Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (215)

Search Parameters:
Keywords = anti-adipogenic activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 57374 KiB  
Article
Enhancement of Phytochemicals and Antioxidant Activity of Thai Fermented Soybean Using Box–Behnken Design Guided Microwave-Assisted Extraction
by Piya Temviriyanukul, Woorawee Inthachat, Ararat Jaiaree, Jirarat Karinchai, Pensiri Buacheen, Supachai Yodkeeree, Tanongsak Laowanitwattana, Teera Chewonarin, Uthaiwan Suttisansanee, Arisa Imsumran, Ariyaphong Wongnoppavich and Pornsiri Pitchakarn
Foods 2025, 14(15), 2603; https://doi.org/10.3390/foods14152603 - 24 Jul 2025
Viewed by 295
Abstract
Thai fermented soybeans (TFSs) contain phytochemicals with anti-diabetic benefits. In this study, an initial non-optimized TFS extract (TFSE) was prepared using a conventional triplicate 80% ethanol extraction method and evaluated for its biological activity. TFSE effectively reversed TNF-α-induced insulin resistance in 3T3-L1 adipocytes [...] Read more.
Thai fermented soybeans (TFSs) contain phytochemicals with anti-diabetic benefits. In this study, an initial non-optimized TFS extract (TFSE) was prepared using a conventional triplicate 80% ethanol extraction method and evaluated for its biological activity. TFSE effectively reversed TNF-α-induced insulin resistance in 3T3-L1 adipocytes by enhancing insulin-stimulated glucose uptake, indicating anti-diabetic potential. TFSE also upregulated the phosphorylation of AKT (a key insulin signaling mediator) and the expression of adipogenic proteins (PPARγ, CEBPα) in TNF-α-exposed 3T3-L1, suggesting the mitigation of adipocyte dysfunction; however, the results did not reach statistical significance. The conventional extraction process was labor-intensive and time-consuming, and to enhance extraction efficiency and bioactivity, the process was subsequently optimized using environmentally friendly microwave-assisted extraction (MAE) in combination with the Box–Behnken design (BBD) and response surface methodology (RSM). The optimized extract (O-TFSE) was obtained over a significantly shorter extraction time and exhibited higher levels of total flavonoids and antioxidant activity in comparison to TFSE, while showing reduced levels of isoflavones (daidzein, genistein, and glycitein) in relation to TFSE. Interestingly, O-TFSE retained similar efficacy in reversing TNF-α-induced insulin resistance and demonstrated significantly stronger α-glucosidase and α-amylase inhibitory activities, indicating its enhanced potential for diabetes management. These results support the use of MAE as an efficient method for extracting functional compounds from TFS for functional foods targeting insulin resistance and type 2 diabetes mellitus. Full article
Show Figures

Figure 1

18 pages, 1769 KiB  
Article
Antioxidant and Pancreatic Lipase Inhibitory Activities of Panax japonicus (T. Nees) C.A. Meyer
by Jinfeng Yang, Wenxuan Jiang, Ju Hee Park, Eun Soo Seong, Yong Soo Kwon and Myong Jo Kim
Plants 2025, 14(13), 2003; https://doi.org/10.3390/plants14132003 - 30 Jun 2025
Viewed by 314
Abstract
Obesity and its associated complications, including oxidative stress, pose significant global health challenges. Natural products offer a promising avenue for developing novel therapeutic strategies. In this study, we investigated the potential of Panax japonicus (T. Nees) C.A. Meyer, a traditional medicinal plant known [...] Read more.
Obesity and its associated complications, including oxidative stress, pose significant global health challenges. Natural products offer a promising avenue for developing novel therapeutic strategies. In this study, we investigated the potential of Panax japonicus (T. Nees) C.A. Meyer, a traditional medicinal plant known for its antioxidant and anti-obesity properties. A methanol extract of Panax japonicus and its fractions were evaluated for their in vitro antioxidant activities (tested using DPPH and reducing power assays), pancreatic lipase (PL) inhibitory capacities, and underlying mechanisms of action. The results indicated that the ethyl acetate fraction of P. japonicus (PJEA) exhibited the greatest potency, demonstrating strong antioxidant activity and significantly inhibiting digestive enzyme activity (pancreatic lipase). Mechanistic studies revealed that the PL inhibition was of a mixed type, combining both competitive and non-competitive mechanisms. Furthermore, PJEA demonstrated the ability to inhibit the differentiation of preadipocytes, primarily exerting its anti-adipogenic effects by downregulating the mRNA expression of PPARγ and the gene expression of C/EBPα. In addition, the extract suppressed the gene expression of FAS and ACC in adipose tissue. Isolation of the bioactive compounds from PJEA identified kaempferol 3-O-α-L-rhamnoside and catechin, which potentially contribute to the observed anti-obesity effects. Overall, this study highlights P. japonicus as a promising natural ingredient for scavenging free radicals and managing obesity, suggesting its potential for development into functional foods or therapeutic agents. Full article
Show Figures

