Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (522)

Search Parameters:
Keywords = annual cost saving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1242 KiB  
Article
Integration of Renewable Energy Sources to Achieve Sustainability and Resilience of Mines in Remote Areas
by Josip Kronja and Ivo Galić
Mining 2025, 5(3), 51; https://doi.org/10.3390/mining5030051 - 6 Aug 2025
Abstract
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources [...] Read more.
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources (5) and battery–electric mining equipment. Using the “Studena Vrila” underground bauxite mine as a case study, a comprehensive techno-economic and environmental analysis was conducted across three development models. These models explore incremental scenarios of solar and wind energy adoption combined with electrification of mobile machinery. The methodology includes calculating levelized cost of energy (LCOE), return on investment (ROI), and greenhouse gas (GHG) reductions under each scenario. Results demonstrate that a full transition to RES and electric machinery can reduce diesel consumption by 100%, achieve annual savings of EUR 149,814, and cut GHG emissions by over 1.7 million kg CO2-eq. While initial capital costs are high, all models yield a positive Net Present Value (NPV), confirming long-term economic viability. This research provides a replicable framework for decarbonizing mining operations in off-grid and infrastructure-limited regions. Full article
Show Figures

Figure 1

33 pages, 8443 KiB  
Article
Model for Planning and Optimization of Train Crew Rosters for Sustainable Railway Transport
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Sustainability 2025, 17(15), 7069; https://doi.org/10.3390/su17157069 - 4 Aug 2025
Abstract
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a [...] Read more.
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a focus on the operational setting of the train crew depot in Česká Třebová, a city in the Czech Republic. The seven-step methodology includes identifying available train shifts, defining scheduling constraints, creating roster variants, and calculating personnel and time requirements for each option. The proposed roster reduced staffing needs by two employees, increased the average shift duration to 9 h and 42 min, and decreased non-productive time by 384 h annually. These improvements enhance sustainability by optimizing human resource use, lowering unnecessary energy consumption, and improving employees’ work–life balance. The model also provides a quantitative assessment of operational feasibility and economic efficiency. Compared to existing rosters, the proposed model offers clear advantages and remains applicable even in settings with limited technological support. The findings show that a well-designed rostering system can contribute not only to cost savings and personnel stabilization, but also to broader objectives in sustainable public transport, supporting resilient and resource-efficient rail operations. Full article
Show Figures

Figure 1

28 pages, 15658 KiB  
Article
Unifying Flood-Risk Communication: Empowering Community Leaders Through AI-Enhanced, Contextualized Storytelling
by Michal Zajac, Connor Kulawiak, Shenglin Li, Caleb Erickson, Nathan Hubbell and Jiaqi Gong
Hydrology 2025, 12(8), 204; https://doi.org/10.3390/hydrology12080204 - 4 Aug 2025
Abstract
Floods pose a growing threat globally, causing tragic loss of life, billions in economic damage annually, and disproportionately affecting socio-economically vulnerable populations. This paper aims to improve flood-risk communication for community leaders by exploring the application of artificial intelligence. We categorize U.S. flood [...] Read more.
Floods pose a growing threat globally, causing tragic loss of life, billions in economic damage annually, and disproportionately affecting socio-economically vulnerable populations. This paper aims to improve flood-risk communication for community leaders by exploring the application of artificial intelligence. We categorize U.S. flood information sources, review communication modalities and channels, synthesize the literature on community leaders’ roles in risk communication, and analyze existing technological tools. Our analysis reveals three key challenges: the fragmentation of flood information, information overload that impedes decision-making, and the absence of a unified communication platform to address these issues. We find that AI techniques can organize data and significantly enhance communication effectiveness, particularly when delivered through infographics and social media channels. Based on these findings, we propose FLAI (Flood Language AI), an AI-driven flood communication platform that unifies fragmented flood data sources. FLAI employs knowledge graphs to structure fragmented data sources and utilizes a retrieval-augmented generation (RAG) framework to enable large language models (LLMs) to produce contextualized narratives, including infographics, maps, and cost–benefit analyses. Beyond flood management, FLAI’s framework demonstrates how AI can transform public service data management and institutional AI readiness. By centralizing and organizing information, FLAI can significantly reduce the cognitive burden on community leaders, helping them communicate timely, actionable insights to save lives and build flood resilience. Full article
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 200
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

