Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = ampelopsin E

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4259 KB  
Article
The Anti-Adiposity Mechanisms of Ampelopsin and Vine Tea Extract in High Fat Diet and Alcohol-Induced Fatty Liver Mouse Models
by Jianbo Wu, Kenchi Miyasaka, Wakana Yamada, Shogo Takeda, Norihito Shimizu and Hiroshi Shimoda
Molecules 2022, 27(3), 607; https://doi.org/10.3390/molecules27030607 - 18 Jan 2022
Cited by 17 | Viewed by 4469
Abstract
Ampelopsis grossedentata (AG) is an ancient medicinal plant that is mainly distributed and used in southwest China. It exerts therapeutic effects, such as antioxidant, anti-diabetic, and anti-inflammatory activities, reductions in blood pressure and cholesterol and hepatoprotective effects. Researchers in China recently reported the [...] Read more.
Ampelopsis grossedentata (AG) is an ancient medicinal plant that is mainly distributed and used in southwest China. It exerts therapeutic effects, such as antioxidant, anti-diabetic, and anti-inflammatory activities, reductions in blood pressure and cholesterol and hepatoprotective effects. Researchers in China recently reported the anti-obesity effects of AG extract in diet-induced obese mice and rats. To verify these findings, we herein investigated the effects of AG extract and its principal compound, ampelopsin, in high-fat diet (HFD)- and alcohol diet-fed mice, olive oil-loaded mice, and differentiated 3T3-L1 cells. The results obtained showed that AG extract and ampelopsin significantly suppressed increases in the weights of body, livers and abdominal fat and also up-regulated the expression of carnitine palmitoyltransferase 1A in HFD-fed mice. In olive oil-loaded mice, AG extract and ampelopsin significantly attenuated increases in serum triglyceride (TG) levels. In differentiated 3T3-L1 cells, AG extract and ampelopsin promoted TG decomposition, which appeared to be attributed to the expression of hormone-sensitive lipase. In alcohol diet-fed mice, AG extract and ampelopsin reduced serum levels of ethanol, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) and liver TG. An examination of metabolic enzyme expression patterns revealed that AG extract and ampelopsin mainly enhanced the expression of aldehyde dehydrogenase and suppressed that of cytochrome P450, family 2, subfamily e1. In conclusion, AG extract and ampelopsin suppressed diet-induced intestinal fat accumulation and reduced the risk of fatty liver associated with HFD and alcohol consumption. Full article
(This article belongs to the Topic Applied Sciences in Functional Foods)
Show Figures

Figure 1

17 pages, 3380 KB  
Article
Ampelopsin Suppresses Stem Cell Properties Accompanied by Attenuation of Oxidative Phosphorylation in Chemo- and Radio-Resistant MDA-MB-231 Breast Cancer Cells
by Vi Nguyen-Phuong Truong, Yen Thi-Kim Nguyen and Somi-Kim Cho
Pharmaceuticals 2021, 14(8), 794; https://doi.org/10.3390/ph14080794 - 12 Aug 2021
Cited by 12 | Viewed by 5522
Abstract
Ampelopsin, also known as dihydromyricetin, is a commonly found flavonoid in medicinal plants. The cancer stem cell (CSC) population is a promising target for triple-negative breast cancer (TNBC). In this study, flavonoid screening was performed in the established MDA-MB-231/IR cell line, which is [...] Read more.
Ampelopsin, also known as dihydromyricetin, is a commonly found flavonoid in medicinal plants. The cancer stem cell (CSC) population is a promising target for triple-negative breast cancer (TNBC). In this study, flavonoid screening was performed in the established MDA-MB-231/IR cell line, which is enriched in CSCs. Ampelopsin suppressed the proliferation and colony formation of stem cell-rich MDA-MB-231/IR, while inducing their apoptosis. Importantly, ampelopsin displayed an inhibitory impact on the stemness features of MDA-MB-231/IR cells, demonstrated by decreases in mammosphere formation, the CD44+/CD24−/low population, aldehyde dehydrogenase activity, and the levels of stem cell markers (e.g., CD44, MRP1, β-catenin, and KLF4). Ampelopsin also suppressed the epithelial–mesenchymal transition, as evidenced by decreases in migration, invasion capacity, and mesenchymal markers, as well as an increase in the epithelial marker E-cadherin. Moreover, ampelopsin significantly impaired oxidative phosphorylation by reducing the oxygen consumption rate and adenosine triphosphate production in MDA-MB-231/IR cells. Notably, ampelopsin treatment significantly reduced the levels of the phosphorylated forms of IκBα and NF-κB p65, as well as the levels of tumor necrosis factor (TNF)-α-stimulated phosphorylation of IκBα and NF-κB p65. These results demonstrated that ampelopsin prevents the TNF-α/NF-κB signaling axis in breast CSCs. Full article
(This article belongs to the Special Issue Anticancer Compounds in Medicinal Plants)
Show Figures