Figure 1

16 pages, 1573 KiB  
Article
Peumus boldus Extract Inhibits Lipid Accumulation in 3T3-L1 Adipocytes
by Laura Montaldo, Llerson Bendezu Meza, Mauricio De Marzi and Liliana Noemi Guerra
Int. J. Mol. Sci. 2025, 26(9), 4326; https://doi.org/10.3390/ijms26094326 - 2 May 2025
Viewed by 496
Abstract
Obesity is a metabolic condition of epidemic scale. Previously, we showed that antioxidant extracts from Ribes nigrum had antioxidant and anti-adipogenic effects in mature adipocytes (AD). Here, we evaluated an aqueous extract from Peumus boldus (Boldo) in AD and studied its effect on [...] Read more.
Obesity is a metabolic condition of epidemic scale. Previously, we showed that antioxidant extracts from Ribes nigrum had antioxidant and anti-adipogenic effects in mature adipocytes (AD). Here, we evaluated an aqueous extract from Peumus boldus (Boldo) in AD and studied its effect on reactive oxygen species (ROS) and lipid production. We analyzed the antioxidant activity (AA) of the Boldo extract using the DPPH technique and polyphenol (Pph) content via Folin’s reagent. In AD, we evaluated ROS production, catalase (CAT) activity, intracellular triglyceride (Tg) and cholesterol (Chol) contents, nitric oxide (NO) production via Griess reagent, and the levels of glycerol (Gly) and TNF-α released in the culture medium. We showed that the Boldo extract has high AA. In vitro, Boldo treatment decreased ROS intracellular production and CAT activity. In addition, the Boldo extract was effective in reducing Tg and Chol levels and NO production. We did not identify significant differences in Gly released or TNF-α secreted. We suggest that the Boldo extract has antioxidant and anti-adipogenic effects, but we did not observe lipolytic effects. Boldo did not modify inflammatory markers. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress and Antioxidants in Human Disease)
Show Figures

Figure 1

14 pages, 2032 KiB  
Article
Vaccinium oldhamii Fruit Inhibits Lipid Accumulation in 3T3-L1 Cells and Diet-Induced Obese Animals
by Young-Hyeon Lee, Mikyoung You and Hyeon-A Kim
Nutrients 2025, 17(8), 1346; https://doi.org/10.3390/nu17081346 - 14 Apr 2025
Viewed by 641
Abstract
Background/Objectives: Obesity is a significant global health concern, and the natural bioactive compounds with anti-obesity effects remain challenging. This study aims to examine the anti-obesity effect and the potential mechanism of Vaccinium oldhamii fruit water extract (VOW). Methods: Lipid accumulation, AMP-activated protein kinase [...] Read more.
Background/Objectives: Obesity is a significant global health concern, and the natural bioactive compounds with anti-obesity effects remain challenging. This study aims to examine the anti-obesity effect and the potential mechanism of Vaccinium oldhamii fruit water extract (VOW). Methods: Lipid accumulation, AMP-activated protein kinase (AMPK) activity, and Wnt/β-catenin signaling were evaluated in 3T3-L1 cells. In high-fat and high-sucrose diet (HFHSD)-induced obese mice, body weight, food intake, fat weight, serum lipid profiles, and adipogenic transcription factors were assessed. The most effective VOW fraction was selected by Oil Red O (ORO) staining and its mechanism was studied in 3T3-L1 cells. Results: VOW treatment significantly inhibited cellular lipid accumulation and suppressed phosphorylation of AMPK and its downstream protein, acetyl-CoA carboxylase (ACC). VOW also decreased adipogenic-associated protein expressions such as the peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS). The enhanced effect of VOW was abolished by the knockdown of AMPK with siRNA. The inhibitory effect of VOW on differentiation depended on the treatment period, even though VOW treatment downregulated the C/EBP β expression at the early phase of differentiation. VOW dramatically reduced activation of AMPK, thereby downregulating adipogenic-associated proteins. Furthermore, the butanol fraction (BtOH) of VOW showed the most powerful effect of VOW dose-dependently reduced lipid accumulation by suppressing the phosphorylation of AMPK. Consistent with inhibited lipid accumulation in vitro, VOW reduced body weight and white adipose tissue weight in the HFHSD-induced obese animal model. Conclusions: Overall, our study suggested that the anti-adipogenesis effect of VOW and its BtOH fraction involved the activation of AMPK. Full article
(This article belongs to the Special Issue Obesity and Related Diseases: The Role of Nutrition)
Show Figures

