Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = angiotensin receptor gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2692 KB  
Article
Angiotensin II Activates Yes-Associated Protein (YAP) in Fibroblast Promoting Deep Fascia Remodeling
by Brasilina Caroccia, Ilaria Caputo, Giovanni Bertoldi, Valentina Favaro, Andrea Angelini, Andrea Benetti, Lucia Petrelli, Piero Di Battista, Maria Piazza, Pietro Ruggieri, Raffaele De Caro, Carla Stecco and Carmelo Pirri
Int. J. Mol. Sci. 2025, 26(22), 11105; https://doi.org/10.3390/ijms262211105 - 17 Nov 2025
Viewed by 370
Abstract
The deep fascia, traditionally regarded as a passive structural tissue, is now recognized as a metabolically and biologically active structure where biochemical signals and biomechanical forces interact to influence proprioception, pain, force transmission, and adaptation to mechanical load. In this study, the convergence [...] Read more.
The deep fascia, traditionally regarded as a passive structural tissue, is now recognized as a metabolically and biologically active structure where biochemical signals and biomechanical forces interact to influence proprioception, pain, force transmission, and adaptation to mechanical load. In this study, the convergence point between Angiotensin II (Ang II) signaling via its receptor, Angiotensin type 1 receptor (AT1R), and the mechanosensor Yes-associated protein (YAP) was investigated in human fascial fibroblasts. The presence of angiotensin II (Ang II) receptors was confirmed in fibroblasts from the deep fascia, with the AT1 receptor being the most prevalent subtype. Short-term exposure to Ang II (15–30 min) caused YAP dephosphorylation and its translocation to the nucleus, indicating YAP activation. Notably, prolonged Ang II treatment (7 days) significantly increased the expression of fibrosis-related genes, including collagen types I and III (COL1A1, COL3A1), and hyaluronan binding protein 2 (HABP2). This gene expression was decreased by pretreatment with the AT1R antagonist irbesartan or the YAP inhibitor verteporfin. Additionally, Ang II promoted fibroblast proliferation/migration, key features of fibrotic progression, through AT1R-dependent pathways. These findings show that Ang II acts as both a biochemical and biomechanical signal in the deep fascia, activating YAP signaling and promoting fibrotic remodeling. Our results uncover a new Ang II–YAP pathway in fascial fibroblasts, offering potential targets for therapy in fibrosis and related conditions involving the deep fascia. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 1124 KB  
Article
Effects of Inhibitors of the Activity of the Circulating Renin–Angiotensin System on the Growth and Proliferation of Endometrial Cancer Cells
by Sarah J. Delforce, Riazuddin Mohammed, Tess L. Symington, Yu Wang, Nicole M. Verrills, Eugenie R. Lumbers and Kirsty G. Pringle
Int. J. Mol. Sci. 2025, 26(22), 10968; https://doi.org/10.3390/ijms262210968 - 12 Nov 2025
Viewed by 233
Abstract
Endometrial cancers increase expression of the renin–angiotensin system (RAS). This study aimed to determine if inhibiting the RAS would reduce the viability and proliferation of endometrial cancer cells. The expression of RAS genes was measured in three endometrial epithelial adenocarcinoma cell lines (Ishikawa, [...] Read more.
Endometrial cancers increase expression of the renin–angiotensin system (RAS). This study aimed to determine if inhibiting the RAS would reduce the viability and proliferation of endometrial cancer cells. The expression of RAS genes was measured in three endometrial epithelial adenocarcinoma cell lines (Ishikawa, HEC-1-A, AN3CA). Ishikawa cells had the highest expression of REN, ACE, and AGTR1 mRNA. AGT mRNA and protein levels were most abundant in HEC-1-A cells. We then determined the effects of drugs that inhibit the action of renin (VTP-27999 and aliskiren) or angiotensin-converting enzyme (perindoprilat) or block the angiotensin II type 1 receptor (losartan and telmisartan). Overall, VTP-27999, aliskiren, perindoprilat, and losartan had minimal effects on cell viability in all three cell lines, and combinations of these drugs did not have any effect. Telmisartan (a dual angiotensin receptor blocker and PPAR-γ agonist) significantly reduced the viability of all three cell lines and reduced the proliferation of both Ishikawa and AN3CA cells. Telmisartan was more effective than troglitazone (PPAR-γ agonist) in Ishikawa and HEC-1-A cells. RAS inhibitors were most effective in Ishikawa cells, which had the highest levels of RAS expression. Therefore, levels of RAS expression in endometrial cancers might indicate the potential efficacy of RAS drugs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