25 pages, 15607 KiB  
Article
A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways
by Wei-Na Zhang, Zhe Xu, Ying-Yi Hong, Fang-Yu Liu and Zhong-Qin Bi
Appl. Sci. 2025, 15(15), 8462; https://doi.org/10.3390/app15158462 - 30 Jul 2025
Viewed by 138
Abstract
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the [...] Read more.
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the full lifecycle carbon emissions of these assets while minimizing lifecycle costs and CO2 emissions. The proposed EDMOA algorithm optimizes storage configurations across multiple operational climatic regimes. Benchmark analysis demonstrates superior economic–environmental synergy, achieving a 23.90% cost reduction (USD 923,152 annual savings) and 24.02% lower emissions (693,452.5 kg CO2 reduction) versus conventional systems. These results validate the synergistic integration of hybrid power systems with the carbon–green certificate market mechanism as a quantifiable pathway towards decarbonization in rail infrastructure. Full article
Show Figures

Figure 1

16 pages, 1043 KiB  
Article
Sustainable Packaging Design: Packaging Optimization and Material Reduction for Environmental Protection and Economic Benefits to Industry and Society
by Elias D. Georgakoudis, Georgia G. Pechlivanidou and Nicoleta S. Tipi
Appl. Sci. 2025, 15(15), 8289; https://doi.org/10.3390/app15158289 - 25 Jul 2025
Viewed by 271
Abstract
This paper analyzes the concept of packaging redesign, with the primary objective of improving material utilization. It further examines the potential environmental and economic benefits that may result from effective packaging redesign for both industry and society. The research is based on a [...] Read more.
This paper analyzes the concept of packaging redesign, with the primary objective of improving material utilization. It further examines the potential environmental and economic benefits that may result from effective packaging redesign for both industry and society. The research is based on a specific case study comparing two alternative bottle designs with identical capacity, focusing on shape, material usage, and space efficiency. A detailed numerical comparison highlights the advantages and disadvantages of each option. The analysis demonstrates that an optimized bottle design can lead to substantial material savings and waste reduction. For example, an 8% reduction in bottle weight could eliminate approximately 1.6 million tons of material annually, potentially translating into economic savings exceeding 3 billion U.S. dollars per year. The study underscores how strategic packaging redesign can yield significant benefits in terms of material efficiency and cost savings for companies. It also contributes to the field of Life Cycle Analysis by linking packaging design innovation to key environmental and economic outcomes, while ensuring that packaging continues to protect products and meet the needs of the end consumer. Full article
Show Figures