Figure 1

25 pages, 11548 KiB  
Article
The Effects of Sika Deer Antler Peptides on 3T3-L1 Preadipocytes and C57BL/6 Mice via Activating AMPK Signaling and Gut Microbiota
by Tong Sun, Zezhuang Hao, Fanying Meng, Xue Li, Yihua Wang, Haowen Zhu, Yong Li and Yuling Ding
Molecules 2025, 30(5), 1173; https://doi.org/10.3390/molecules30051173 - 6 Mar 2025
Viewed by 1151
Abstract
(1) Background: To explore the anti-obesity effects and mechanisms of sika deer velvet antler peptides (sVAP) on 3T3-L1 preadipocytes and in high-fat diet (HFD)-induced obese mice. (2) Methods: sVAP fractions of different molecular weights were obtained via enzymatic hydrolysis and ultrafiltration. Their anti-lipid [...] Read more.
(1) Background: To explore the anti-obesity effects and mechanisms of sika deer velvet antler peptides (sVAP) on 3T3-L1 preadipocytes and in high-fat diet (HFD)-induced obese mice. (2) Methods: sVAP fractions of different molecular weights were obtained via enzymatic hydrolysis and ultrafiltration. Their anti-lipid effects on 3T3-L1 cells were assessed with Oil Red O staining. The optimal fraction was tested in HFD-induced obese C57BL/6 mice to explore anti-obesity mechanisms. Peptide purification used LC-MS/MS, followed by sequence analysis and molecular docking for activity prediction. (3) Results: The peptide with the best anti-obesity activity was identified as sVAP-3K (≤3 kDa). sVAP-3K reduced lipid content and proliferation in 3T3-L1 cells, improved lipid profiles and ameliorated adipocyte degeneration in HFD mice, promoted the growth of beneficial gut microbiota, and maintained lipid metabolism. Additionally, sVAP-3K activated the AMP-activated protein kinase (AMPK) signaling pathway, regulating adipogenic transcription factors. sVAP-3K exhibited ten major components (peak area ≥ 1.03 × 108), with four of the most active components being newly discovered natural oligopeptides: RVDPVNFKL (m/z 363.21371), GGEFTPVLQ (m/z 474.24643), VDPENFRL (m/z 495.25735), and VDPVNFK (m/z 818.44043). (4) Conclusion: This study identifies four novel oligopeptides in sVAP-3K as key components for anti-obesity effects, offering new evidence for developing natural weight-loss drugs from sika deer velvet. Full article
Show Figures

