Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = antibacterial photodynamic inactivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

32 pages, 3005 KiB  
Review
Photophysical Process of Hypocrellin-Based Photodynamic Therapy: An Efficient Antimicrobial Strategy for Overcoming Multidrug Resistance
by Pazhani Durgadevi, Koyeli Girigoswami and Agnishwar Girigoswami
Physics 2025, 7(3), 28; https://doi.org/10.3390/physics7030028 - 15 Jul 2025
Viewed by 474
Abstract
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of [...] Read more.
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of hope in the fight against MDR microorganisms. Among the natural photosensitizers, hypocrellins (A and B) have shown remarkable potential with their dual-mode photodynamic action, generating ROS via both Type I (electron transfer) and Type II (singlet oxygen) pathways. This unique action disrupts bacterial biofilms and inactivates MDR pathogens. The amphiphilic nature of hypocrellins further enhances their promise, enabling deep biofilm penetration and ensuring potent antibacterial effects even in hypoxic environments, surpassing the capabilities of synthetic photosensitizers. This study critically examines the antimicrobial properties of hypocrellin-based PDT, emphasizing its mechanisms, advantages over traditional antibiotics, and effectiveness against MDR pathogens. Comparative analysis with other photosensitizers, the role of nanotechnology-enhanced delivery systems, and future clinical applications are explored. Its combination with nanotechnology enhances therapeutic outcomes, providing a viable alternative to conventional antibiotics. Further clinical research is essential to optimize its application and integration into antimicrobial treatment protocols. Full article
(This article belongs to the Section Biophysics and Life Physics)
Show Figures

Figure 1

18 pages, 1082 KiB  
Review
Light-Activable Silver Nanoparticles for Combatting Antibiotic-Resistant Bacteria and Biofilms
by Varsha Godakhindi, Elana Kravitz and Juan Luis Vivero-Escoto
Molecules 2025, 30(3), 626; https://doi.org/10.3390/molecules30030626 - 31 Jan 2025
Cited by 5 | Viewed by 1919
Abstract
Silver nanoparticles (AgNPs) are among the most widely used nanoparticulate materials for antimicrobial applications. The innate antibacterial properties of AgNPs are closely associated with the release of silver ions (Ag+) and the generation of reactive oxygen species (ROS). Multiple reports have [...] Read more.
Silver nanoparticles (AgNPs) are among the most widely used nanoparticulate materials for antimicrobial applications. The innate antibacterial properties of AgNPs are closely associated with the release of silver ions (Ag+) and the generation of reactive oxygen species (ROS). Multiple reports have elaborated on the synergistic effect against bacteria by combining photosensitizers with AgNPs (PS-AgNPs). This combination allows for the light-activated generation of Ag+ and ROS from PS-AgNPs. This is an efficient and controlled approach for the effective elimination of pathogens and associated biofilms. This review summarizes the design and synthetic strategies to produce PS-AgNPs reported in the literature. First, we explore multiple bacterial cell death mechanisms associated with AgNPs and possible pathways for resistance against AgNPs and Ag+. The next sections summarize the recent findings on the design and application of PS-AgNPs for the inactivation of resistant and non-resistant bacterial strains as well as the elimination and inhibition of biofilms. Finally, the review describes major outcomes in the field and provides a perspective on the future applications of this burgeoning area of research. Full article
Show Figures

Figure 1

18 pages, 1461 KiB  
Review
Application of Nano-Titanium Dioxide in Food Antibacterial Packaging Materials
by Jiarui Li, Dequan Zhang and Chengli Hou
Bioengineering 2025, 12(1), 19; https://doi.org/10.3390/bioengineering12010019 - 29 Dec 2024
Cited by 3 | Viewed by 2074
Abstract
Food waste and food safety issues caused by food spoilage have been brought into focus. The inhibition of food spoilage bacteria growth is the key to maintaining food quality and extending the shelf life of food. Photodynamic inactivation (PDI) is an efficient antibacterial [...] Read more.
Food waste and food safety issues caused by food spoilage have been brought into focus. The inhibition of food spoilage bacteria growth is the key to maintaining food quality and extending the shelf life of food. Photodynamic inactivation (PDI) is an efficient antibacterial strategy which provides a new idea for the antibacterial preservation of food. Nano-titanium dioxide (nano-TiO2) with PDI characteristics has attracted the interest of many researchers with its elevated efficiency, broad-spectrum antibacterial resistance, low cost, safety, and non-toxicity. Nano-TiO2 photodynamic antibacterial properties have been studied extensively and has a great application value in the field of food packaging. The antibacterial properties of nano-TiO2 are linked to its photocatalytic activity and are influenced by factors such as reactive oxygen species production, bacterial types, etc. Polymer-based nano-TiO2 packaging has been prepared using various methods and applied in various foods successfully. In this review, the latest research on photocatalytic and antibacterial mechanisms and factors of nano-TiO2 is discussed, and its applications in food antibacterial packaging are also explored comprehensively. Challenges and future perspectives for nano-TiO2-based food packaging applications have been proposed. This review aims to provide a whole comprehensive understanding of novel antibacterial packaging systems based on nano-TiO2. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Graphical abstract

