patients with relapsed or refractory cHL. Full article
(This article belongs to the Special Issue Lymphoma: Molecular Pathologies and Therapeutic Strategies)
Show Figures

Figure 1

17 pages, 2112 KiB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 - 3 Aug 2025
Viewed by 185
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 - 2 Aug 2025
Viewed by 247
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

17 pages, 3738 KiB  
Article
Beyond Spheres: Evaluating Gold Nano-Flowers and Gold Nano-Stars for Enhanced Aflatoxin B1 Detection in Lateral Flow Immunoassays
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
Biosensors 2025, 15(8), 495; https://doi.org/10.3390/bios15080495 - 1 Aug 2025
Viewed by 207
Abstract
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the [...] Read more.
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the introduction of gold nanoparticles, which provide enhanced sensitivity and selectivity (compared, for example, to latex beads or carbon nanoparticles) for the detection of target analytes, due to their optical properties, chemical stability and ease of functionalization. In this work, gold nanoparticle-based LFIAs are developed for the detection of aflatoxin B1, and the relative performance of different morphology particles is evaluated. LFIA using gold nano-labels allowed for aflatoxin B1 detection over a range of 0.01 ng/mL–100 ng/mL. Compared to spherical gold nanoparticles and gold nano-flowers, star-shaped gold nanoparticles show increased antibody binding efficiency of 86% due to their greater surface area. Gold nano-stars demonstrated the highest sensitivity, achieving a limit of detection of 0.01ng/mL, surpassing the performance of both spherical gold nanoparticles and gold nano-flowers. The use of star-shaped particles as nano-labels has demonstrated a five-fold improvement in sensitivity, underscoring the potential of integrating diverse nanostructures into LFIA for significantly improving analyte detection. Moreover, the robustness and feasibility of gold nano-stars employed as labels in LFIA was assessed in detecting aflatoxin B1 in a wheat matrix. Improved sensitivity with gold nano-stars holds promise for applications in food safety monitoring, public health diagnostics and rapid point-of-care diagnostics. This work opens the pathway for further development of LFIA utilizing novel nanostructures to achieve unparallel precision in diagnostics and sensing. Full article
Show Figures

Figure 1

12 pages, 1055 KiB  
Article
Antibodies to Laminin β4 in Pemphigoid Diseases: Clinical–Laboratory Experience of a Single Central European Reference Centre
by Maciej Marek Spałek, Magdalena Jałowska, Natalia Welc, Monika Bowszyc-Dmochowska, Takashi Hashimoto, Justyna Gornowicz-Porowska and Marian Dmochowski
Antibodies 2025, 14(3), 66; https://doi.org/10.3390/antib14030066 - 1 Aug 2025
Viewed by 170
Abstract
Background/Objectives: Anti-p200 pemphigoid is a rare and likely underdiagnosed autoimmune blistering disorder. Laminin γ1 and laminin β4 have been implicated as potential target antigens in its pathogenesis. Recently, a novel indirect immunofluorescence assay targeting anti-laminin β4 antibodies has been developed, demonstrating high sensitivity [...] Read more.
Background/Objectives: Anti-p200 pemphigoid is a rare and likely underdiagnosed autoimmune blistering disorder. Laminin γ1 and laminin β4 have been implicated as potential target antigens in its pathogenesis. Recently, a novel indirect immunofluorescence assay targeting anti-laminin β4 antibodies has been developed, demonstrating high sensitivity and specificity, and offering a valuable tool for improved diagnosis. Methods: Of the 451 patients, 21 were selected for further laboratory analysis based on medical records. Sera from 10 patients, which showed a positive direct immunofluorescence (DIF) result and negative results in multiplex enzyme-linked immunosorbent assays (ELISAs) and/or mosaic six-parameter indirect immunofluorescence (IIF) for various autoimmune bullous diseases, were tested for the presence of anti-laminin β4 antibodies. Additionally, sera from 11 patients with positive DIF and positive ELISA for antibodies against BP180 and/or BP230 were analyzed. Results: Among the 10 patients with positive DIF and negative ELISA and/or mosaic six-parameter IIF, 6 sera were positive for anti-laminin β4 antibodies. These patients presented with atypical clinical features. In contrast, all 11 sera from patients with both positive DIF and positive ELISA for BP180 and/or BP230 were negative for anti-laminin β4 antibodies. Conclusions: In patients with a positive DIF result but negative ELISA and/or mosaic six-parameter IIF findings, testing for anti-laminin β4 antibodies should be considered. Furthermore, in cases presenting with atypical clinical features—such as acral distribution of lesions, intense pruritus, or erythematous–edematous plaques—the possibility of anti-p200 pemphigoid should be included in the differential diagnosis. Full article
(This article belongs to the Section Antibody-Based Diagnostics)
Show Figures

Figure 1

18 pages, 590 KiB  
Review
FcRn Blockade as a Targeted Therapeutic Strategy in Antibody-Mediated Autoimmune Diseases: A Focus on Warm Autoimmune Hemolytic Anemia
by Michael Sandhu and Irina Murakhovskaya
Antibodies 2025, 14(3), 65; https://doi.org/10.3390/antib14030065 - 1 Aug 2025
Viewed by 277
Abstract
Antibody-mediated autoimmune diseases are common, can involve any organ system, and pose a large burden for patients and healthcare systems. Most antibody-mediated diseases are mediated by IgG antibodies. Selective targeting of pathogenic antibodies is an attractive treatment option which has already proven to [...] Read more.
Antibody-mediated autoimmune diseases are common, can involve any organ system, and pose a large burden for patients and healthcare systems. Most antibody-mediated diseases are mediated by IgG antibodies. Selective targeting of pathogenic antibodies is an attractive treatment option which has already proven to be effective in antibody-positive generalized myasthenia gravis, maternal-fetal alloimmune cytopenias, and immune thrombocytopenic purpura. Warm autoimmune hemolytic anemia (wAIHA) is an autoimmune disorder mediated by pathogenic antibodies mainly of the IgG class with no approved therapy. Current treatment includes non-specific immunosuppression with corticosteroids, rituximab, and other immunosuppressive agents. With most therapies, time to response can be delayed and transfusions may be needed. Neonatal Fc receptor (FcRN) therapies provide rapid and sustained reduction of pathogenic IgG levels providing potential for fast, effective therapy in antibody-mediated autoimmune diseases including warm autoimmune hemolytic anemia. This review focuses on the emerging role of FcRn inhibition in autoimmune hematologic diseases, and their therapeutic potential in wAIHA. Full article
(This article belongs to the Special Issue Antibody and Autoantibody Specificities in Autoimmunity)
Show Figures

Figure 1

Back to TopTop