20 pages, 4947 KB  
Article
Engineered Liposomal Delivery of Human ACE2 Across the Blood–Brain Barrier Attenuated Neurogenic Hypertension
by Yue Shen, Richard Nii Lante Lamptey, Gowthami Reddy Mareddy, Bivek Chaulagain, Jagdish Singh and Chengwen Sun
Pharmaceutics 2025, 17(10), 1329; https://doi.org/10.3390/pharmaceutics17101329 - 14 Oct 2025
Viewed by 763
Abstract
The blood–brain barrier (BBB) restricts the entry of therapeutic agents into the brain cardiovascular regulatory region, potentially contributing to drug-resistant hypertension. Objective: The objective of this study was to overcome this limitation by modifying PEGylated liposomes with transferrin (Tf) to facilitate Tf [...] Read more.
The blood–brain barrier (BBB) restricts the entry of therapeutic agents into the brain cardiovascular regulatory region, potentially contributing to drug-resistant hypertension. Objective: The objective of this study was to overcome this limitation by modifying PEGylated liposomes with transferrin (Tf) to facilitate Tf receptor binding at the BBB and penetratin (Pen), a cell-penetrating peptide, to enhance neuronal uptake. Methods: This study evaluated the efficacy of Tf-Pen-liposomes in delivering angiotensin-converting enzyme 2 (ACE2) or EGFP (control) genes across the BBB in rats. In addition, the therapeutic effect of intravenous administration of Tf-Pen-Lip carrying plasmid DNA encoding ACE2 (Tf-Pen-Lip-pACE2) was tested in a neurogenic hypertension model induced by intracerebroventricular (ICV) infusion of angiotensin II (Ang II) via osmotic pump implantation and brain cannulation. Results: Conjugation with Tf and Pen significantly enhanced liposome-mediated gene transfection in cultured cells and increased transport across an in vitro BBB model. In vivo, intravenous administration of Tf-Pen-Lip-pACE2 or Tf-Pen-Lip-pGFP successfully elevated ACE2 or EGFP expression, respectively, in the hypothalamic paraventricular nucleus (PVN). Chronic ICV infusion of Ang II produced a sustained increase in blood pressure and heart rate, accompanied by sympathetic overactivation and elevated arginine vasopressin (AVP) secretion, hallmarks of neurogenic hypertension. Notably, intravenous Tf-Pen-Lip-pACE2 treatment dramatically attenuated Ang II–induced neurogenic hypertension, whereas Tf-Pen-Lip-pGFP had no effect on pressor responses, sympathetic activity, or AVP secretion. Conclusions: This dual-functionalized liposomal delivery system effectively transported the ACE2 gene across the BBB into the brain, increased ACE2 expression, and markedly attenuated neurogenic hypertension following systemic administration. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