15 pages, 3134 KiB  
Article
Novel Peptide Analogues of Valorphin-Conjugated 1,8-Naphthalimide as Photodynamic Antimicrobial Agent in Solution and on Cotton Fabric
by Desislava Staneva, Petar Todorov, Stela Georgieva, Petia Peneva and Ivo Grabchev
Molecules 2024, 29(22), 5421; https://doi.org/10.3390/molecules29225421 - 17 Nov 2024
Viewed by 1122
Abstract
For the first time, N-modified analogues of VV-hemorphin-5 (Valorphin) were synthesised and conjugated with three different 4-substitured-1,8-naphthalimides (H-NVal without substituent, Cl-NVal with chloro-substituent, and NO2-NVal with nitro-substituent). Cotton fabric was modified with these peptides by soaking it in their ethanol solution, [...] Read more.
For the first time, N-modified analogues of VV-hemorphin-5 (Valorphin) were synthesised and conjugated with three different 4-substitured-1,8-naphthalimides (H-NVal without substituent, Cl-NVal with chloro-substituent, and NO2-NVal with nitro-substituent). Cotton fabric was modified with these peptides by soaking it in their ethanol solution, and the colourimetric properties of the obtained fabric were measured. The fluorescent analysis shows that peptide immobilisation on a solid matrix as fabric decreases the molecule flexibility and spectrum maxima shift bathocromically with the appearance of a vibrational structure. The peptides’ contact antimicrobial activity, and the resulting fabrics, have been investigated against model Gram-positive B. cereus and Gram-negative P. aeruginos bacteria. For the first time, the influence of light on bacterial inactivation was investigated by antibacterial photodynamic therapy of similar peptides. Slightly more pronounced activity in liquid media and after deposition on the cotton fabric was obtained for the peptide containing 4-nitro-1,8-naphthalimide compared to the other two peptides. Immobilisation of a peptide on the surface of fibres reduces their antimicrobial activity since their mobility is essential for good contact with bacteria. Cotton fabrics can be used in medical practice to produce antibacterial dressings and materials. Full article
Show Figures