Graphical abstract

16 pages, 3474 KiB  
Article
Rubia akane Nakai Fruit Extract Improves Obesity and Insulin Sensitivity in 3T3-L1 Adipocytes and High-Fat Diet-Induced Obese Mice
by Juhye Park, Eunbi Lee and Ju-Ock Nam
Int. J. Mol. Sci. 2025, 26(5), 1833; https://doi.org/10.3390/ijms26051833 - 20 Feb 2025
Viewed by 865
Abstract
A rise in obesity during the COVID-19 pandemic has spurred the development of safe and effective natural anti-obesity agents. In this study, we propose Rubia akane Nakai fruit extract (RFE) as a potential natural product-based anti-obesity agent. R. akane Nakai is a plant [...] Read more.
A rise in obesity during the COVID-19 pandemic has spurred the development of safe and effective natural anti-obesity agents. In this study, we propose Rubia akane Nakai fruit extract (RFE) as a potential natural product-based anti-obesity agent. R. akane Nakai is a plant of the Rubiaceae family that grows throughout Republic of Korea. Its roots have long been used medicinally and are known for various bioactivities, but the fruit’s bioactivities are unexplored. We investigated the anti-obesity effects of RFE using 3T3-L1 adipocytes and high-fat diet-induced obese mice. In 3T3-L1 adipocytes, RFE inhibited adipogenic differentiation and lipogenesis by downregulating PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT enhancer-binding protein α), and SREBP-1 (sterol regulatory element-binding protein 1) through AMPK (AMP-activated protein kinase) activation and by delaying the initiation of MCE (mitotic clonal expansion), which is essential for early adipogenesis. At the in vivo level, RFE improved the phenotypes of obesity and insulin resistance. In white adipose tissue, RFE not only suppressed adipogenic differentiation and lipogenesis through AMPK activation but also improved insulin sensitivity by upregulating basal GLUT4 (glucose transporter type 4) expression. Therefore, this study advances RFE as a potential natural treatment for obesity and insulin resistance. Full article
Show Figures

Figure 1

26 pages, 4223 KiB  
Article
CTHRC1 Expression Results in Secretion-Mediated, SOX9-Dependent Suppression of Adipogenesis: Implications for the Regulatory Role of Newly Identified CTHRC1+/PDGFR-Alpha+ Stromal Cells of Adipose
by Matthew E. Siviski, Rachel Bercovitch, Kathleen Pyburn, Christian Potts, Shivangi R. Pande, Carlos A. Gartner, William Halteman, Doreen Kacer, Barbara Toomey, Calvin Vary, Robert Koza, Lucy Liaw, Sergey Ryzhov, Volkhard Lindner and Igor Prudovsky
Int. J. Mol. Sci. 2025, 26(5), 1804; https://doi.org/10.3390/ijms26051804 - 20 Feb 2025
Viewed by 876
Abstract
Adipogenesis is regulated by the coordinated activity of adipogenic transcription factors including PPAR-gamma and C/EBP alpha, while dysregulated adipogenesis can predispose adipose tissues to adipocyte hypertrophy and hyperplasia. We have previously reported that Cthrc1-null mice have increased adiposity compared to wildtype mice, [...] Read more.
Adipogenesis is regulated by the coordinated activity of adipogenic transcription factors including PPAR-gamma and C/EBP alpha, while dysregulated adipogenesis can predispose adipose tissues to adipocyte hypertrophy and hyperplasia. We have previously reported that Cthrc1-null mice have increased adiposity compared to wildtype mice, supporting the notion that CTHRC1 regulates body composition. Herein, we derived conditioned medium from 3T3-L1 cells expressing human CTHRC1 and investigated its anti-adipogenic activity. This constituent significantly reduced 3T3-L1 cell adipogenic differentiation commensurate to the marked suppression of Cebpa and Pparg gene expression. It also increased the expression of the anti-adipogenic transcription factor SOX9 and promoted its nuclear translocation. Importantly, Sox9 gene knockdown demonstrated that the anti-adipogenic effect produced by this conditioned medium is dependent on SOX9 expression, while its ability to positively regulate SOX9 was attenuated by the application of Rho and Rac1 signaling pathway inhibitors. We also identified the selective expression of CTHRC1 in PDGFRA-expressing cell populations in human white adipose tissue, but not brown or perivascular adipose tissues. Congruently, flow cytometry revealed CTHRC1 expression in PDGFR-alpha+ stromal cells of mouse white adipose tissue, thus defining a novel stromal cell population that could underpin the ability of CTHRC1 to regulate adiposity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

