Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (838)

Search Parameters:
Keywords = anti-alzheimer activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2128 KiB  
Article
Central Insulin-Like Growth Factor-1-Induced Anxiolytic and Antidepressant Effects in a Rat Model of Sporadic Alzheimer’s Disease Are Associated with the Peripheral Suppression of Inflammation
by Joanna Dunacka, Beata Grembecka and Danuta Wrona
Cells 2025, 14(15), 1189; https://doi.org/10.3390/cells14151189 - 1 Aug 2025
Viewed by 246
Abstract
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with [...] Read more.
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with IGF-1 in a rat model of streptozotocin (STZ)-induced neuroinflammation can prevent the emergence of anhedonia and anxiety-like behavior by impacting the peripheral inflammatory responses. (2) Male Wistar rats were subjected to double ICVSTZ (total dose: 3 mg/kg) and ICVIGF-1 injections (total dose: 2 µg). We analyzed the level of anhedonia (sucrose preference), anxiety (elevated plus maze), peripheral inflammation (hematological and cytometric measurement of leukocyte populations, interleukin (IL)-6), and corticosterone concentration at 7 (very early stage, VES), 45 (early stage, ES), and 90 days after STZ injections (late stage, LS). (3) We found that ICVIGF-1 administration reduces behavioral symptoms: anhedonia (ES and LS) and anxiety (VES, ES), and peripheral inflammation: number of leukocytes, lymphocytes, T lymphocytes, monocytes, granulocytes, IL-6, and corticosterone concentration (LS) in the rat model of sAD. (4) The obtained results demonstrate beneficial effects of central IGF-1 administration on neuropsychiatric symptoms and peripheral immune system activation during disease progression in the rat model of sAD. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

23 pages, 2164 KiB  
Article
Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea
by Veysel Tahiroglu, Hasan Karagecili, Kubra Aslan and İlhami Gulcin
Life 2025, 15(8), 1209; https://doi.org/10.3390/life15081209 - 29 Jul 2025
Viewed by 354
Abstract
The genera Allium (Liliaceae) and Anchusa (Boraginaceae) are flowering plant genera with a rich diversity, also including the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species. The antioxidant, anti-Alzheimer’s disease (AD), antidiabetic, and antiglaucoma effects of [...] Read more.
The genera Allium (Liliaceae) and Anchusa (Boraginaceae) are flowering plant genera with a rich diversity, also including the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species. The antioxidant, anti-Alzheimer’s disease (AD), antidiabetic, and antiglaucoma effects of the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species, which are commonly eaten foods in the Southeast of Türkiye in the treatment of several diseases, were studied. To interpret the antioxidant capacities of ethanol extract of two plant species, aerial parts were analyzed by ABTS and DPPH assays. The IC50 values of A. kharputense and A. azurea ethanol and water extracts for ABTS•+ activities were recorded in the range of 30.93 to 33.94 µg/mL and 33.45 to 33.78 µg/mL, respectively. Also, DPPH activities were measured at 30.78 to 36.87 µg/mL and 31.67 to 32.45 µg/mL, respectively. The best of the IC50 values was measured in the ethanol extract of A. kharputense as 30.78 µg/mL for DPPH scavenging activity. The total phenolic and flavonoid quantities in A. kharputense and A. azurea plants were measured. The highest phenolic and flavonoid contents of A. kharputense and A. azurea species were recorded in amounts of 445.52 and 327.35 mg GAE/g in ethanol extracts, respectively, and 332.88 and 234.03 mg QE/g in ethanol extracts, respectively. The effects of A. kharputense and A. azurea on diabetes, AD, and glaucoma were studied on the target enzymes of diseases. The most efficient IC50 values were recorded at 10.72 μg/mL against α-glycosidase, 35.01 μg/mL against AChE, 38.05 μg/mL against BChE, 9.21 μg/mL towards hCA I, and 81.02 μg/mL towards hCA II isoenzymes. The kinds and amounts of phenolic compounds in A. kharputense and A. azurea were determined using LC-MS/MS against 53 standards. A. kharputense and A. azurea plants have prospective use in enhancing glaucoma, diabetes, AD, Parkinson’s disease, epilepsy, and cancerous disorders. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