Graphical abstract

15 pages, 2563 KiB  
Article
β-Cyclodextrin-Modified Cotton Fabric for Medical and Hospital Applications with Photodynamic Antibacterial Activity Using Methylene Blue
by Helen Beraldo Firmino, Emilly Karoline Tonini Silva Volante, Ana Claudia Pedrozo da Silva, Fabio Alexandre Pereira Scacchetti, Manuel José Lis, Meritxell Martí, Siddanth Saxena, André Luiz Tessaro and Fabrício Maestá Bezerra
Coatings 2024, 14(9), 1100; https://doi.org/10.3390/coatings14091100 - 1 Sep 2024
Cited by 4 | Viewed by 2273
Abstract
The use of cyclodextrins in textiles for the development of biofunctional fabrics represents an interesting alternative for the advancement of dental, medical, and hospital materials. Cyclodextrins can interact with the chemical groups present in cotton fibers, leading to the formation of a nanostructured [...] Read more.
The use of cyclodextrins in textiles for the development of biofunctional fabrics represents an interesting alternative for the advancement of dental, medical, and hospital materials. Cyclodextrins can interact with the chemical groups present in cotton fibers, leading to the formation of a nanostructured surface with specific functional properties, including antibacterial activity. Although there are numerous antibacterial textile finishes, the use of methylene blue as a cyclodextrin host molecule for photodynamic applications in textile materials remains to be investigated. This is because methylene blue is a photosensitive dye capable of generating singlet oxygen (1O2) when illuminated, which inactivates the pathogenic microorganisms that may be present in wounds. The objective of this study was to develop a biofunctionalized and photoactivatable cotton fabric with antimicrobial properties for use in the cosmetic or medical industries. The materials obtained were characterized via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), the determination of cotton fabric functionalization dyeing variables, colorimetry, UV-VIS spectrophotometry, degradation of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA), photodegradation tests, and microbiological analysis. The results showed that the textile was functionalized with β-cyclodextrin, mainly evidenced by the appearance of the band at 1730 cm−1, indicating the formation of the ester group. Thus, when exposed to light, the non-functionalized material showed greater photobleaching, about 60%, compared to the material treated with cyclodextrin. This result was also reflected in the ABDA degradation kinetics, with the treated material showing 592.00% (first phase) and 966.20% (second phase) higher degradation than the untreated sample. Finally, the photodynamic activity was determined based on the antimicrobial properties of the textile, showing a reduction of more than 99% without exposure to light and 100% when exposed to light. It is believed that this study could open avenues for future research and the development of antimicrobial fabrics, as well as demonstrate the efficiency of the treatment with cyclodextrin in relation to photobleaching. Full article
Show Figures

Figure 1

17 pages, 3313 KiB  
Article
Photoinactivation of Mycobacterium tuberculosis and Mycobacterium smegmatis by Near-Infrared Radiation Using a Trehalose-Conjugated Heptamethine Cyanine
by Nataliya V. Kozobkova, Michael P. Samtsov, Anatol P. Lugovski, Nikita V. Bel’ko, Dmitri S. Tarasov, Arseny S. Kaprelyants, Alexander P. Savitsky and Margarita O. Shleeva
Int. J. Mol. Sci. 2024, 25(15), 8505; https://doi.org/10.3390/ijms25158505 - 4 Aug 2024
Cited by 1 | Viewed by 1581
Abstract
The spread of multidrug-resistant mycobacterium strains requires the development of new approaches to combat diseases caused by these pathogens. For that, photodynamic inactivation (PDI) is a promising approach. In this study, a tricarbocyanine (TCC) is used for the first time as a near-infrared [...] Read more.
The spread of multidrug-resistant mycobacterium strains requires the development of new approaches to combat diseases caused by these pathogens. For that, photodynamic inactivation (PDI) is a promising approach. In this study, a tricarbocyanine (TCC) is used for the first time as a near-infrared (740 nm) activatable PDI photosensitizer to kill mycobacteria with deep light penetration. For better targeting, a novel tricarbocyanine dye functionalized with two trehalose units (TCC2Tre) is developed. The photodynamic effect of the conjugates against mycobacteria, including Mycobacterium tuberculosis, is evaluated. Under irradiation, TCC2Tre causes more effective killing of mycobacteria compared to the photosensitizer without trehalose conjugation, with 99.99% dead vegetative cells of M. tuberculosis and M. smegmatis. In addition, effective photoinactivation of dormant forms of M. smegmatis is observed after incubation with TCC2Tre. Mycobacteria treated with TCC2Tre are more sensitive to 740 nm light than the Gram-positive Micrococcus luteus and the Gram-negative Escherichia coli. For the first time, this study demonstrates the proof of principle of in vitro PDI of mycobacteria including the fast-growing M. smegmatis and the slow-growing M. tuberculosis using near-infrared activatable photosensitizers conjugated with trehalose. These findings are useful for the development of new efficient alternatives to antibiotic therapy. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Mycobacterial Infection 3.0)
Show Figures