30 pages, 9283 KiB  
Article
Chemical Composition and Biological Activities of Lagopsis supina Extract: Antioxidant, Adipogenic, and Ani-Inflammatory Effects
by Juhyun Choi, Duc Dat Le, Nayoung Roh, Jiseok Lee, Deumaya Shrestha, Thientam Dinh, Vinhquang Truong, Badamtsetseg Bazarragchaa, Soo-Yong Kim, Sung-Suk Suh, Mina Lee and Jong Bae Seo
Pharmaceuticals 2025, 18(2), 150; https://doi.org/10.3390/ph18020150 - 23 Jan 2025
Cited by 1 | Viewed by 1423
Abstract
Background/Objectives: Lagopsis supina, a traditional Chinese medicine valued for its diuretic properties, has limited research on its antioxidant, adipogenic, and anti-inflammatory effects. This study aimed to investigate the chemical composition and biological activities of Lagopsis supina extract (LSE). Methods: LSE was prepared [...] Read more.
Background/Objectives: Lagopsis supina, a traditional Chinese medicine valued for its diuretic properties, has limited research on its antioxidant, adipogenic, and anti-inflammatory effects. This study aimed to investigate the chemical composition and biological activities of Lagopsis supina extract (LSE). Methods: LSE was prepared and evaluated for antioxidant activity, effects on adipocyte differentiation in 3T3-L1 preadipocytes, and anti-inflammatory properties in RAW 264.7 macrophages. Ultra-high-performance liquid chromatography-electrospray ionization Orbitrap tandem mass spectrometry (UHPLC-ESI-Orbitrap-MS/MS)-based molecular networking was used to characterize its secondary metabolites. Results: LSE exhibited antioxidant activity in DPPH and ABTS assays. It significantly enhanced the differentiation of 3T3-L1 preadipocytes into mature adipocytes during early and intermediate stages by upregulating adipogenic transcription factors such as PPARγ, C/EBPα, and C/EBPβ, along with promoting cyclin E expression. LSE also increased PPARγ activity and the expression of its target genes, such as Glut 4, PEPCK, FABP4, and Plin2. Moreover, LSE inhibited lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages by downregulating pro-inflammatory mediators (iNOS, COX-2, TNF-α, IL-6) and inhibiting extracellular signal-regulated kinase (ERK) phosphorylation. Chemical profiling revealed eight major compound groups: glycosides, organic acids, terpenoids, flavonoids, phenylglycosides, phenolics, fatty acids, and others characterized by their mass fragmentation patterns, precursors, and UV absorption spectra. In silico analysis confirmed these compounds’ bioactivities, demonstrating strong interactions and binding affinities with antioxidant, adipogenic, and anti-inflammatory protein targets. Conclusions: These findings highlight LSE’s triple therapeutic potential: antioxidant activity, adipogenesis promotion, and inflammation attenuation. LSE emerges as a promising therapeutic candidate for managing obesity and related inflammatory complications. Full article
(This article belongs to the Special Issue Pharmacologically Active Compounds from Plants)
Show Figures

Figure 1

13 pages, 4518 KiB  
Article
Lupeol Attenuates Palmitate-Induced Hypertrophy in 3T3-L1 Adipocytes
by Vaithinathan Selvaraju, Shivani R. Babu, Robert L. Judd and Thangiah Geetha
Biomolecules 2025, 15(1), 129; https://doi.org/10.3390/biom15010129 - 15 Jan 2025
Viewed by 1351
Abstract
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body’s energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic [...] Read more.
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body’s energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits. Lupeol, a pharmacologically active pentacyclic triterpenoid found in medicinal plants, vegetables, and fruits, has been shown to exhibit antioxidant and anti-inflammatory properties. This study investigated the role of lupeol on adipocyte hypertrophy by evaluating key adipogenic regulators in vitro. First, 3T3-L1 MBX mouse embryonic cells were differentiated into adipocytes and hypertrophy was induced using 500 µM palmitic acid. The treated adipocytes showed a significantly increased lipid droplet size, confirming adipocyte hypertrophy. Both adipocytes and hypertrophied adipocytes were then treated with or without 60 µM lupeol, following a dose-dependent study. Lipid droplet size was assessed and validated by Oil Red O staining. Western blot analysis was performed to measure the expression of adipogenic and inflammatory markers. Differentiated adipocytes showed increased fatty acid-binding protein 4 (FABP4) expression and Oil Red O staining, indicating an increased lipid content. Western blot analysis revealed that lupeol treatment reduced the expression of FABP4, peroxisome proliferator-activated receptor-γ (PPARγ), and adipokines. In conclusion, the results suggest that lupeol reverts the inflammatory and adipogenic markers that are enhanced in adipocyte hypertrophy. Through its anti-inflammatory effects, lupeol offers protective effects against adipocyte hypertrophy and contributes to reducing hypertrophic adiposity. Full article
Show Figures