Figure 1

19 pages, 3266 KB  
Article
Wood Metabolomic Responses of Wild and Cultivated Grapevine to Infection with Neofusicoccum parvum, a Trunk Disease Pathogen
by Clément Labois, Kim Wilhelm, Hélène Laloue, Céline Tarnus, Christophe Bertsch, Mary-Lorène Goddard and Julie Chong
Metabolites 2020, 10(6), 232; https://doi.org/10.3390/metabo10060232 - 4 Jun 2020
Cited by 29 | Viewed by 4922
Abstract
Grapevine trunk diseases (GTDs), which are associated with complex of xylem-inhabiting fungi, represent one of the major threats to vineyard sustainability currently. Botryosphaeria dieback, one of the major GTDs, is associated with wood colonization by Botryosphaeriaceae fungi, especially Neofusicoccum parvum. We used [...] Read more.
Grapevine trunk diseases (GTDs), which are associated with complex of xylem-inhabiting fungi, represent one of the major threats to vineyard sustainability currently. Botryosphaeria dieback, one of the major GTDs, is associated with wood colonization by Botryosphaeriaceae fungi, especially Neofusicoccum parvum. We used GC-MS and HPLC-MS to compare the wood metabolomic responses of the susceptible Vitis vinifera subsp. vinifera (V. v. subsp. vinifera) and the tolerant Vitis vinifera subsp. sylvestris (V. v. subsp. sylvestris) after artificial inoculation with Neofusicoccum parvum (N. parvum). N. parvum inoculation triggered major changes in both primary and specialized metabolites in the wood. In both subspecies, infection resulted in a strong decrease in sugars (fructose, glucose, sucrose), whereas sugar alcohol content (mannitol and arabitol) was enhanced. Concerning amino acids, N. parvum early infection triggered a decrease in aspartic acid, serine, and asparagine, and a strong increase in alanine and β-alanine. A trend for more intense primary metabolism alteration was observed in V. v. subsp. sylvestris compared to V. v. subsp. vinifera. N. parvum infection also triggered major changes in stilbene and flavonoid compounds. The content in resveratrol and several resveratrol oligomers increased in the wood of both subspecies after infection. Interestingly, we found a higher induction of resveratrol oligomer (putative E-miyabenol C, vitisin C, hopeaphenol, ampelopsin C) contents after wood inoculation in V. v. subsp. sylvestris. Full article
(This article belongs to the Special Issue Plant Metabolomics)
Show Figures

Graphical abstract

16 pages, 3412 KB  
Article
Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential
by Magdalena Anna Malinowska, Kévin Billet, Samantha Drouet, Thibaut Munsch, Marianne Unlubayir, Duangjai Tungmunnithum, Nathalie Giglioli-Guivarc’h, Christophe Hano and Arnaud Lanoue
Molecules 2020, 25(9), 2203; https://doi.org/10.3390/molecules25092203 - 8 May 2020
Cited by 45 | Viewed by 7542
Abstract
Grape canes are waste biomass of viticulture containing bioactive polyphenols valuable in cosmetics. Whereas several studies reported the cosmetic activities of E-resveratrol, only few described the potential of E-ε-viniferin, the second major constituent of grape cane extracts (GCE), and none of [...] Read more.
Grape canes are waste biomass of viticulture containing bioactive polyphenols valuable in cosmetics. Whereas several studies reported the cosmetic activities of E-resveratrol, only few described the potential of E-ε-viniferin, the second major constituent of grape cane extracts (GCE), and none of them investigated GCE as a natural blend of polyphenols for cosmetic applications. In this study, we considered the potential of GCE from polyphenol-rich grape varieties as multifunctional cosmetic ingredients. HPLC analysis was performed to quantify major polyphenols in GCE i.e., catechin, epicatechin, E-resveratrol, E-piceatannol, ampelopsin A, E-ε-viniferin, hopeaphenol, isohopeaphenol, E-miyabenol C and E-vitisin B from selected cultivars. Skin whitening potential through tyrosinase inhibition assay and the activation capacity of cell longevity protein (SIRT1) of GCE were compared to pure E-resveratrol and E-ε-viniferin. Drug-likeness of GCE polyphenols were calculated, allowing the prediction of skin permeability and bioavailability. Finally, the present data enabled the consideration of GCE from polyphenol-rich varieties as multifunctional cosmetic ingredients in accordance with green chemistry practices. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

25 pages, 4737 KB  
Article
Ampelopsin E Reduces the Invasiveness of the Triple Negative Breast Cancer Cell Line, MDA-MB-231
by Francis Yew Fu Tieng, Saiful Yazan Latifah, Nur Fariesha Md Hashim, Huzwah Khaza’ai, Norizan Ahmat, Banulata Gopalsamy and Agustono Wibowo
Molecules 2019, 24(14), 2619; https://doi.org/10.3390/molecules24142619 - 18 Jul 2019
Cited by 14 | Viewed by 6005
Abstract
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, [...] Read more.
Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC. Full article
Show Figures