23 pages, 8937 KiB  
Article
Neuro-Cells Mitigate Amyloid Plaque Formation and Behavioral Deficits in the APPswe/PS1dE9 Model of Alzheimer Disease While Also Reducing IL-6 Production in Human Monocytes
by Johannes de Munter, Kirill Chaprov, Ekkehard Lang, Kseniia Sitdikova, Erik Ch. Wolters, Evgeniy Svirin, Aliya Kassenova, Andrey Tsoy, Boris W. Kramer, Sholpan Askarova, Careen A. Schroeter, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(15), 1168; https://doi.org/10.3390/cells14151168 - 29 Jul 2025
Viewed by 184
Abstract
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in [...] Read more.
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in models of central nervous system (CNS) injury and neurodegeneration. Here, we studied the effects of NC in APPswe/PS1dE9 mice, an AD mouse model. Twelve-month-old APPswe/PS1dE9 mice or their wild-type littermates were injected with NC or vehicle into the cisterna magna. Five to six weeks post-injection, cognitive, locomotor, and emotional behaviors were assessed. The brain was stained for amyloid plaque density using Congo red, and for astrogliosis using DAPI and GFAP staining. Gene expression of immune activation markers (Il-1β, Il-6, Cd45, Tnf) and plasticity markers (Tubβ3, Bace1, Trem2, Stat3) was examined in the prefrontal cortex. IL-6 secretion was measured in cultured human monocytes following endotoxin challenge and NC treatment. Untreated APPswe/PS1dE9 mice displayed impaired learning in the conditioned taste aversion test, reduced object exploration, and anxiety-like behavior, which were improved in the NC-treated mutants. NC treatment normalized the expression of several immune and plasticity markers and reduced the density of GFAP-positive cells in the hippocampus and thalamus. NC treatment decreased amyloid plaque density in the hippocampus and thalamus, targeting plaques of <100 μm2. Additionally, NC treatment suppressed IL-6 secretion by human monocytes. Thus, NC treatment alleviated behavioral deficits and reduced amyloid plaque formation in APPswe/PS1dE9 mice, likely via anti-inflammatory mechanisms. The reduction in IL-6 production in human monocytes further supports the potential of NC therapy for the treatment of AD. Full article
Show Figures

Figure 1

38 pages, 2987 KiB  
Review
Benzothiazole-Based Therapeutics: FDA Insights and Clinical Advances
by Subba Rao Cheekatla
Chemistry 2025, 7(4), 118; https://doi.org/10.3390/chemistry7040118 - 25 Jul 2025
Viewed by 816
Abstract
Benzothiazole derivatives have emerged as being highly significant in drug discovery due to their versatile biological activities and structural adaptability. Incorporating nitrogen and sulfur, this fused heterocyclic scaffold exhibits wide-ranging pharmacological properties, including anticancer, antimicrobial, anti-inflammatory, antidiabetic, neuroprotective, and diagnostic applications. A diverse [...] Read more.
Benzothiazole derivatives have emerged as being highly significant in drug discovery due to their versatile biological activities and structural adaptability. Incorporating nitrogen and sulfur, this fused heterocyclic scaffold exhibits wide-ranging pharmacological properties, including anticancer, antimicrobial, anti-inflammatory, antidiabetic, neuroprotective, and diagnostic applications. A diverse set of clinically approved and investigational compounds, such as flutemetamol for Alzheimer’s diagnosis, riluzole for ALS, and quizartinib for AML, illustrates the scaffold’s therapeutic potential in varied applications. These agents act via mechanisms such as enzyme inhibition, receptor modulation, and amyloid imaging, demonstrating the scaffold’s high binding affinity and target specificity. Advances in synthetic strategies and our understanding of structure–activity relationships (SARs) continue to drive the development of novel benzothiazole-based therapeutics with improved potency, selectivity, and safety profiles. We also emphasize recent in vitro and in vivo studies, including drug candidates in clinical trials, to provide a comprehensive perspective on the therapeutic potential of benzothiazole-based compounds in modern drug discovery. This review brings together recent progress to help guide the development of new benzothiazole-based compounds for future therapeutic applications. Full article
Show Figures

