Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (325)

Search Parameters:
Keywords = ammonia emissions reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 - 31 Jul 2025
Viewed by 314
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

14 pages, 3622 KiB  
Article
Surface Moisture Control for Sustainable Manure Management: Reducing Ammonia Emissions and Preserving Nutrients
by Ieva Knoknerienė, Rolandas Bleizgys and Vilma Naujokienė
Sustainability 2025, 17(14), 6617; https://doi.org/10.3390/su17146617 - 20 Jul 2025
Viewed by 336
Abstract
Researchers increasingly agree that livestock farming is the leading cause of air pollution with ammonia (NH3) gas. The existing research suggests that 30–80% of nitrogen is lost from slurry and liquid manure in the gaseous form of ammonia. Most studies have [...] Read more.
Researchers increasingly agree that livestock farming is the leading cause of air pollution with ammonia (NH3) gas. The existing research suggests that 30–80% of nitrogen is lost from slurry and liquid manure in the gaseous form of ammonia. Most studies have focused on environmental factors influencing ammonia volatilization and manure composition but not on controlling the moisture level on the surface of the excreta. Applying the principles of convective mass exchange, this study was undertaken to compare different types of organic covers that mitigate NH3 emissions and offer recommendations on how to properly apply organic covers on the surface of manure. Data was obtained from research in laboratory conditions comparing well-known coatings (chopped straw) with less commonly used organic materials (peat) or waste generated in other industries (sawdust, hemp chaff). This research demonstrated that applying bio-coatings can reduce ammonia (NH3) emissions at coating thicknesses of ≥5 cm for sawdust, ≥3 cm for peat, ≥10 cm for hemp chaff, and 8–12 cm for straw. These reductions are linked to the ability of the coatings to lower manure surface moisture evaporation, a key driver of ammonia volatilization, highlighting the role of surface moisture control in emission mitigation. Full article
Show Figures

Figure 1

18 pages, 3353 KiB  
Article
An Evaluation of a Novel Air Pollution Abatement System for Ammonia Emissions Reduction in a UK Livestock Building
by Andrea Pacino, Antonino La Rocca, Donata Magrin and Fabio Galatioto
Atmosphere 2025, 16(7), 869; https://doi.org/10.3390/atmos16070869 - 17 Jul 2025
Viewed by 332
Abstract
Agriculture and animal feeding operations are responsible for 87% of ammonia emissions in the UK. Controlling NH3 concentrations below 20 ppm is crucial to preserve workers’ and livestock’s well-being. Therefore, ammonia control systems are required for maintaining adequate air quality in livestock [...] Read more.
Agriculture and animal feeding operations are responsible for 87% of ammonia emissions in the UK. Controlling NH3 concentrations below 20 ppm is crucial to preserve workers’ and livestock’s well-being. Therefore, ammonia control systems are required for maintaining adequate air quality in livestock facilities. This study assessed the ammonia reduction efficiency of a novel air pollution abatement (APA) system used in a pig farm building. The monitoring duration was 11 weeks. The results were compared with the baseline from a previous pig cycle during the same time of year in 2023. A ventilation-controlled room was monitored during a two-phase campaign, and the actual ammonia concentrations were measured at different locations within the site and at the inlet/outlet of the APA system. A 98% ammonia reduction was achieved at the APA outlet through NH3 absorption in tap water. Ion chromatography analyses of farm water samples revealed NH3 concentrations of up to 530 ppm within 83 days of APA operation. Further scanning electron microscopy and energy-dispersive X-ray inspections revealed the presence of salts and organic/inorganic matter in the solid residues. This research can contribute to meeting current ammonia regulations (NECRs), also by reusing the process water as a potential nitrogen fertiliser in agriculture. Full article
(This article belongs to the Special Issue Impacts of Anthropogenic Emissions on Air Quality)
Show Figures