Figure 1

11 pages, 1784 KiB  
Communication
Mealworm-Derived Protein Hydrolysates Enhance Adipogenic Differentiation via Mitotic Clonal Expansion in 3T3-L1 Cells
by Hee-Jeong Ryu and Syng-Ook Lee
Foods 2025, 14(2), 217; https://doi.org/10.3390/foods14020217 - 12 Jan 2025
Viewed by 1274
Abstract
Adipocytes secrete adipokines, bioactive molecules crucial for various physiological processes, such as enhancing insulin sensitivity, promoting wound healing, supporting hair growth, and exhibiting anti-aging effects on the skin. With the growing global demand for sustainable and alternative protein sources, insect-derived proteins, particularly from [...] Read more.
Adipocytes secrete adipokines, bioactive molecules crucial for various physiological processes, such as enhancing insulin sensitivity, promoting wound healing, supporting hair growth, and exhibiting anti-aging effects on the skin. With the growing global demand for sustainable and alternative protein sources, insect-derived proteins, particularly from Tenebrio molitor (mealworms), have gained attention due to their high nutritional value and functional bioactivities. This study aims to explore the potential of mealworm-derived protein hydrolysates as novel bioactive materials for promoting adipogenesis and improving adipokine expression, with applications in metabolic health and skin regeneration. Protein hydrolysates (<1 kDa) were prepared using enzymatic hydrolysis with three proteases (alcalase, flavourzyme, and neutrase) and evaluated for their adipogenic activity in 3T3-L1 preadipocytes. Among them, the flavourzyme-derived hydrolysate (Fh-T) exhibited the most significant effects, enhancing adipogenic differentiation and lipid accumulation. Fh-T facilitated adipogenesis by promoting mitotic clonal expansion (MCE) during the early stage of differentiation, which was associated with the upregulation of C/EBPδ and the downregulation of p27. These findings underscore the potential of mealworm-derived protein hydrolysates, particularly Fh-T, as sustainable and functional ingredients for use in glycemic control, skin health, and tissue regeneration. This study provides valuable insights into the innovative use of alternative protein sources in functional foods and cosmeceuticals. Full article
(This article belongs to the Special Issue The Development of New Functional Foods and Ingredients: 2nd Edition)
Show Figures

Figure 1

16 pages, 4101 KiB  
Article
Synergistic Effect of Lactobacillus Mixtures and Lagerstroemia speciosa Leaf Extract in Reducing Obesity in High-Fat Diet-Fed Mice
by Kippeum Lee, Hyeon-Ji Kim, Joo Yun Kim, Jae Jung Shim and Jae Hwan Lee
Biology 2024, 13(12), 1047; https://doi.org/10.3390/biology13121047 - 13 Dec 2024
Viewed by 1652
Abstract
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 [...] Read more.
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 in combination with the leaf extract of L. speciosa significantly attenuated fat tissue formation and body weight gain in mice fed a high-fat diet. The white adipose fat mass, comprising the inguinal and epididymal fat pads, was most effectively reduced when the probiotic mixture and L. speciosa leaf extract was orally administered to the mice in combination. This combination also reduced the mRNA expression of adipogenic genes (those encoding CCAAT/enhancer-binding protein alpha, peroxisome proliferator-activated receptor gamma, and fatty acid-binding protein 4) in inguinal and epididymal white adipose tissue depots and the liver. Finally, the combination of reduced blood glucose concentrations regulated the insulin resistance of high-fat diet-fed obese mice. These findings provide insight into the mechanisms underlying the effect of this combination and suggest that using Lactobacillus mixture (HY7601 and KY1032) is as safe as microbial monotherapy, but more effective at preventing obesity. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Obesity)
Show Figures