Graphical abstract

18 pages, 2018 KiB  
Article
Engineered Glibenclamide-Loaded Nanovectors Hamper Inflammasome Activation in an Ex Vivo Alzheimer’s Disease Model—A Novel Potential Therapy for Neuroinflammation: A Pilot Study
by Francesca La Rosa, Simone Agostini, Elisabetta Bolognesi, Ivana Marventano, Roberta Mancuso, Franca Rosa Guerini, Ambra Hernis, Lorenzo Agostino Citterio, Federica Piancone, Pietro Davide Trimarchi, Jorge Navarro, Federica Rossetto, Arianna Amenta, Pierfausto Seneci, Silvia Sesana, Francesca Re, Mario Clerici and Marina Saresella
Biomolecules 2025, 15(8), 1074; https://doi.org/10.3390/biom15081074 - 24 Jul 2025
Viewed by 285
Abstract
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this [...] Read more.
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this pilot study we verified with ex vivo experiments whether a glibenclamide-loaded nanovector (GNV) could reduce the NLRP3-inflammasome cascade in cells of AD patients. Monocytes isolated from healthy controls (HC) and AD patients were cultured in medium, alone or stimulated with LPS + nigericin in presence/absence of GNV. ASC-speck positive cells and inflammasome-related genes, proteins, and miRNAs expressions were measured. The polymorphisms of ApoE (Apolipoprotein E), specifically rs7412 and rs429358, as well as those of NLRP3, namely rs35829419, rs10733113, and rs4925663, were also investigated. Results: Results showed that ASC-speck+ cells and Caspase-1, IL-1β, and IL-18 production was significantly reduced (p < 0.005 in all cases) by GNV in LPS + nigericin-stimulated cells of both AD and HC. Notably, the NLRP3 rs10733113 AG genotype was associated with excessive inflammasome-related gene and protein expression. GNV significantly down-regulates inflammasome activation in primary monocytes, at least at protein levels, and its efficacy seems to partially depend on the presence of the NLRP3 rs10733113 genotype. Conclusions: All together, these results showed that GNV is able to dampen inflammation and NLRP-3 inflammasome activation in an ex vivo monocyte model, suggesting a possible role for GNV in controlling AD-associated neuroinflammation. Full article
Show Figures

Figure 1

24 pages, 2082 KiB  
Review
Exploring the Pharmacological Landscape of Undaria pinnatifida: Insights into Neuroprotective Actions and Bioactive Constituents
by Helena Machado, Jorge Pereira Machado, Christian Alves, Cristina Soares, Clara Grosso, Jorge Magalhães Rodrigues and Maria Begoña Criado
Nutraceuticals 2025, 5(3), 20; https://doi.org/10.3390/nutraceuticals5030020 - 24 Jul 2025
Viewed by 410
Abstract
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional [...] Read more.
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional diet and is generally regarded as a “healthy longevity food.” Consequently, it represents one of the most promising natural sources of biomedicinal and bioactive products. This review aims to synthesize current scientific evidence on the pharmacologically active compounds of U. pinnatifida, emphasizing their mechanisms of action and therapeutic potential in neurodegenerative and chronic diseases. This narrative review is based on a comprehensive literature search of peer-reviewed articles from scientific databases, focusing on studies addressing the pharmacological properties of U. pinnatifida and its major bioactive constituents. Recent research highlights that compounds such as fucoxanthin (a carotenoid), fucosterol (a sterol), fucoidan (a polysaccharide), alginate, and dietary fiber found in U. pinnatifida possess significant potential for developing treatments for conditions including goitre, urinary diseases, scrofula, dropsy, stomach ailments, and hemorrhoids. Moreover, these compounds exhibit remarkable pharmacological properties, including immunomodulation, antitumor, antiviral, antioxidant, antidiabetic, anti-inflammatory, anticoagulant, antithrombotic, and antibacterial activities, all with low toxicity and minimal side effects. Additionally, U. pinnatifida shows promise in the treatment or prevention of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, as well as neuropsychiatric conditions like depression, supported by its antioxidant effects against oxidative stress and neuroprotective activities. Numerous in vitro and in vivo studies have confirmed that U. pinnatifida polysaccharides (UPPs), particularly fucoidans, exhibit significant biological activities. Thus, accumulating evidence positions UPPs as promising therapeutic agents for a variety of diseases. Full article
Show Figures