Graphical abstract

14 pages, 1141 KB  
Article
Quantitative Determination of Stilbenoids and Dihydroisocoumarins in Shorea roxburghii and Evaluation of Their Hepatoprotective Activity
by Kiyofumi Ninomiya, Saowanee Chaipech, Yusuke Kunikata, Ryohei Yagi, Yutana Pongpiriyadacha, Osamu Muraoka and Toshio Morikawa
Int. J. Mol. Sci. 2017, 18(2), 451; https://doi.org/10.3390/ijms18020451 - 20 Feb 2017
Cited by 27 | Viewed by 6605
Abstract
A simultaneous quantitative analytical method for 13 stilbenoids including (−)-hopeaphenol (1), (+)-isohopeaphenol (2), hemsleyanol D (3), (−)-ampelopsin H (4), vaticanols A (5), E (6), and G (7), (+)-α-viniferin ( [...] Read more.
A simultaneous quantitative analytical method for 13 stilbenoids including (−)-hopeaphenol (1), (+)-isohopeaphenol (2), hemsleyanol D (3), (−)-ampelopsin H (4), vaticanols A (5), E (6), and G (7), (+)-α-viniferin (8), pauciflorol A (9), hopeafuran (10), (−)-balanocarpol (11), (−)-ampelopsin A (12), and trans-resveratrol 10-C-β-d-glucopyranoside (13), and two dihydroisocoumarins, phayomphenols A1 (14) and A2 (15) in the extract of Shorea roxburghii (dipterocarpaceae) was developed. According to the established protocol, distributions of these 15 polyphenols (115) in the bark and wood parts of S. roxburghii and a related plant Cotylelobium melanoxylon were evaluated. In addition, the principal polyphenols (1, 2, 8, 1315) exhibited hepatoprotective effects against d-galactosamine (d-galN)/lipopolysaccharide (LPS)-induced liver injury in mice at a dose of 100 or 200 mg/kg, p.o. To characterize the mechanisms of action, the isolates were examined in in vitro studies assessing their effects on (i) d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes; (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages; and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. The mechanisms of action of these polyphenols (1, 2, and 8) were suggested to be dependent on the inhibition of LPS-induced macrophage activation and reduction of sensitivity of hepatocytes to TNF-α. However, none of the isolates reduced the cytotoxicity caused by d-GalN. Full article
(This article belongs to the Special Issue Biological Activity of Natural Secondary Metabolite Products)
Show Figures

Graphical abstract

12 pages, 294 KB  
Article
Evaluation of the Combined Effects of Stilbenoid from Shorea gibbosa and Vancomycin against Methicillin-Resistant Staphylococcus aureus (MRSA)
by Dayang Fredalina Basri, Chan Kin Luoi, Abdul Muin Azmi and Jalifah Latip
Pharmaceuticals 2012, 5(9), 1032-1043; https://doi.org/10.3390/ph5091032 - 20 Sep 2012
Cited by 27 | Viewed by 8301
Abstract
The aim of this study is to determine the combined effects of stilbenoids from Shorea gibbosa and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). A total of nine pure compounds, five stilbenoid dimers ε-viniferin, ampelopsin A, balanocarpol, laevifonol and diptoindonesin G and four stilbenoid [...] Read more.
The aim of this study is to determine the combined effects of stilbenoids from Shorea gibbosa and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). A total of nine pure compounds, five stilbenoid dimers ε-viniferin, ampelopsin A, balanocarpol, laevifonol and diptoindonesin G and four stilbenoid trimers a-viniferin, johorenol A, ampelopsin E and vaticanol G were evaluated for their antibacterial activities against ATCC 33591 and a HUKM clinical isolate. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for each active compound were determined using the serial microdilution and plate-streak techniques. The combined effect of stilbenoids with vancomycin against MRSA was evaluated using the checkerboard assay to determine their fractional inhibitory concentration (FIC) index values. The MIC value of a-viniferin on both MRSA strains was 100 μg/mL, whereas those of johorenol A on ATCC 33591 and HUKM strain were 100 μg/mL and 200 μg/mL, respectively. The MIC values of ampelopsin E and vaticanol G were higher than 400 μg/mL. Out of the five stilbenoid dimers, only ε-viniferin was capable of inhibiting the growth of both MRSA strains at MIC 400 μg/mL. The MBC value of ε-viniferin, a-viniferin and johorenol A showed bacteriostatic action against MRSA. The FIC index value of ε-viniferin and a-viniferin in combination with vancomycin showed an additive effect (0.5 < FIC ≤ 2.0) against both MRSA strains. Johorenol A-vancomycin combination was also additive against HUKM strain, but it showed synergistic interaction with vancomycin against ATCC 33591 (FIC < 0.5). Stilbenoid compounds from Shorea gibbosa have anti-MRSA activity and huge potential as an alternative phytotherapy in combating MRSA infections. Full article
Show Figures

Figure 1

Back to TopTop