Figure 1

12 pages, 4551 KiB  
Article
With Blue Light against Biofilms: Berberine as Natural Photosensitizer for Photodynamic Inactivation of Human Pathogens
by Annette Wimmer, Michael Glueck, Jun Liu, Michael Fefer and Kristjan Plaetzer
Photonics 2024, 11(7), 647; https://doi.org/10.3390/photonics11070647 - 8 Jul 2024
Cited by 1 | Viewed by 1928
Abstract
Evolving antibiotic resistance of bacteria is a prevailing global challenge in health care and requires the development of safe and efficient alternatives to classic antibiotics. Photodynamic Inactivation (PDI) has proven to be a promising alternative for treatment of a broad range of microorganisms. [...] Read more.
Evolving antibiotic resistance of bacteria is a prevailing global challenge in health care and requires the development of safe and efficient alternatives to classic antibiotics. Photodynamic Inactivation (PDI) has proven to be a promising alternative for treatment of a broad range of microorganisms. Photodynamic Inactivation uses photoactive molecules that generate reactive oxygen species (ROS) upon illumination and in the presence of oxygen, which immediately kill pathogenic target organisms. Relevant photoactive properties are provided by berberine. Originally extracted from Barberry (Berberis vulgaris), it is a natural compound widely used in Traditional Chinese Medicine for its antimicrobial and anti-inflammatory effects. With this study, we demonstrated the potential of berberine chloride hydrate (Ber) as a photosensitizer for PDI of important human pathogens, Gram(+) Staphylococcus capitis subsp. capitis, Gram(+) Staphylococcus aureus, and Gram(−) Escherichia coli. In vitro experiments on planktonic and biofilm cultures were conducted focusing on Ber activated with visible light in the blue wavelength range. The number of planktonic S. capitis cells was reduced by 7 log10 steps using 100 µM Ber (5 min incubation, illumination with 435 nm LED array, radiant exposure 25 J/cm2). For an antibacterial effect of 4 log10 steps, static S. capitis biofilms required 1 mM Ber, a drug-to-light interval of 60 min, and illumination with 100 J/cm2. Almost all planktonic cells of Staphylococcus aureus could be photokilled using 100 µM Ber (drug-to-light interval of 30 min, radiant exposure 25 J/cm2). Biofilms of S. aureus could be phototreated (3 log10 steps inactivation) when using 1 mM Ber incubated for 5 min and photoactivated with 100 J/cm2. The study is highlighted by the proof that PDI treatment using Ber showed an antibacterial effect on Gram(−) E. coli. Planktonic cells could be reduced by 3 log10 steps with 100 µM Ber (5 min incubation, 435 nm, 25 J/cm2). With 5 mM ethylenediamine tetraacetic acid disodium salt dihydrate (Na2EDTA) or 1.2% polyaspartic acid (PASA) in addition, a relative inactivation of 4 log10 steps and 7 log10 steps, respectively, was detectable. Furthermore, we showed that an antibacterial effect of 3.4 log10 towards E. coli biofilms was given when using 1 mM Ber (5 min incubation, 435 nm, 100 J/cm2). These results underscore the significance of PDI-treatment with Ber as a natural compound in combination with blue light as valuable antimicrobial application. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

16 pages, 3624 KiB  
Article
Photodynamic and Antibacterial Assessment of Gold Nanoparticles Mediated by Gold (III) Chloride Trihydrate and Sodium Citrate under Alkaline Conditions
by Chien-Wei Cheng, Shwu-Yuan Lee, Tang-Yu Chen, Ching-Chuan Chen, Hsien-Tsung Tsai, Hsuan-Han Huang, Jeu-Ming P. Yuann and Ji-Yuan Liang
Materials 2024, 17(13), 3157; https://doi.org/10.3390/ma17133157 - 27 Jun 2024
Viewed by 1092
Abstract
Sodium citrate (SC) is sensitive to violet light illumination (VLI) and acts as a weak reductant. Conversely, gold (III) chloride trihydrate (GC) often acts as an oxidant in a redox reaction. In this study, the influences of colored light on the production of [...] Read more.
Sodium citrate (SC) is sensitive to violet light illumination (VLI) and acts as a weak reductant. Conversely, gold (III) chloride trihydrate (GC) often acts as an oxidant in a redox reaction. In this study, the influences of colored light on the production of gold nanoparticles (AuNPs) in a mixture of gold (III) ions and citrate via VLI and the antibacterial photodynamic inactivation (aPDI) of Escherichia coli (E. coli) are determined under alkaline conditions. The diameter of AuNPs is within the range of 3–15 nm, i.e., their mean diameter is 9 nm; when citrate is mixed with gold (III) ions under VLI, AuNPs are formed via an electron transfer process. Additionally, GC mixed with SC (GCSC) inhibits E. coli more effectively under VLI than it does under blue, green, or red light. GCSC and SC are shown to inhibit E. coli populations by 4.67 and 1.12 logs, respectively, via VLI at 10 W/m2 for 60 min under alkaline conditions. GCSC-treated E. coli has a more significant photolytic effect on anionic superoxide radical (O2) formation under VLI, as more O2 is formed within E. coli if the GCSC-treated samples are subjected to VLI. The O2 exhibits a greater effect in a solution of GCSC than that shown by SC alone under VLI treatment. Gold (III) ions in a GCSC system appear to act as an oxidant by facilitating the electron transfer from citrate under VLI and the formation of AuNPs and O2 via GCSC photolysis under alkaline conditions. As such, the photolysis of GCSC under VLI is a useful process that can be applied to aPDI. Full article
Show Figures