Figure 1

19 pages, 753 KiB  
Review
Neuroprotective Role of Omega-3 Fatty Acids: Fighting Alzheimer’s Disease
by Mervin Chávez-Castillo, María Paula Gotera, Pablo Duran, María P. Díaz, Manuel Nava, Clímaco Cano, Edgar Díaz-Camargo, Gabriel Cano, Raquel Cano, Diego Rivera-Porras and Valmore Bermúdez
Molecules 2025, 30(15), 3057; https://doi.org/10.3390/molecules30153057 - 22 Jul 2025
Viewed by 600
Abstract
Alzheimer’s disease (AD) is one of the main causes of dementia, with an exponential increment in its incidence as years go by. However, since pathophysiological mechanisms are complex and multifactorial, therapeutic strategies remain inconclusive and only provide symptomatic relief to patients. In order [...] Read more.
Alzheimer’s disease (AD) is one of the main causes of dementia, with an exponential increment in its incidence as years go by. However, since pathophysiological mechanisms are complex and multifactorial, therapeutic strategies remain inconclusive and only provide symptomatic relief to patients. In order to solve this problem, new strategies have been investigated over recent years for AD treatment. This field has been reborn due to epidemiological and preclinical findings that demonstrate the fact that omega-3 polyunsaturated fatty acids (ω-3 PUFAs) can be promising therapeutic agents because of their anti-inflammatory, antioxidant, and neurogenic-promoting activities, thus allowing us to classify these molecules as neuroprotectors. Similarly, ω-3 PUFAs perform important actions in the formation of characteristic AD lesions, amyloid-β plaques (Aβ) and neurofibrillary tangles, reducing the development of these structures. Altogether, the aforementioned actions hinder cognitive decline and possibly reduce AD development. In addition, ω-3 PUFAs modulate the inflammatory response by inhibiting the production of pro-inflammatory molecules and promoting the synthesis of specialised pro-resolving mediators. Consequently, the present review assesses the mechanisms by which ω-3 PUFAs can act as therapeutic molecules and the effectiveness of their use in patients. Clinical evidence so far has shown promising results on ω-3 PUFA effects, both in animal and epidemiological studies, but remains contradictory in clinical trials. More research on these molecules and their neuroprotective effects in AD is needed, as well as the establishment of future guidelines to obtain more reproducible results on this matter. Full article
Show Figures

Figure 1

19 pages, 1204 KiB  
Review
Immunomodulatory Effects of RAAS Inhibitors: Beyond Hypertension and Heart Failure
by Raluca Ecaterina Haliga, Elena Cojocaru, Oana Sîrbu, Ilinca Hrițcu, Raluca Elena Alexa, Ioana Bianca Haliga, Victorița Șorodoc and Adorata Elena Coman
Biomedicines 2025, 13(7), 1779; https://doi.org/10.3390/biomedicines13071779 - 21 Jul 2025
Viewed by 485
Abstract
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use [...] Read more.
The renin–angiotensin–aldosterone system (RAAS) plays a central role in cardiovascular and renal homeostasis and is increasingly recognized for its broad immunomodulatory effects. Pharmacological RAAS inhibition, primarily via angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), has demonstrated therapeutic value beyond its use in hypertension and heart failure, extending to autoimmune, infectious, oncologic, and neurodegenerative conditions. ACEIs and ARBs modulate both innate and adaptive immune responses through Ang II-dependent and -independent mechanisms, influencing macrophage polarization, T-cell differentiation, cytokine expression, and antigen presentation. Notably, ACEIs exhibit Ang II-independent effects by enhancing antigen processing and regulating amyloid-β metabolism, offering potential neuroprotective benefits in Alzheimer’s disease. ARBs, particularly telmisartan and candesartan, provide additional anti-inflammatory effects via PPARγ activation. In cancer, RAAS inhibition affects tumor growth, angiogenesis, and immune surveillance, with ACEIs and ARBs showing distinct yet complementary impacts on tumor microenvironment modulation and chemotherapy cardioprotection. Moreover, ACEIs have shown promise in autoimmune myocarditis, colitis, and diabetic nephropathy by attenuating inflammatory cytokines. While clinical evidence supports the use of centrally acting ACEIs to treat early cognitive decline, further investigation is warranted to determine the long-term outcomes across disease contexts. These findings highlight the evolving role of RAAS inhibitors as immunomodulatory agents with promising implications across multiple systemic pathologies. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology, 2nd Edition)
Show Figures