Figure 1

20 pages, 3386 KiB  
Article
Evaluating Acoustic vs. AI-Based Satellite Leak Detection in Aging US Water Infrastructure: A Cost and Energy Savings Analysis
by Prashant Nagapurkar, Naushita Sharma, Susana Garcia and Sachin Nimbalkar
Smart Cities 2025, 8(4), 122; https://doi.org/10.3390/smartcities8040122 - 22 Jul 2025
Viewed by 451
Abstract
The aging water distribution system in the United States, constructed mainly during the 1970s with some pipes dating back 125 years, is experiencing significant deterioration leading to substantial water losses. Along with the potential for water loss savings, improvements in the distribution system [...] Read more.
The aging water distribution system in the United States, constructed mainly during the 1970s with some pipes dating back 125 years, is experiencing significant deterioration leading to substantial water losses. Along with the potential for water loss savings, improvements in the distribution system by using leak detection technologies can create net energy and cost savings. In this work, a new framework has been presented to calculate the economic level of leakage within water supply and distribution systems for two primary leak detection technologies (acoustic vs. satellite). In this work, a new framework is presented to calculate the economic level of leakage (ELL) within water supply and distribution systems to support smart infrastructure in smart cities. A case study focused using water audit data from Atlanta, Georgia, compared the costs of two leak mitigation technologies: conventional acoustic leak detection and artificial intelligence–assisted satellite leak detection technology, which employs machine learning algorithms to identify potential leak signatures from satellite imagery. The ELL results revealed that conducting one survey would be optimum for an acoustic survey, whereas the method suggested that it would be expensive to utilize satellite-based leak detection technology. However, results for cumulative financial analysis over a 3-year period for both technologies revealed both to be economically favorable with conventional acoustic leak detection technology generating higher net economic benefits of USD 2.4 million, surpassing satellite detection by 50%. A broader national analysis was conducted to explore the potential benefits of US water infrastructure mirroring the exemplary conditions of Germany and The Netherlands. Achieving similar infrastructure leakage index (ILI) values could result in annual cost savings of $4–$4.8 billion and primary energy savings of 1.6–1.9 TWh. These results demonstrate the value of combining economic modeling with advanced leak detection technologies to support sustainable, cost-efficient water infrastructure strategies in urban environments, contributing to more sustainable smart living outcomes. Full article
Show Figures

Figure 1

28 pages, 522 KiB  
Article
Sustainable Strategies to Reduce Logistics Costs Based on Cross-Docking—The Case of Emerging European Markets
by Mircea Boșcoianu, Zsolt Toth and Alexandru-Silviu Goga
Sustainability 2025, 17(14), 6471; https://doi.org/10.3390/su17146471 - 15 Jul 2025
Viewed by 520
Abstract
Cross-docking operations in Eastern and Central European markets face increasing complexity amid persistent uncertainty and inflationary pressures. This study provides the first comprehensive comparative analysis integrating economic efficiency with sustainability indicators across strategic locations. Using mixed-methods analysis of 40 bibliographical sources and quantitative [...] Read more.
Cross-docking operations in Eastern and Central European markets face increasing complexity amid persistent uncertainty and inflationary pressures. This study provides the first comprehensive comparative analysis integrating economic efficiency with sustainability indicators across strategic locations. Using mixed-methods analysis of 40 bibliographical sources and quantitative modeling of cross-docking scenarios in Bratislava, Prague, and Budapest, we integrate environmental, social, and governance frameworks with activity-based costing and artificial intelligence analysis. Optimized cross-docking achieves statistically significant cost reductions of 10.61% for Eastern and Central European inbound logistics and 3.84% for Western European outbound logistics when utilizing Budapest location (p < 0.01). Activity-based costing reveals labor (35–40%), equipment utilization (25–30%), and facility operations (20–25%) as primary cost drivers. Budapest demonstrates superior integrated performance index incorporating operational efficiency (94.2% loading efficiency), economic impact (EUR 925,000 annual savings), and environmental performance (486 tons CO2 reduction annually). This is the first empirically validated framework integrating activity-based costing–corporate social responsibility methodologies for an emerging market cross-docking, multi-dimensional performance assessment model transcending operational-sustainability dichotomy and location-specific contingency identification for emerging market implementation. Findings support targeted infrastructure investments, harmonized regulatory frameworks, and public–private partnerships for sustainable logistics development in emerging European markets, providing actionable roadmap for EUR 142,000–EUR 187,000 artificial intelligence implementation investments achieving a 14.6-month return on investment. Full article
Show Figures