24 pages, 607 KB  
Systematic Review
Physical Performance and Sports Genetics: A Systematic Review of Candidate Gene Polymorphisms Involved in Team Sports
by Raluca Mijaica, Dragoș Ioan Tohănean, Dan Iulian Alexe and Lorand Balint
Genes 2025, 16(9), 1079; https://doi.org/10.3390/genes16091079 - 15 Sep 2025
Viewed by 2133
Abstract
Background/Objectives: This systematic review aimed to gather the most recent evidence regarding the link between genetic polymorphisms and physical performance in team sports, with a focus on the practical utility of this information for athlete selection, training personalization, and injury prevention. Methods [...] Read more.
Background/Objectives: This systematic review aimed to gather the most recent evidence regarding the link between genetic polymorphisms and physical performance in team sports, with a focus on the practical utility of this information for athlete selection, training personalization, and injury prevention. Methods: Sixteen studies published between 2018 and 2025 were analyzed and selected from six international databases, in accordance with the PRISMA guideline. Only English-language studies were included, which evaluated active athletes in team sports and investigated associations between genetic variations, such as Actinin Alpha 3 (ACTN3 R577X), Angiotensin I Converting Enzyme (ACE I/D), Peroxisome Proliferator-Activated Receptor Alpha (PPARA), Interleukin 6 (IL6), and Nitric Oxide Synthase 3 (NOS3), and physical performance parameters. The methodological quality of the studies was assessed using the Q-Genie tool, with all studies scoring over 45 across all 11 items, indicating high quality. Results: The ACTN3 and ACE genes stood out due to their consistent association with traits such as strength, speed, endurance, and recovery capacity. Other genes, such as PPARA, Fatty Acid Amide Hydrolase (FAAH), Angiotensinogen (AGT), and NOS3, complemented this genetic profile by being involved in the regulation of energy metabolism and injury predisposition. An increasing number of studies have begun to adopt cumulative genotype scores, suggesting a shift from a monogenic approach to complex predictive models. Conclusions: The integration of genetic profiling into the evaluation and management of athletes in team sports is becoming increasingly relevant. Although current evidence supports the applicability of these markers, robust future research conducted under standardized conditions is necessary to validate their use in sports practice and to ensure sound ethical standards. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 2700 KB  
Review
Anti-Oxidant, Anti-Inflammatory and Antiviral Properties of Luteolin Against SARS-CoV-2: Based on Network Pharmacology
by Xin Li, Yunmei Fu, Tong Yu, Ruizhe Song, Hongguang Nie and Yan Ding
Pharmaceuticals 2025, 18(9), 1329; https://doi.org/10.3390/ph18091329 - 4 Sep 2025
Cited by 1 | Viewed by 1714
Abstract
Luteolin is a natural flavonoid compound with multifaceted pharmacological properties, including anti-oxidant, anti-inflammatory, antiviral, and anti-tumor activities. Network pharmacology analysis has been utilized to decipher the underlying mechanisms and multitargets of luteolin against coronavirus disease 2019 (COVID-19). This review aims to provide a [...] Read more.
Luteolin is a natural flavonoid compound with multifaceted pharmacological properties, including anti-oxidant, anti-inflammatory, antiviral, and anti-tumor activities. Network pharmacology analysis has been utilized to decipher the underlying mechanisms and multitargets of luteolin against coronavirus disease 2019 (COVID-19). This review aims to provide a systematic and comprehensive summary of luteolin, as a potential novel remedy with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity, as well as its anti-oxidant mechanisms. We systematically delineate the epidemiological profile, genomic architecture, and replicative dynamics of SARS-CoV-2, thereby constructing a multiscale framework to decode its pathogenic mechanisms. Employing a multi-level network pharmacology analytical strategy, we identify 46 core targets through protein interaction network construction, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Molecular investigations reveal luteolin’s dual antiviral mechanisms, including direct targeting of SARS-CoV-2 proteins and host-directed intervention through suppression of angiotensin-converting enzyme 2 receptor engagement/transmembrane protease serine 2-mediated viral priming. The polypharmacological profile of luteolin demonstrates synergistic effects in blocking viral entry, replication, and host inflammatory cascades. This phytochemical repurposing study of luteolin provides a novel mechanistic paradigm for developing multitarget antiviral agents, highlighting the translational value of natural compounds in combating emerging viral variants. Full article
Show Figures