Graphical abstract

14 pages, 3464 KiB  
Article
Effects of Flavanone Derivatives on Adipocyte Differentiation and Lipid Accumulation in 3T3-L1 Cells
by Yasuhito Nobushi, Taira Wada, Motofumi Miura, Rikuto Onoda, Ryuta Ishiwata, Naoki Oikawa, Karin Shigematsu, Toshinori Nakakita, Masaharu Toriyama, Shigeki Shimba and Yukinaga Kishikawa
Life 2024, 14(11), 1446; https://doi.org/10.3390/life14111446 - 7 Nov 2024
Cited by 1 | Viewed by 1672
Abstract
Flavanones, a class of flavonoids, are abundant in fruits, vegetables, and herbs. They are known to have several biological activities, such as anti-inflammatory and anti-cancer activities, but their effects on obesity remain unclear. Obesity is closely associated with adipocyte differentiation and lipid accumulation [...] Read more.
Flavanones, a class of flavonoids, are abundant in fruits, vegetables, and herbs. They are known to have several biological activities, such as anti-inflammatory and anti-cancer activities, but their effects on obesity remain unclear. Obesity is closely associated with adipocyte differentiation and lipid accumulation in adipose tissue. Therefore, in this study, we examined the effects of flavanone derivatives on adipocyte differentiation and lipid accumulation by using 3T3-L1 cells. Among the 15 flavanone derivatives studied, 4′-phenylflavanone (4PF), with a biphenyl structure, significantly inhibited adipocyte differentiation-related lipid accumulation in 3T3-L1 cells; this inhibition of lipid accumulation was dose-dependent. Gene expression analysis showed that 4PF suppressed the expression of adipogenic marker genes. Although the induction of peroxisome proliferator activator γ2 (Pparγ2), a master regulator of adipocyte differentiation, and its target genes during adipocyte differentiation was attenuated in 4PF-treated cells, 4PF did not directly regulate Pparγ2 gene expression and its activation. In contrast, 4PF suppressed mitotic clonal expansion (MCE), which is associated with changes in the expression of proliferation-related genes at the early stages of adipocyte differentiation. Taken together, these results suggest that 4PF inhibits lipid accumulation because it suppresses MCE during adipocyte differentiation. Thus, our findings may help in the development of anti-obesity drugs. Full article
(This article belongs to the Special Issue New Updates in Adipocytes and Adipose Tissue: 2nd Edition)
Show Figures

Figure 1

12 pages, 2769 KiB  
Article
(E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone, a Major Homoisoflavonoid, Attenuates Free Fatty Acid-Induced Hepatic Steatosis by Activating AMPK and PPARα Pathways in HepG2 Cells
by Jae-Eun Park and Ji-Sook Han
Nutrients 2024, 16(20), 3475; https://doi.org/10.3390/nu16203475 - 14 Oct 2024
Viewed by 1430
Abstract
Background: (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HMC), a homoisoflavonoid isolated from Portulaca oleracea, has significant anti-adipogenesis potential; it regulates adipogenic transcription factors. However, whether HMC improves hepatic steatosis in hepatocytes remains vague. This study investigated whether HMC ameliorates hepatic steatosis in free fatty acid-treated [...] Read more.
Background: (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HMC), a homoisoflavonoid isolated from Portulaca oleracea, has significant anti-adipogenesis potential; it regulates adipogenic transcription factors. However, whether HMC improves hepatic steatosis in hepatocytes remains vague. This study investigated whether HMC ameliorates hepatic steatosis in free fatty acid-treated human hepatocellular carcinoma (HepG2) cells, and if so, its mechanism of action was analyzed. Methods: Hepatic steatosis was induced by a free fatty acid mixture in HepG2 cells. Thereafter, different HMC concentrations (10, 30, and 50 µM) or fenofibrate (10 µM, a PPARα agonist, positive control) was treated in HepG2 cells.Results: HMC markedly decreased lipid accumulation and triglyceride content in free fatty acid-treated HepG2 cell; it (10 and 50 μM) markedly upregulated protein expressions of pAMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. HMC (10 and 50 μM) markedly inhibited the expression of sterol regulatory element-binding protein-1c, fatty acid synthase, and stearoyl-coA desaturase 1, which are the enzymes involved in lipid synthesis. Furthermore, HMC (10 and 50 μM) markedly upregulated the protein expression of peroxisome proliferator-activated receptor alpha (PPARα) and enhanced the protein expressions of carnitine palmitoyl transferase 1 and acyl-CoA oxidase 1. Conclusion: HMC inhibits lipid accumulation and promotes fatty acid oxidation by AMPK and PPARα pathways in free fatty acid-treated HepG2 cells, thereby attenuating hepatic steatosis. Full article
(This article belongs to the Special Issue Effects of Phytochemicals on Metabolic Disorders and Human Health)
Show Figures