Figure 1

17 pages, 3246 KiB  
Article
Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation
by Ziming Huang, Miao Li, Zhiqin He, Xiliang Yan, Yinbao Wu, Peiqiang Mu, Jun Jiang, Xu Wang and Yan Wang
Animals 2025, 15(14), 2101; https://doi.org/10.3390/ani15142101 - 16 Jul 2025
Viewed by 682
Abstract
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation [...] Read more.
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation tests. Rosemary extract and licorice extract exhibited better deodorizing effects, with fractions of rosemary extract below 100 Da demonstrating the most effective deodorizing performance. Based on these findings, subsequent feeding trials were conducted using rosemary extract and its fractions below 100 Da. In the feeding trial, adult British Shorthair cats were divided into three groups (Control Check, RE, and RE100) and housed in a controlled-environment respiration chamber for 30 days. Measurements included odor emissions, fecal and blood physicochemical parameters, immune parameters, microbiota composition based on 16S rRNA sequencing, and metabolome analysis. The results of the feeding trial indicated that rosemary extract significantly reduced ammonia and hydrogen sulfide emissions (46.84%, 41.64%), while fractions below 100 Da of rosemary extract achieved even greater reductions (55.62%, 53.87%). Rosemary extract regulated the intestinal microbial community, significantly increasing the relative abundance of the intestinal probiotic Bifidobacterium (p < 0.05) and reducing the population of sulfate-reducing bacteria (p < 0.05). It also significantly reduced urease and uricase activities (p < 0.05) to reduce ammonia production and inhibited the degradation of sulfur-containing proteins and sulfate reduction to reduce hydrogen sulfide emissions. Furthermore, rosemary extract significantly enhanced the immune function of British Shorthair cats (p < 0.05). This study suggests that rosemary extract, particularly its fractions below 100 Da, is a highly promising pet deodorizer. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

27 pages, 2101 KiB  
Article
Optimizing Essential Oil Mixtures: Synergistic Effects on Cattle Rumen Fermentation and Methane Emission
by Memoona Nasir, María Rodríguez-Prado, Marica Simoni, Susana M. Martín-Orúe, José Francisco Pérez and Sergio Calsamiglia
Animals 2025, 15(14), 2105; https://doi.org/10.3390/ani15142105 - 16 Jul 2025
Viewed by 452
Abstract
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. [...] Read more.
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. Exp. 1 screened five oils using two triad combinations. Triad 1 tested 10 combinations of thyme (THY), peppermint (PPM), and cinnamon leaf (CIN) oils. Triad 2 tested 10 combinations of anise (ANI), clove leaf (CLO), and peppermint (PPM) oils. Each blend was tested at 400 mg/L, using batch culture methods measuring: pH, ammonia-N (NH3-N), and volatile fatty acids (VFAs). The two most effective blends, designated as T1 and T2, were selected for Exp. 2 to assess total gas and methane (CH4) production using pressure transducer methods. All treatments were incubated in a rumen fluid–buffer mix with a 50:50 forage-to-concentrate substrate (pH 6.6). In Exp. 1, data were analyzed according to the Simplex Centroid Design using R-Studio. In Exp. 2, an analysis was conducted using the MIXED procedure in SAS. Mean comparisons were assessed through Tukey’s test. The results from Exp. 1 identified CIN+PPM (80:20) and ANI+CLO (80:20) as optimal combinations, both increasing total VFAs while reducing acetate/propionate ratios and NH3-N concentrations. In Exp. 2, both combinations significantly reduced total gas and CH4 productions compared to the control, with CIN+PPM achieving the greatest methane reduction (similar to monensin, the positive control). Specific essential oil combinations demonstrated synergistic effects in modulating rumen fermentation and reducing methane emissions, offering potential for sustainable livestock production. Further in vivo validation is required to optimize dosing and assess long-term effects on animal performance. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
Show Figures