Figure 1

23 pages, 1102 KiB  
Review
Protective Potential of Satureja montana-Derived Polyphenols in Stress-Related Central Nervous System Disorders, Including Dementia
by Stela Dragomanova, Lyubka Tancheva, Silviya Abarova, Valya B. Grigorova, Valentina Gavazova, Dana Stanciu, Svetlin Tzonev, Vladimir Prandjev and Reni Kalfin
Curr. Issues Mol. Biol. 2025, 47(7), 556; https://doi.org/10.3390/cimb47070556 - 17 Jul 2025
Viewed by 314
Abstract
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental [...] Read more.
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental health is affected by the nature and quality of dietary consumption. Results: Ethnopharmacological research underscores the potential of SM in influencing various chronic ailments, including depression and anxiety. This plant is distinguished by a rich variety of secondary metabolites that display a broad spectrum of biological activities, such as antioxidant, antidiabetic, anti-inflammatory, analgesic, antibacterial, antiviral, and antifungal effects. Particularly, two of its active phenolic compounds, rosmarinic acid and carvacrol, reveal notable anxiolytic and antidepressive properties. This review aims to explore the capacity of SM to improve mental health through its plentiful phenolic components. Recent studies indicate their efficacy in addressing Alzheimer’s-type dementia. A notable correlation exists among depression, anxiety, and cognitive decline, which includes dementia. Considering that Alzheimer’s disease (AD) is a multifaceted condition, it requires multi-targeted therapeutic strategies for both prevention and management. Conclusions: Satureja montana is recognized as potential candidate for both the prevention and management of various mental health disorders, including dementia. Full article
Show Figures

Graphical abstract

35 pages, 3582 KiB  
Review
Polyphenols in the Central Nervous System: Cellular Effects and Liposomal Delivery Approaches
by Mateusz Kaluza, Dominika Ksiazek-Winiarek, Piotr Szpakowski, Joanna Czpakowska, Julia Fijalkowska and Andrzej Glabinski
Int. J. Mol. Sci. 2025, 26(13), 6477; https://doi.org/10.3390/ijms26136477 - 4 Jul 2025
Viewed by 810
Abstract
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and [...] Read more.
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and CREB, and the regulation of neurogenesis and microglial activation. This review focuses on the cell-specific actions of selected polyphenols in neurons, astrocytes, microglia, and oligodendrocytes within the context of Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. A major limitation to the therapeutic use of polyphenols is their poor bioavailability, due to instability, low solubility, and limited blood–brain barrier penetration. Liposomal nanocarriers are explored as promising delivery systems to overcome these barriers. Both conventional and functionalized liposomes (e.g., PEGylated, receptor-targeted) are discussed, alongside in vitro and in vivo studies demonstrating enhanced efficacy compared to free compounds. Intranasal delivery is also presented as a viable alternative to oral administration. Overall, polyphenols offer great potential as neuroprotective agents, and liposome-based delivery platforms have the potential to significantly enhance their clinical potential, provided that key formulation and targeting issues are addressed. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