Figure 1

13 pages, 16239 KiB  
Article
Anti-Obesity Effect of Fresh and Browned Magnolia denudata Flowers in 3T3-L1 Adipocytes
by Deok Jae Lee, Jae Ho Yeom, Yong Kwon Lee, Yong Hoon Joo and Namhyun Chung
Appl. Sci. 2024, 14(20), 9254; https://doi.org/10.3390/app14209254 - 11 Oct 2024
Cited by 1 | Viewed by 1121
Abstract
The major components of magnolia flower extracts (MFEs) were classified into four substances, such as flavonoids, phenylethanoid glycoside derivatives (PhGs), caffeoylquinic acids (CQAs), and others, in our previous study. The chemical components of MFEs, including the rutin of flavonoid, acteoside and isoacteoside of [...] Read more.
The major components of magnolia flower extracts (MFEs) were classified into four substances, such as flavonoids, phenylethanoid glycoside derivatives (PhGs), caffeoylquinic acids (CQAs), and others, in our previous study. The chemical components of MFEs, including the rutin of flavonoid, acteoside and isoacteoside of PhGs, and caffeyolquinic acids, are reported to have physiological effects on anti-obesity effects. The anti-obesity effect of fresh and browned Magnolia denudata flower extracts (FMFE and BMFE, respectively) was investigated in 3T3-L1 adipocytes. The treatment concentrations of FMFE and BMFE were 200 and 400 μg/mL, respectively, as determined with the WST-1 assay. Intracellular lipid accumulation in 3T3-L1 cells was inhibited with the treatment of MFEs, including FMFE and BMFE, as observed with an image of the culture plate, using an optical microscope and Oil red O staining. The expression of the adipogenic target genes involved in adipocyte differentiation, including PPARγ, C/EBPα, perilipin, FABP4, FAS, HSL, and SREBP-1, was suppressed with the treatment of MFEs. Additionally, the phosphorylation of AMPK and ACC in 3T3-L1 cells was significantly increased following treatment with the MFEs. These results suggest that both MFEs have a potential for physiological effects on anti-obesity activity. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

13 pages, 1837 KiB  
Article
Rosehip Extract Decreases Reactive Oxygen Species Production and Lipid Accumulation in Hypertrophic 3T3-L1 Adipocytes with the Modulation of Inflammatory State
by Katarzyna Kowalska and Anna Olejnik
Nutrients 2024, 16(19), 3269; https://doi.org/10.3390/nu16193269 - 27 Sep 2024
Cited by 2 | Viewed by 1840
Abstract
Background: Rosa canina L. (rosehip) is used worldwide in traditional medicine as a plant with medicinal properties. However, its anti-obesity effects are not fully explained on a transcriptional level. Methods: In the present work, the 3T3-L preadipocytes were utilized to explore the impact [...] Read more.
Background: Rosa canina L. (rosehip) is used worldwide in traditional medicine as a plant with medicinal properties. However, its anti-obesity effects are not fully explained on a transcriptional level. Methods: In the present work, the 3T3-L preadipocytes were utilized to explore the impact of R. canina fruit extract (RCE) on the cellular and molecular pathways involved in adipocyte hypertrophy. Results: Obtained results showed the ability of RCE to reduce lipid overloads in hypertrophic adipocytes associated with the down-regulation of mRNA expressions of adipogenic transcription factors such as PPARγ, C/EBPα, and SREBP-1c as well as genes involved in lipid biosyntheses such as FAS, LPL, and aP2. Moreover, obesity-associated oxidative stress (antioxidant enzyme activities and ROS generation) and inflammation were ameliorated in RCE-treated hypertrophic adipocytes. The mRNA and protein levels of adipokines such as leptin, resistin, and adiponectin were restored to more favorable levels. Conclusions: Rosa canina fruit might be a valuable source of phytochemicals in preventing obesity and obesity-related metabolic complications. Full article
(This article belongs to the Special Issue Effects and Modulatory Mechanisms of Dietary Flavonoids in Obesity)
Show Figures

Figure 1

Back to TopTop