Figure 1

21 pages, 3422 KiB  
Article
Techno-Economic Optimization of a Grid-Tied PV/Battery System in Johannesburg’s Subtropical Highland Climate
by Webster J. Makhubele, Bonginkosi A. Thango and Kingsley A. Ogudo
Sustainability 2025, 17(14), 6383; https://doi.org/10.3390/su17146383 - 11 Jul 2025
Viewed by 394
Abstract
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) [...] Read more.
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) and battery storage system designed for a commercial facility located in Johannesburg, South Africa—an area characterized by a subtropical highland climate. We conducted the analysis using the HOMER Grid software and evaluated the performance of the proposed PV/battery system against the baseline grid-only configuration. Simulation results indicate that the optimal systems, comprising 337 kW of flat-plate PV and 901 kWh of lithium-ion battery storage, offers a significant reduction in electricity expenditure, lowering the annual utility cost from $39,229 to $897. The system demonstrates a simple payback period of less than two years and achieves a net present value (NPV) of approximately $449,491 over a 25-year project lifespan. In addition to delivering substantial cost savings, the proposed configuration also enhances energy resilience. Sensitivity analyses were conducted to assess the impact of variables such as inflation rate, discount rate, and load profile fluctuations on system performance and economic returns. The results affirm the suitability of hybrid grid-tied PV/battery systems for cost-effective, sustainable urban energy solutions in climates with high solar potential. Full article
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Optimization of Photovoltaic and Battery Storage Sizing in a DC Microgrid Using LSTM Networks Based on Load Forecasting
by Süleyman Emre Eyimaya, Necmi Altin and Adel Nasiri
Energies 2025, 18(14), 3676; https://doi.org/10.3390/en18143676 - 11 Jul 2025
Cited by 1 | Viewed by 368
Abstract
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient [...] Read more.
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient temperature, while battery charging and discharging operations are managed according to real-time demand. A simulation framework is developed in MATLAB 2021b to analyze PV output, battery state of charge (SOC), and grid energy exchange. For demand-side management, the Long Short-Term Memory (LSTM) deep learning model is employed to forecast future load profiles using historical consumption data. Moreover, a Multi-Layer Perceptron (MLP) neural network is designed for comparison purposes. The dynamic load prediction, provided by LSTM in particular, improves system responsiveness and efficiency compared to MLP. Simulation results indicate that optimal sizing of PV and storage units significantly reduces energy costs and dependency on the main grid for both forecasting methods; however, the LSTM-based approach consistently achieves higher annual savings, self-sufficiency, and Net Present Value (NPV) than the MLP-based approach. The proposed method supports the design of more resilient and sustainable DC microgrids through data-driven forecasting and system-level optimization, with LSTM-based forecasting offering the greatest benefits. Full article
Show Figures