24 pages, 2490 KiB  
Article
Hydrogen Sulfide (H2S)-Donating Formyl Peptide Receptor 2 (FPR2) Agonists: Design, Synthesis, and Biological Evaluation in Primary Mouse Microglia Culture
by Leonardo Brunetti, Fabio Francavilla, Mauro Niso, Jakub Kosma Frydrych, Ewa Trojan, Igor A. Schepetkin, Liliya N. Kirpotina, Beata Grygier, Krzysztof Łukowicz, Mark T. Quinn, Agnieszka Basta-Kaim, Enza Lacivita and Marcello Leopoldo
Antioxidants 2025, 14(7), 827; https://doi.org/10.3390/antiox14070827 - 4 Jul 2025
Viewed by 588
Abstract
Chronic neuroinflammation and oxidative stress play an important role in the onset and progression of neurodegenerative disorders, including Alzheimer’s disease, which can ultimately lead to neuronal damage and loss. The mechanisms of sustained neuroinflammation and the coordinated chain of events that initiate, modulate, [...] Read more.
Chronic neuroinflammation and oxidative stress play an important role in the onset and progression of neurodegenerative disorders, including Alzheimer’s disease, which can ultimately lead to neuronal damage and loss. The mechanisms of sustained neuroinflammation and the coordinated chain of events that initiate, modulate, and then lead to the resolution of inflammation are increasingly being elucidated, offering alternative approaches for treating pathologies with underlying chronic neuroinflammation. Here, we propose a new multitarget approach to address chronic neuroinflammation and oxidative stress in neurodegenerative disorders by activating the formyl peptide receptor 2 (FPR2) combined with the potentiation of hydrogen sulfide (H2S) release. FPR2 is a key player in the resolution of inflammation because it mediates the effects of several endogenous pro-resolving mediators. At the same time, H2S is an endogenous gaseous transmitter with anti-inflammatory and pro-resolving properties, and it can protect against oxidative stress. Starting from potent FPR2 agonists identified in our laboratories, we prepared hybrid compounds by embedding an H2S-donating moiety within the molecular scaffold of these FPR2 agonists. Following this approach, we identified several compounds that combined potent FPR2 agonism with the ability to release H2S. The release of H2S was assessed in buffer and intracellularly. Compounds 7b and 8b combined potent FPR2 agonist activity, selectivity over FPR1, and the ability to release H2S. Compounds 7b and 8b were next studied in murine primary microglial cells stimulated with lipopolysaccharide (LPS), a widely accepted in vitro model of neuroinflammation. Both compounds were able to counterbalance LPS-induced cytotoxicity and the release of pro-inflammatory (IL-18, IL-6) and anti-inflammatory (IL-10) cytokines induced by LPS stimulation. Full article
Show Figures

Figure 1

28 pages, 4918 KiB  
Article
Foeniculum vulgare Mill. Mitigates Scopolamine-Induced Cognitive Deficits via Antioxidant and Neuroprotective Mechanisms in Zebrafish
by Ion Brinza, Razvan Stefan Boiangiu, Elena Todirascu-Ciornea, Lucian Hritcu and Gabriela Dumitru
Molecules 2025, 30(13), 2858; https://doi.org/10.3390/molecules30132858 - 4 Jul 2025
Viewed by 925
Abstract
Foeniculum vulgare Mill. (Apiaceae) is an aromatic medicinal plant known for its anti-inflammatory, antispasmodic, antiseptic, carminative, diuretic, and analgesic properties. This study aimed to investigate the effects of F. vulgare essential oil (FVEO; 25, 150, and 300 μL/L) on the cognitive performance and [...] Read more.
Foeniculum vulgare Mill. (Apiaceae) is an aromatic medicinal plant known for its anti-inflammatory, antispasmodic, antiseptic, carminative, diuretic, and analgesic properties. This study aimed to investigate the effects of F. vulgare essential oil (FVEO; 25, 150, and 300 μL/L) on the cognitive performance and brain oxidative stress in a scopolamine (SCOP; 100 μM)-induced zebrafish model of cognitive impairment. Additionally, the pharmacokinetic properties and bioactivity profiles of the main FVEO constituents were predicted to be used in silico tools, including SwissADME, pkCSM, PASS online, and ADMETlab 2.0. Behavioral assays, novel tank diving test (NTT), Y-maze, and novel object recognition (NOR) test, were used to evaluate anxiety-like behavior, spatial memory, and recognition memory, respectively. Biochemical assessments of acetylcholinesterase (AChE) activity and oxidative stress biomarkers were also conducted. The results demonstrated that FVEO significantly improved cognitive performance in SCOP-treated zebrafish, normalized AChE activity, and reduced oxidative stress in the brain. These findings suggest the therapeutic potential of FVEO in ameliorating memory impairment and oxidative damage associated with neurodegenerative disorders such as Alzheimer’s disease (AD). Full article
(This article belongs to the Special Issue Novel Compounds in the Treatment of the CNS Disorders, 2nd Edition)
Show Figures