Graphical abstract

33 pages, 1036 KB  
Review
Present and Future Perspectives in the Treatment of Liver Fibrosis
by Lucia Cerrito, Linda Galasso, Jacopo Iaccarino, Alessandro Pizzi, Fabrizio Termite, Giorgio Esposto, Raffaele Borriello, Maria Elena Ainora, Antonio Gasbarrini and Maria Assunta Zocco
Pharmaceuticals 2025, 18(9), 1321; https://doi.org/10.3390/ph18091321 - 3 Sep 2025
Viewed by 3552
Abstract
Background/Objectives: Liver fibrosis is a progressive consequence of chronic liver injury that can evolve into cirrhosis, liver failure, or hepatocellular carcinoma, representing a major global health burden. Fibrogenesis is driven by hepatic stellate cell (HSC) activation, excessive extracellular matrix deposition, and structural disruption [...] Read more.
Background/Objectives: Liver fibrosis is a progressive consequence of chronic liver injury that can evolve into cirrhosis, liver failure, or hepatocellular carcinoma, representing a major global health burden. Fibrogenesis is driven by hepatic stellate cell (HSC) activation, excessive extracellular matrix deposition, and structural disruption of liver tissue, with transforming growth factor-β (TGF-β) signaling and inflammatory mediators as central pathways. Current therapies primarily target the underlying causes, which may halt disease progression but rarely reverse established fibrosis. This review aims to outline current and emerging therapeutic strategies for liver fibrosis, informing both clinical practice and future research directions. Methods: A narrative synthesis of preclinical and clinical evidence was conducted, focusing on pharmacological interventions, microbiota-directed strategies, and innovative modalities under investigation for antifibrotic activity. Results: Bile acids, including ursodeoxycholic acid and derivatives, modulate HSC activity and autophagy. Farnesoid X receptor (FXR) agonists, such as obeticholic acid, reduce fibrosis but are limited by adverse effects. Fatty acid synthase inhibitors, exemplified by denifanstat, show promise in metabolic dysfunction-associated steatohepatitis (MASH). Additional strategies include renin–angiotensin system inhibitors, omega-3 fatty acids, and agents targeting the gut–liver axis. Microbiota-directed interventions—probiotics, prebiotics, symbiotics, antibiotics (e.g., rifaximin), and fecal microbiota transplantation—are emerging as potential modulators of barrier integrity, inflammation, and fibrogenesis, though larger clinical trials are required. Reliable non-invasive biomarkers and innovative trial designs, including adaptive platforms, are essential to improve patient selection and efficiently evaluate multiple agents and combinations. Conclusions: Novel modalities such as immunotherapy, gene editing, and multi-targeted therapies hold additional potential for fibrosis reversal. Continued translational efforts are critical to establish safe, effective, and accessible treatments for patients with liver fibrosis. Full article
(This article belongs to the Special Issue Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances)
Show Figures

Graphical abstract

19 pages, 4401 KB  
Article
Influence of Sex and 1,25α Dihydroxyvitamin D3 on SARS-CoV-2 Infection and Viral Entry
by Nicole Vercellino, Alessandro Ferrari, José Camilla Sammartino, Mattia Bellan, Elizabeth Iskandar, Daniele Lilleri and Rosalba Minisini
Pathogens 2025, 14(8), 765; https://doi.org/10.3390/pathogens14080765 - 2 Aug 2025
Viewed by 886
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 α dihydroxyvitamin D3 (calcitriol) act upon gene pathways as immunomodulators in several infectious respiratory diseases. In this study, we aimed to evaluate the influence of E2 and calcitriol on the VSV-based pseudovirus SARS-CoV-2 and SARS-CoV-2 infection in vitro. We infected Vero E6 cells with the recombinant VSV-based pseudovirus SARS-CoV-2 and the SARS-CoV-2 viruses according to the pre-treatment and pre–post-treatment models. The Angiotensin-Converting Enzyme 2 (ACE2) and Vitamin D Receptor (VDR) gene expression did not change under different treatments. The VSV-based pseudovirus SARS-CoV-2 infection showed a significant decrease in the focus-forming unit count in the presence of E2 and calcitriol (either alone or in combination) in the pre-treatment model, while in the pre–post-treatment model, the infection was inhibited only in the presence of E2. Th SARS-CoV-2 infection highlighted a decrease in viral titres in the presence of E2 and calcitriol only in the pre–post-treatment model. 17,β-Estradiol and calcitriol can exert an inhibitory effect on SARS-CoV-2 infections, demonstrating their protective role against viral infections. Full article
(This article belongs to the Special Issue Antiviral Strategies Against Human Respiratory Viruses)
Show Figures