Figure 1

15 pages, 218 KiB  
Article
Economic Evaluation of Artificially Intelligent (AI) Diagnostic Systems: Cost Consequence Analysis of Clinician-Friendly Interpretable Computer-Aided Diagnosis (ICADX) Tested in Cardiology, Obstetrics, and Gastroenterology, from the HosmartAI Horizon 2020 Project
by Magda Chatzikou, Dimitra Latsou, Georgios Apostolidis, Antonios Billis, Vasileios Charisis, Emmanouil S. Rigas, Panagiotis D. Bamidis and Leontios Hadjileontiadis
Healthcare 2025, 13(14), 1661; https://doi.org/10.3390/healthcare13141661 - 10 Jul 2025
Viewed by 362
Abstract
Objectives: This study evaluates the economic impact of digital health interventions (DHIs) developed under the HosmartAI EU-funded program, focusing on obstetrics, cardiology, and gastroenterology. Methods: A Cost Consequence Analysis (CCA) was chosen in order to be able to examine the costs [...] Read more.
Objectives: This study evaluates the economic impact of digital health interventions (DHIs) developed under the HosmartAI EU-funded program, focusing on obstetrics, cardiology, and gastroenterology. Methods: A Cost Consequence Analysis (CCA) was chosen in order to be able to examine the costs and consequences of AI technologies in early diagnosis of preterm births, echocardiography, coronary computed tomography angiography (CCTA), and capsule endoscopy (CE). Results: The results show that in obstetrics and CCTA, the AI technologies are cost-saving, with the AI-based preterm birth detection leading to savings of 99,840 EUR due to reduced severity of prematurity. In the echocardiography scenario, the new AI technology slightly increased costs (9409 vs. 2116 EUR), but offered benefits in diagnostic accuracy and shorter interpretation duration, particularly for less experienced physicians. Similarly, the capsule endoscopy AI technology raised annual costs by 6626 EUR but improved productivity, accuracy, and user satisfaction. Conclusions: The findings emphasize the need for standardized frameworks to guide economic evaluations of DHIs, ensuring informed healthcare investment and reimbursement decisions in the future. Full article
(This article belongs to the Special Issue Smart and Digital Health)
16 pages, 340 KiB  
Article
Kosovo’s Financial and Economic Benefits from Natural Gas Investment Compared to the Western Balkans
by Gjelosh Vataj, Meshdi Ismailov and Shaqir Rexhepi
Sustainability 2025, 17(14), 6268; https://doi.org/10.3390/su17146268 - 8 Jul 2025
Viewed by 352
Abstract
This paper analyzes annual energy production data in Kosovo and explores the potential benefits of introducing natural gas as an energy source. The study compares current coal-based energy production with natural gas in terms of not only financial impact but also environmental pollution [...] Read more.
This paper analyzes annual energy production data in Kosovo and explores the potential benefits of introducing natural gas as an energy source. The study compares current coal-based energy production with natural gas in terms of not only financial impact but also environmental pollution and public health. The focus is on evaluating financial sustainability by assessing production costs and consumption effects, particularly the potential for expense reduction through natural gas adoption. A financial module analysis was applied, comparing energy prices from coal and natural gas sources. Special emphasis was placed on household economic benefits, return on investment, and reduced energy costs. With the integration of natural gas, household energy expenses could decrease from €0.12 to €0.10 per unit, resulting in estimated national savings of approximately €60 million per year. The investment evaluation was conducted using methodologies grounded in relevant case studies and price differentials in the energy market. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 4683 KiB  
Article
Economic and Sustainability Assessment of Floating Photovoltaic Systems in Irrigation Ponds: A Case Study from Alicante (Spain)
by María Inmaculada López-Ortiz, Joaquín Melgarejo-Moreno and José Alberto Redondo-Orts
Sustainability 2025, 17(13), 6212; https://doi.org/10.3390/su17136212 - 7 Jul 2025
Viewed by 491
Abstract
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility [...] Read more.
Environmental problems, along with the increasing energy demand and high electricity costs in the agricultural sector, justify the need to explore renewable energy sources in order to improve irrigation efficiency and sustainability. Therefore, the objective of this study is to analyse the feasibility of installing floating photovoltaic panels in the irrigation ponds of irrigation communities (ICs) in the province of Alicante. To this end, a practical case study based on the operating data of a photovoltaic installation on an irrigation pond, which shows 31% self-consumption and a 27% reduction in energy costs, is presented. Based on these results, this type of installation has been considered for the rest of the ponds in the province of Alicante, with an estimated total investment of EUR 130 million and annual savings of EUR 23 million in energy costs. Additionally, barriers such as the initial investment and the need for public financing for large-scale implementation are identified. Finally, it is concluded that the adoption of floating photovoltaic energy represents a key opportunity to reduce dependence on fossil fuels, mitigate environmental impact, and promote the circular economy in the agricultural sector. Full article
Show Figures