Figure 1

27 pages, 733 KiB  
Review
The Role of Magnesium in Depression, Migraine, Alzheimer’s Disease, and Cognitive Health: A Comprehensive Review
by Péter Varga, Andrea Lehoczki, Mónika Fekete, Tamás Jarecsny, Agata Kryczyk-Poprawa, Virág Zábó, Dávid Major, Vince Fazekas-Pongor, Tamás Csípő and János Tamás Varga
Nutrients 2025, 17(13), 2216; https://doi.org/10.3390/nu17132216 - 4 Jul 2025
Viewed by 2945
Abstract
Magnesium is an essential mineral involved in hundreds of biochemical reactions, with particular relevance to maintaining neural homeostasis, modulating neurotransmitter systems, and regulating inflammatory and oxidative stress mechanisms. This comprehensive review aims to evaluate the potential role of magnesium in the pathophysiology and [...] Read more.
Magnesium is an essential mineral involved in hundreds of biochemical reactions, with particular relevance to maintaining neural homeostasis, modulating neurotransmitter systems, and regulating inflammatory and oxidative stress mechanisms. This comprehensive review aims to evaluate the potential role of magnesium in the pathophysiology and treatment of three prevalent neurological and psychiatric disorders—depression, migraine, and Alzheimer’s disease—as well as its broader implications for cognitive health. Current research suggests that magnesium deficiency is associated with the development of depression, as magnesium influences glutamatergic and GABAergic neurotransmission, as well as the activity of the hypothalamic–pituitary–adrenal (HPA) axis, both of which play critical roles in stress responses and mood regulation. Additionally, magnesium’s anti-inflammatory properties may contribute to the alleviation of depressive symptoms. In the context of migraine’s pathophysiology, magnesium plays a role in regulating cerebral vascular tone, modulating the trigeminovascular system, and reducing neuronal hyperexcitability, which may explain the observed correlation between magnesium levels and the incidence of migraines. Regarding Alzheimer’s disease, preclinical and epidemiological studies suggest that magnesium may contribute to modulating neurodegenerative processes and preserving cognitive function; however, due to the heterogeneity of the current findings, further longitudinal and interventional studies are necessary to determine its precise clinical relevance. This review aims to enhance the understanding of the relationship between magnesium and these disorders through a narrative review of relevant clinical studies. The findings may provide insights into the potential therapeutic applications of magnesium and guide the future directions of the research into the prevention and treatment of depression, migraine, and Alzheimer’s disease and overall cognitive health. Full article
(This article belongs to the Special Issue The Role of Magnesium Status in Human Health)
Show Figures