Graphical abstract

17 pages, 1525 KB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Cited by 1 | Viewed by 1086
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

23 pages, 11160 KB  
Article
Modeling the Influence of CYP2C9 and ABCB1 Gene Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Losartan
by Dmitry Babaev, Elena Kutumova and Fedor Kolpakov
Pharmaceutics 2025, 17(7), 935; https://doi.org/10.3390/pharmaceutics17070935 - 20 Jul 2025
Viewed by 1130
Abstract
Background/Objectives: Hypertension is a pathological condition characterized by elevated systolic and/or diastolic blood pressure. A range of pharmacotherapeutic agents are available to treat this condition and prevent complications, including the angiotensin II AT1-receptor blocker losartan. Following oral administration, losartan is exposed to a [...] Read more.
Background/Objectives: Hypertension is a pathological condition characterized by elevated systolic and/or diastolic blood pressure. A range of pharmacotherapeutic agents are available to treat this condition and prevent complications, including the angiotensin II AT1-receptor blocker losartan. Following oral administration, losartan is exposed to a variety of enzymes that facilitate its metabolism or transportation. The structural characteristics of the genes that encode the enzymes may potentially impact the pharmacokinetics and pharmacodynamics of losartan, thereby modulating its effects on the treatment process. Methods: In this study, a computational model of losartan pharmacokinetics was developed, taking into account the influence of different alleles of the CYP2C9 gene, which plays a pivotal role in losartan metabolism, and the ABCB1 gene, which is responsible for losartan transport. Results: Alterations in the modeled activities of the enzymes encoded by CYP2C9 and ABCB1 result in changes in the losartan and its metabolite profiles that are consistent with known experimental data in real patients with different CYP2C9 and ABCB1 genotypes. Conclusions: The findings of the modeling can potentially be used to personalize drug therapy for arterial hypertension. Full article
Show Figures

Figure 1

26 pages, 785 KB  
Review
Exploring the Role of Genetic and Genomic Factors in Therapeutic Response to Heart Failure: A Comprehensive Analytical Review
by Aurora Ferro, Andrea Segreti, Simone Pasquale Crispino, Riccardo Cricco, Anna Di Cristo, Martina Ciancio, Fiorella Gurrieri, Gian Paolo Ussia and Francesco Grigioni
Genes 2025, 16(7), 801; https://doi.org/10.3390/genes16070801 - 4 Jul 2025
Cited by 2 | Viewed by 2163
Abstract
Heart failure (HF) remains a leading cause of morbidity and mortality worldwide. Despite significant advances in pharmacological therapies, responses to treatment vary widely among patients. Growing evidence suggests that genetic factors play a crucial role in influencing individual responses to HF therapies. Genetic [...] Read more.
Heart failure (HF) remains a leading cause of morbidity and mortality worldwide. Despite significant advances in pharmacological therapies, responses to treatment vary widely among patients. Growing evidence suggests that genetic factors play a crucial role in influencing individual responses to HF therapies. Genetic variations, including single-nucleotide polymorphisms (SNPs), gene expression profiles, and epigenetic modifications, have been shown to affect drug metabolism, receptor sensitivity, and the molecular pathways involved in HF progression. These genetic determinants may not only predict the efficacy of common therapeutic agents such as angiotensin-converting enzyme inhibitors, beta-blockers, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter-2 inhibitors, but also help identify patients at risk of adverse drug reactions. As personalized medicine continues to advance, a deeper understanding of the genetic basis of drug response in HF could enable more tailored treatment strategies, improving clinical outcomes and minimizing adverse effects. This review explores the current evidence on the genetic underpinnings of response to HF treatment and discusses its potential implications in clinical practice, highlighting current knowledge gaps. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 1219 KB  
Review
Carboxylesterase Factors Influencing the Therapeutic Activity of Common Antiviral Medications Used for SARS-CoV-2 Infection
by Yue Shen, William Eades, Linh Dinh and Bingfang Yan
Pharmaceutics 2025, 17(7), 832; https://doi.org/10.3390/pharmaceutics17070832 - 26 Jun 2025
Viewed by 2016
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, remains a major global health threat. The virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. Several small-molecule antiviral drugs, including molnupiravir, favipiravir, remdesivir, and nirmatrelvir have [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, remains a major global health threat. The virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. Several small-molecule antiviral drugs, including molnupiravir, favipiravir, remdesivir, and nirmatrelvir have been shown to inhibit SARS-CoV-2 replication and are approved for treating SARS-CoV-2 infections. Nirmatrelvir inhibits the viral main protease (Mpro), a key enzyme for processing polyproteins in viral replication. In contrast, molnupiravir, favipiravir, and remdesivir are prodrugs that target RNA-dependent RNA polymerase (RdRp), which is crucial for genome replication and subgenomic RNA production. However, undergoing extensive metabolism profoundly impacts their therapeutic effects. Carboxylesterases (CES) are a family of enzymes that play an essential role in the metabolism of many drugs, especially prodrugs that require activation through hydrolysis. Molnupiravir is activated by carboxylesterase-2 (CES2), while remdesivir is hydrolytically activated by CES1 but inhibits CES2. Nirmatrelvir and remdesivir are oxidized by the same cytochrome P450 (CYP) enzyme. Additionally, various transporters are involved in the uptake or efflux of these drugs and/or their metabolites. It is well established that drug-metabolizing enzymes and transporters are differentially expressed depending on the cell type, and these genes exhibit significant polymorphisms. In this review, we examine how CES-related cellular and genetic factors influence the therapeutic activities of these widely used COVID-19 medications. This article highlights implications for improving product design, targeted inhibition, and personalized medicine by exploring genetic variations and their impact on drug metabolism and efficacy. Full article
(This article belongs to the Special Issue ADME Properties in the Drug Delivery)
Show Figures