Figure 1

23 pages, 3338 KiB  
Article
European Efficiency Schemes for Domestic Gas Boilers: Estimation of Savings in Heating of Settlements
by Dejan Brkić
Algorithms 2025, 18(7), 416; https://doi.org/10.3390/a18070416 - 6 Jul 2025
Cited by 1 | Viewed by 466
Abstract
This article aims to evaluate the seasonal efficiency of natural gas boilers used in European households, highlighting the cost effectiveness, environmental benefits, and user comfort associated with higher-efficiency models, particularly those based on condensing technology. The study applies a standardized algorithm used in [...] Read more.
This article aims to evaluate the seasonal efficiency of natural gas boilers used in European households, highlighting the cost effectiveness, environmental benefits, and user comfort associated with higher-efficiency models, particularly those based on condensing technology. The study applies a standardized algorithm used in European energy labeling schemes to calculate the seasonal efficiency of household gas boilers. It further includes a comparative analysis of selected boiler models available on the Serbian market and outlines a step-by-step method for estimating gas savings when replacing older, less efficient boilers with modern units. Condensing boilers demonstrate significantly higher seasonal efficiency than standard models by recovering additional heat from exhaust gases. These improved boilers produce lower greenhouse gas emissions and offer annual fuel savings of approximately 10% to 30%, depending on the boiler’s age, system design, and usage patterns. The results also confirm the direct correlation between seasonal efficiency and annual fuel consumption, validating the use of efficiency-based cost comparisons. The analysis focuses on residential gas boilers available in the Serbian market, although the models examined are commonly distributed across Europe. The findings highlight the important role of energy efficiency labels—based on a standardized algorithm—in guiding boiler selection, helping consumers and policymakers make informed decisions that promote energy savings and reduce environmental impact. This article contributes to the theoretical and practical understanding of gas boiler efficiency by integrating algorithm-based evaluation with market data and user-centered considerations. It offers actionable insights for consumers, energy advisors, and policymakers in the context of Europe’s energy transition. Verifying the efficiency calculations of gas boilers requires a careful combination of theoretical methods, measured data, and adherence to standards. Full article
Show Figures

Figure 1

17 pages, 411 KiB  
Article
Improving the Operation of Transmission Systems Based on Static Var Compensator
by Kelly M. Berdugo Sarmiento, Jorge Iván Silva-Ortega, Vladimir Sousa Santos, John E. Candelo-Becerra and Fredy E. Hoyos
Electricity 2025, 6(3), 40; https://doi.org/10.3390/electricity6030040 - 4 Jul 2025
Viewed by 433
Abstract
This study evaluates and compares centralized and distributed reactive power compensation strategies using Static Var Compensators (SVCs) to enhance the performance of a high-voltage transmission system in the Caribbean region of Colombia. The methodology comprises four stages: system characterization, assessment of the uncompensated [...] Read more.
This study evaluates and compares centralized and distributed reactive power compensation strategies using Static Var Compensators (SVCs) to enhance the performance of a high-voltage transmission system in the Caribbean region of Colombia. The methodology comprises four stages: system characterization, assessment of the uncompensated condition under peak demand, definition of four SVC-based scenarios, and steady-state analysis through power flow simulations using DIgSILENT PowerFactory. SVCs were modeled as Thyristor-Controlled Devices (“SVC Type 1”) operating as PV nodes for voltage regulation. The evaluated scenarios include centralized SVCs at the Slack node, node N4, and node N20, as well as a distributed scheme across load nodes N51 to N55. Node selection was guided by power flow analysis, identifying voltage drops below 0.9 pu and overloads above 125%. Technically, the distributed strategy outperformed the centralized alternatives, reducing active power losses by 37.5%, reactive power exchange by 46.1%, and improving node voltages from 0.71 pu to values above 0.92 pu while requiring only 437 MVAr of compensation compared to 600 MVAr in centralized cases. Economically, the distributed configuration achieved the highest annual energy savings (36 GWh), the greatest financial return (USD 5.94 M/year), and the shortest payback period (7.4 years), highlighting its cost-effectiveness. This study’s novelty lies in its system-level comparison of SVC deployment strategies under real operating constraints. The results demonstrate that distributed compensation not only improves technical performance but also provides a financially viable solution for enhancing grid reliability in infrastructure-limited transmission systems. Full article
Show Figures

Figure 1

Back to TopTop