Graphical abstract

11 pages, 4702 KiB  
Article
Erythrosine–Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging
by Shih-Chen Shi, Sing-Wei Ouyang and Dieter Rahmadiawan
Polymers 2024, 16(7), 960; https://doi.org/10.3390/polym16070960 - 1 Apr 2024
Cited by 14 | Viewed by 1719
Abstract
Though paper is an environmentally friendly alternative to plastic as a packaging material, it lacks antibacterial properties, and some papers have a low resistance to oil or water. In this study, a multifunctional paper-coating material was developed to reduce the use of plastic [...] Read more.
Though paper is an environmentally friendly alternative to plastic as a packaging material, it lacks antibacterial properties, and some papers have a low resistance to oil or water. In this study, a multifunctional paper-coating material was developed to reduce the use of plastic packaging and enhance paper performance. Natural cellulose nanocrystals (CNCs) with excellent properties were used as the base material for the coating. The CNCs were functionalized into dialdehyde CNCs (DACNCs) through periodate oxidation. The DACNCs were subsequently complexed using erythrosine as a photosensitizer to form an erythrosine–CNC composite (Ery-DACNCs) with photodynamic inactivation. The Ery-DACNCs achieved inactivations above 90% after 30 min of green light irradiation and above 85% after 60 min of white light irradiation (to simulate real-world lighting conditions), indicating photodynamic inactivation effects. The optimal parameters for a layer-by-layer dip coating of kraft paper with Ery-DACNCs were 4.5-wt% Ery-DACNCs and 15 coating layers. Compared to non-coated kraft paper and polyethylene-coated paper, the Ery-DACNC-coated paper exhibited enhanced mechanical properties (an increase of 28% in bursting strength). More than 90% of the bacteria were inactivated after 40 min of green light irradiation, and more than 80% were inactivated after 60 min of white light irradiation. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

32 pages, 5561 KiB  
Review
On the Possibility of Using 5-Aminolevulinic Acid in the Light-Induced Destruction of Microorganisms
by Anna Zdubek and Irena Maliszewska
Int. J. Mol. Sci. 2024, 25(7), 3590; https://doi.org/10.3390/ijms25073590 - 22 Mar 2024
Cited by 8 | Viewed by 2648
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This [...] Read more.
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This review summarizes the recent progress in understanding the biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts. The effectiveness of 5-ALA-aPDI in destroying various groups of pathogens (viruses, fungi, yeasts, parasites) was presented, but greater attention was focused on the antibacterial activity of this technique. Finally, the clinical applications of 5-ALA in therapies using 5-ALA and visible light (treatment of ulcers and disinfection of dental canals) were described. Full article
(This article belongs to the Special Issue New Types of Antimicrobial Biocides)
Show Figures