Figure 1

19 pages, 6987 KB  
Article
Study of Retinoic Acid-Induced Osteoarthritis: Integrating RNA-Sequencing, Network Pharmacology, Molecular Docking, and Experimental Validation
by Tao Lu, Zi-Yi Liu, Yang-Shuo Ge, Shuai-Yu Jiang, Qing-Ao Zhao and Dao-Fang Ding
Int. J. Mol. Sci. 2025, 26(12), 5519; https://doi.org/10.3390/ijms26125519 - 9 Jun 2025
Cited by 1 | Viewed by 1537
Abstract
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and disruption of chondrocyte homeostasis. Although retinoic acid (RA) has been used in OA models, its precise targets are not clear. A translational framework was employed, integrating RNA-sequencing results, network pharmacology prediction, [...] Read more.
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and disruption of chondrocyte homeostasis. Although retinoic acid (RA) has been used in OA models, its precise targets are not clear. A translational framework was employed, integrating RNA-sequencing results, network pharmacology prediction, computational ligand-receptor molecular docking, and biological experimental validation, to systematically elucidate RA’s disease-modifying targets in OA pathogenesis. RNA-sequencing of RA-treated chondrocytes revealed 656 differentially expressed genes (DEGs). Protein–protein interaction (PPI) network analysis and functional enrichment [Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)] highlighted key pathways, including extracellular matrix (ECM) reorganization and PI3K-Akt-mediated mechanotransduction and others. Network pharmacology analysis identified 42 shared targets between RA and OA. PPI analysis and functional enrichment (GO/KEGG) highlighted pathways including the renin–angiotensin system and the neuroactive ligand–receptor interaction, among others. Molecular docking ranked candidate targets by binding affinity of RA in descending order as MAPK14 (p38α), PTGER3 (PGE2 receptor), CA2 (CA2), and others. Five intersecting targets CA2, ACE, PTGS1 (COX-1), PGR, and EDNRA (ETAR) were identified by integrating RNA-sequencing (RNA-seq) results and network pharmacology predictions. These interactions were experimentally validated via western blot, RT-qPCR and immunofluorescence. RA increased the expression of MMP13, CA2 and ACE, and decreased the expression of COL2A1 in chondrocytes. siRNA-mediated knockdown of both CA2 (human CA2 homolog) and ACE (human ACE homolog) inhibit cartilage degradation through downregulating MMP13 and upregulating COL2A1. This study not only elucidates potential molecular mechanisms by which RA modulates chondrocyte catabolism but also offers a valuable reference for the development of novel OA therapeutics. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