Figure 1

25 pages, 6990 KiB  
Article
Study on the Pharmacological Efficacy and Mechanism of Dual-Target Liposome Complex AD808 Against Alzheimer’s Disease
by Chang Liu, Xiaoqing Wang, Wei Xu, Songli Yu, Yueru Zhang, Qiming Xu and Xiangshi Tan
Pharmaceuticals 2025, 18(7), 977; https://doi.org/10.3390/ph18070977 - 29 Jun 2025
Viewed by 540
Abstract
Background/Objectives: To study the efficacy and pharmacological mechanism of the dual-target liposome complex AD808 in the treatment of Alzheimer’s disease. Methods: Using APP/PS1 mouse models, the therapeutic efficacy and pharmacological mechanism of AD808 on Alzheimer’s disease were studied through water maze [...] Read more.
Background/Objectives: To study the efficacy and pharmacological mechanism of the dual-target liposome complex AD808 in the treatment of Alzheimer’s disease. Methods: Using APP/PS1 mouse models, the therapeutic efficacy and pharmacological mechanism of AD808 on Alzheimer’s disease were studied through water maze tests, brain tissue staining, immunofluorescence, and ELISA for inflammatory and neurotrophic factors. Results: AD808 exhibited significant pharmacodynamic effects in improving behavioral and cognitive abilities (70% reduction in escape latency) and repairing damaged nerve cells (90% reduction in Aβ plaque) in Alzheimer’s disease mice. The efficacy of the liposome complex AD808 was significantly better than that of ST707 or gh625-Zn7MT3 alone. AD808 significantly reduced brain inflammation (57.3% and 61.5% reductions in TNF-α and IL-1β, respectively) in AD (Alzheimer’s disease) mouse models and promoted the upregulation of neurotrophic factors and nerve growth factors (142.8% increase in BDNF, 275.9% in GDNF, and 111.3% in NGF-1) in brain homogenates. By activating the PI3K/AKT signaling pathway in brain microglia, AD808 upregulated TREM2 protein expression and removed Aβ amyloid plaques in the brain. Additionally, it promoted the transition of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, regulated the M1/M2 balance, released anti-inflammatory and neurotrophic factors, reduced chronic inflammation, and enhanced neurological repair. Based on these results, the potential pharmacological mechanism of AD808 against Alzheimer’s disease was proposed. Conclusions: As a dual-target liposome complex, AD808 has shown promising therapeutic potential in the treatment of Alzheimer’s disease, providing a new strategy for innovative drug development. Full article
(This article belongs to the Special Issue Pharmacotherapy for Alzheimer’s Disease)
Show Figures

Figure 1

25 pages, 11349 KiB  
Article
Uric Acid, the End-Product of Purine Metabolism, Mitigates Tau-Related Abnormalities: Comparison with DOT, a Non-Antibiotic Oxytetracycline Derivative
by Bianca Andretto de Mattos, Rodrigo Hernán Tomas-Grau, Thaís Antonia Alves Fernandes, Florencia González-Lizárraga, Aurore Tourville, Ismaila Ciss, Jean-Michel Brunel, Rosana Chehin, Annie Lannuzel, Laurent Ferrié, Rita Raisman-Vozari, Bruno Figadère, Elaine Del Bel and Patrick Pierre Michel
Biomolecules 2025, 15(7), 941; https://doi.org/10.3390/biom15070941 - 28 Jun 2025
Viewed by 415
Abstract
We aimed to simulate tau abnormalities—specifically hyperphosphorylation and aggregation—that are hallmarks of tauopathies, including Alzheimer’s disease, to evaluate tau-targeting therapies. To model pathological p-tau accumulation at early disease stages, we exposed mouse cortical cultures to redox-active iron from hemin (Hm), a breakdown product [...] Read more.
We aimed to simulate tau abnormalities—specifically hyperphosphorylation and aggregation—that are hallmarks of tauopathies, including Alzheimer’s disease, to evaluate tau-targeting therapies. To model pathological p-tau accumulation at early disease stages, we exposed mouse cortical cultures to redox-active iron from hemin (Hm), a breakdown product of hemoglobin, or challenged them with the excitatory neurotransmitter glutamate. Using the AT8 phospho-specific antibody, we demonstrate that a subtoxic concentration of Hm (3 µM) promotes pathological p-tau accumulation in a subpopulation of cultured cortical neurons and their proximal neurites. Uric acid (UA; 0.1–200 µM), the metabolic end-product of purines in humans, prevented p-tau build-up. Neither xanthine, the immediate precursor of UA, nor allantoin, its oxidized product, reproduced this effect. Live cell imaging studies revealed that UA operates by repressing iron-driven lipid peroxidation. DOT (3 µM), a brain-permeant tetracycline (TC) without antibiotic activity, mimicked UA’s anti-tau and antioxidant effects. Interestingly, both UA and DOT remained effective in preventing p-tau accumulation induced by glutamate (10 µM). To simulate tau aggregation at more advanced disease stages, we conducted a Thioflavin-T aggregation assay. Our findings revealed that UA and DOT prevented tau aggregation seeded by heparin. However, only DOT remained effective when heparin-assembled tau fibrils were used as the seeding material. In summary, our results indicate that UA-elevating agents may hold therapeutic utility for tauopathies. The non-purine compound DOT could serve as an effective alternative to UA-related therapies. Full article
Show Figures

Figure 1

Back to TopTop