Figure 1

17 pages, 679 KiB  
Review
Photodynamic Action of Curcumin and Methylene Blue against Bacteria and SARS-CoV-2—A Review
by Siu Kan Law, Albert Wing Nang Leung and Chuanshan Xu
Pharmaceuticals 2024, 17(1), 34; https://doi.org/10.3390/ph17010034 - 25 Dec 2023
Cited by 14 | Viewed by 5604
Abstract
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are [...] Read more.
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are no therapeutics that can avert this form of illness, and photodynamic therapy (PDT) may be an alternative approach against SARS-CoV-2. Curcumin and methylene blue have been approved and used in clinical practices as a photosensitizer in PDT for a long time with their anti-viral properties and for disinfection through photo-inactivated SARS-CoV-2. Previously, curcumin and methylene blue with antibacterial properties have been used against Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). Methods: To conduct a literature review, nine electronic databases were researched, such as WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any regard to language constraints. In vitro and in vivo studies were included that evaluated the effect of PDT mediated via curcumin or methylene blue to combat bacteria and SARS-CoV-2. All eligible studies were analyzed and summarized in this review. Results: Curcumin and methylene blue inhibited the replication of SARS-CoV-2. The reactive oxygen species (ROS) are generated during the treatment of PDT with curcumin and methylene blue to prevent the attachment of SARS-CoV-2 on the ACE2 receptor and damage to the nucleic acids either DNA or RNA. It also modulates pro-inflammatory cytokines and attenuates the clotting effects of the host response. Conclusion: The photodynamic action of curcumin and methylene blue provides a possible approach against bacteria and SARS-CoV-2 infection because they act as non-toxic photosensitizers in PDT with an antibacterial effect, anti-viral properties, and disinfection functions. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2023)
Show Figures

Graphical abstract

30 pages, 7511 KiB  
Review
Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy
by Inga O. Savelyeva, Kseniya A. Zhdanova, Margarita A. Gradova, Oleg V. Gradov and Natal’ya A. Bragina
Curr. Issues Mol. Biol. 2023, 45(12), 9793-9822; https://doi.org/10.3390/cimb45120612 - 6 Dec 2023
Cited by 15 | Viewed by 3185
Abstract
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass [...] Read more.
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity. Full article
(This article belongs to the Special Issue Advanced Research in Antimicrobial and Antiviral Drugs)
Show Figures

Figure 1

10 pages, 798 KiB  
Article
The Impact of Low-Level Benzalkonium Chloride Exposure on Staphylococcus spp. Strains and Control by Photoinactivation
by Erika C. R. Bonsaglia, Gustavo H. Calvo, Daniel O. Sordelli, Nathalia C. C. Silva, Vera L. M. Rall, Adriana Casas and Fernanda Buzzola
Antibiotics 2023, 12(8), 1244; https://doi.org/10.3390/antibiotics12081244 - 28 Jul 2023
Cited by 2 | Viewed by 2618
Abstract
Exposure of bacteria to low concentrations of biocides can facilitate horizontal gene transfer, which may lead to bacterial adaptive responses and resistance to antimicrobial agents. The emergence of antibacterial resistance not only poses a significant concern to the dairy industry but also adds [...] Read more.
Exposure of bacteria to low concentrations of biocides can facilitate horizontal gene transfer, which may lead to bacterial adaptive responses and resistance to antimicrobial agents. The emergence of antibacterial resistance not only poses a significant concern to the dairy industry but also adds to the complexity and cost of mastitis treatment. This study was aimed to evaluate how selective stress induced by benzalkonium chloride (BC) promotes antibiotic non-susceptibility in Staphylococcus spp. In addition, we investigated the efficacy of photodynamic inactivation (PDI) in both resistant and susceptible strains. The study determined the minimum inhibitory concentration (MIC) of BC using the broth microdilution method for different Staphylococcus strains. The experiments involved pairing strains carrying the qacA/qacC resistance genes with susceptible strains and exposing them to subinhibitory concentrations of BC for 72 h. The recovered isolates were tested for MIC BC and subjected to disc diffusion tests to assess changes in susceptibility patterns. The results demonstrated that subinhibitory concentrations of BC could select strains with reduced susceptibility and antibiotic resistance, particularly in the presence of S. pasteuri. The results of PDI mediated by toluidine blue (100 µM) followed by 60 min irradiation (total light dose of 2.5 J/cm2) were highly effective, showing complete inactivation for some bacterial strains and a reduction of up to 5 logs in others. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Veterinary Science)
Show Figures

Figure 1

27 pages, 6239 KiB  
Review
Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels
by Zhijun Wang, Lili Fu, Dongliang Liu, Dongxu Tang, Kun Liu, Lu Rao, Jinyu Yang, Yi Liu, Yuesheng Li, Huangqin Chen and Xiaojie Yang
Gels 2023, 9(7), 571; https://doi.org/10.3390/gels9070571 - 13 Jul 2023
Cited by 4 | Viewed by 2601
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, [...] Read more.
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Figure 1

Back to TopTop