8 pages, 426 KB  
Case Report
A Case of Horseshoe Kidney and Autosomal Dominant Polycystic Kidney Disease with PKD1 Gene Mutation
by Hyeongwan Kim, Soo Jin Lee and Won Kim
J. Clin. Med. 2025, 14(11), 4008; https://doi.org/10.3390/jcm14114008 - 5 Jun 2025
Viewed by 1072
Abstract
Background/Objectives: Horseshoe kidney is a congenital anomaly characterized by the fusion of the kidneys at the lower pole. Polycystic kidney disease with horseshoe kidney is called polycystic horseshoe kidney. Genetic testing is essential for the diagnosis of polycystic horseshoe kidney disease because [...] Read more.
Background/Objectives: Horseshoe kidney is a congenital anomaly characterized by the fusion of the kidneys at the lower pole. Polycystic kidney disease with horseshoe kidney is called polycystic horseshoe kidney. Genetic testing is essential for the diagnosis of polycystic horseshoe kidney disease because it can result from a number of genetic disorders. Fewer than 20 cases of polycystic horseshoe kidney have been reported to date. However, polycystic horseshoe kidney disease was mostly diagnosed via autopsy or radiologic imaging techniques including computed tomography, magnetic resonance imaging, and angiography. Because polycystic kidney disease has various causes, genetic testing is essential for the diagnosis of autosomal dominant polycystic kidney disease (ADPKD) in patients with polycystic horseshoe kidney disease. At present, the diagnosis of ADPKD is made using genetic approaches, including next-generation sequencing. We reported a potentially pathogenic polycystin 1 (PKD1) gene in a patient with ADPKD and horseshoe kidney. Methods: We performed the sequencing of the PKD1 gene and radiological examinations (computed abdominal tomography). Results: Computed abdominal tomography revealed enlarged kidneys with multiple cysts fused at the lower poles, indicating polycystic HSK. The sequencing of the PKD1 gene revealed a heterozygous pathogenic variant c.165_171del (p.Leu56ArgfsTer15), which genetically confirmed the diagnosis of ADPKD. The patient was treated with an angiotensin II receptor blocker. Conclusions: In this case report, we suggest that genetic testing becomes the key approach to the diagnosis of ADPKD with horseshoe kidney. Additionally, this approach offers the benefit of avoiding the possibility of the condition being mistakenly diagnosed or diagnosed late due to its uncommon occurrence and nonspecific symptoms. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

10 pages, 792 KB  
Article
Role of ACE1, ACE2, and CCR5-Δ32 Polymorphisms in the Transmission of SARS-CoV-2 to Intimate Contacts
by Maria Pina Dore, Alessandra Errigo, Elettra Merola and Giovanni Mario Pes
Biology 2025, 14(6), 587; https://doi.org/10.3390/biology14060587 - 22 May 2025
Cited by 1 | Viewed by 808
Abstract
Background. Despite the high transmissibility of SARS-CoV-2, some individuals remain uninfected despite prolonged exposure to a high viral load, suggesting the involvement of an innate resistance mechanism, possibly underpinned by the host’s genetic factors. The angiotensin-converting enzyme-1 (ACE1), ACE2, and [...] Read more.
Background. Despite the high transmissibility of SARS-CoV-2, some individuals remain uninfected despite prolonged exposure to a high viral load, suggesting the involvement of an innate resistance mechanism, possibly underpinned by the host’s genetic factors. The angiotensin-converting enzyme-1 (ACE1), ACE2, and C-C Chemokine Receptor 5 (CCR5) polymorphisms have been shown to influence susceptibility to the infection. In this study, the role of ACE1, ACE2, and CCR5 gene polymorphisms in modulating susceptibility to SARS-CoV-2 infection within the context of intimate contact was evaluated. Methods. A cohort of heterosexual couples from Northern Sardinia, characterized by a homogenous genetic background, was recruited during the initial pandemic wave (March–June 2020). In each couple, one partner (index case) tested positive for SARS-CoV-2 by at least two consecutive independent molecular tests (real-time polymerase chain reaction: RT-PCR) on nasopharyngeal swabs. Bed-sharing partners of SARS-CoV-2 positive index cases, resistant and susceptible to the infection, were genotyped for ACE1 287 bp Alu repeat insertion/deletion (I/D) polymorphism, ACE2 G8790A (rs2285666) variant, and a 32-base pair deletion (Δ32) of CCR5. Resistant and susceptible partners to the infection were compared for polymorphisms. Results. Out of 63 couples, 30 partners acquired SARS-CoV-2 infection, while 33 remained uninfected despite intimate exposure. Clinical history was minimal for current or past illnesses. SARS-CoV-2-infected index spouses and partners who acquired the infection developed a mild disease, not requiring hospitalization. The observed distribution of ACE1 I/D and ACE2 G8790A genotypes was consistent with previously reported frequencies in Sardinia and across European populations. None of the study participants carried the CCR5-Δ32 variant. No statistically significant differences (p > 0.05) in the allelic or genotypic frequencies of these polymorphisms were observed between the infected and resistant partners. Conclusions. No differences in the distribution of ACE1, ACE2, and CCR5 polymorphisms between the two groups were detected. These findings suggest that resistance is likely multifactorial, involving a complex interplay of genetic, immunological, and environmental factors. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Figure 1

13 pages, 508 KB  
Article
The rs1403543 Polymorphism of AGTR2, Which Encodes the Type-2 Angiotensin II Receptor, and Left Ventricular Mass in Polish Full-Term Newborns
by Iwona Gorący, Karol Miler, Klaudyna Lewandowska, Monika Rychel, Beata Łoniewska and Andrzej Ciechanowicz
Genes 2025, 16(5), 518; https://doi.org/10.3390/genes16050518 - 29 Apr 2025
Viewed by 1052
Abstract
Background/Objectives: Left ventricular hypertrophy is a significant independent risk factor for increased cardiovascular morbidity and mortality. There are some reports indicating an association of rs1403543 (1675G>A) polymorphism in the AGTR2 gene, which encodes the type-2 angiotensin II receptor, with left ventricular hypertrophy or [...] Read more.
Background/Objectives: Left ventricular hypertrophy is a significant independent risk factor for increased cardiovascular morbidity and mortality. There are some reports indicating an association of rs1403543 (1675G>A) polymorphism in the AGTR2 gene, which encodes the type-2 angiotensin II receptor, with left ventricular hypertrophy or increased left ventricular mass (LVM) in adults. The aim of this study was to analyze the possible association of the AGTR2:rs1403543 polymorphism with LVM in full-term Polish healthy newborns. Methods: The study group comprised 207 consecutive, full-term, healthy newborns. LVM was assessed, on the 3rd day after birth, from the M-mode echocardiographic measurements of left ventricular dimensions using the Penn convention, with the Huwez et al.-modified equation mode. The AGTR2 polymorphism was identified by PCR-RFLP in genomic DNA extracted from cord blood leukocytes. Results: There were no significant differences in clinical and echocardiographic characteristics of male newborns in regard to the AGTR2:rs1403543 polymorphism. However, the LVM/body mass ratio in female newborns carrying at least one A allele (i.e., with genotype GA or AA) was significantly lower as compared to its value in reference (GG) homozygotes. In addition, in female newborns, the frequency of AGTR2 genotypes with at least one A allele was significantly higher in the lower tertile of LVM/body mass or LVM/body surface area (calculated using the Mosteller formula) ratios as compared with upper tertiles. Conclusions: Our results suggest that the AGTR2:rs1403543 polymorphism may be associated with the physiological variability of cardiac mass in female newborns. Full article
Show Figures

Figure 1

Back to TopTop