Figure 1

17 pages, 1170 KiB  
Article
Effect of Sulfur Poisoning During Worldwide Harmonized Light Vehicles Test Cycle on NOx Reduction Performance and Active Sites of Selective Catalytic Reduction Filter
by Zhou Zhou, Fei Yu, Dongxia Yang, Shiying Chang, Xiaokun He, Yunkun Zhao, Jiangli Ma, Ting Chen, Huilong Lai and He Lin
Catalysts 2025, 15(7), 682; https://doi.org/10.3390/catal15070682 - 14 Jul 2025
Viewed by 429
Abstract
Selective catalytic reduction filter (SDPF) technology constitutes a critical methodology for controlling nitrogen oxide (NOx) and particulate matter emissions from light-duty diesel vehicles. A series of SDPFs with different sulfur poisoning times and concentrations were prepared using the worldwide harmonized light [...] Read more.
Selective catalytic reduction filter (SDPF) technology constitutes a critical methodology for controlling nitrogen oxide (NOx) and particulate matter emissions from light-duty diesel vehicles. A series of SDPFs with different sulfur poisoning times and concentrations were prepared using the worldwide harmonized light vehicles test cycle (WLTC). Bench testing revealed that sulfur poisoning diminished the catalyst’s NH3 storage capacity, impaired the transient NOx reduction efficiency, and induced premature ammonia leakage. After multiple sulfur poisoning incidents, the NOx reduction performance stabilized. Higher SO2 concentrations accelerated catalyst deactivation and hastened the attainment of this equilibrium state. The characterization results for the catalyst indicate that the catalyst accumulated the same sulfur content after tail gas poisoning with different sulfur concentrations and that sulfur existed in the form of SO42−. The sulfur species in low-sulfur-poisoning-concentration catalysts mainly included sulfur ammonia and sulfur copper species, while high-sulfur-poisoning-concentration catalysts contained a higher proportion of sulfur copper species. Neither species type significantly altered the zeolite coating’s crystalline structure. Sulfur ammonia species could easily lead to a significant decrease in the specific surface area of the catalyst, which could be decomposed at 500 °C to achieve NOx reduction performance regeneration. In contrast, sulfur copper species required higher decomposition temperatures (600 °C), achieving only partial regeneration. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

13 pages, 1017 KiB  
Article
Separation of Exhaust Gas Pollutants from Urea Prilling Process with Gasified Biochar for Slow-Release Fertilizer: Adsorption Characteristics, Process Improvement, and Economic Assessment
by Tong Lou, Bingtao Zhao, Zixuan Zhang, Mengqi Wang, Yanli Mao, Baoming Chen, Xinwei Guo, Tuo Zhou and Fengcui Li
Separations 2025, 12(7), 173; https://doi.org/10.3390/separations12070173 - 29 Jun 2025
Viewed by 395
Abstract
To address severe ammonia gas and dust pollution coupled with resource waste in exhaust gases from urea prilling towers, a production process for gasified biochar-based slow-release fertilizer is proposed to achieve resource recovery of exhaust pollutants. Through phosphoric acid impregnation modification applied to [...] Read more.
To address severe ammonia gas and dust pollution coupled with resource waste in exhaust gases from urea prilling towers, a production process for gasified biochar-based slow-release fertilizer is proposed to achieve resource recovery of exhaust pollutants. Through phosphoric acid impregnation modification applied to gasified biochar, its ammonia gas adsorption capacity was significantly enhanced, with saturated adsorption capacity increasing from 0.61 mg/g (unmodified) to 32 mg/g. Coupled with the tower-top bag filter, the modified biochar combines with ammonia gas and urea dust in exhaust gases, subsequently forming biochar-based slow-release fertilizer through dehydration and granulation processes. Material balance analysis demonstrates that a single 400,000-ton/year urea prilling tower achieves a daily fertilizer production capacity of 55 tons, with 18% active ingredient content. The nitrogen content can be upgraded to national standards through urea supplementation. Economic analysis demonstrates a total capital investment of USD1.2 million, with an annual net profit of USD0.88 million and a static payback period of 1.36 years. This process not only achieves ammonia gas emission reduction but also converts waste biochar into high-value fertilizer. It displays dual advantages of environmental benefits and economic feasibility and provides an innovative solution for resource utilization of the exhaust gases from the urea prilling process. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Graphical abstract

16 pages, 2499 KiB  
Article
Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems
by Weiqi Li, Jie Wu, Dongwei Yao, Feng Wu, Lei Wang, Hua Lou and Haibin He
Processes 2025, 13(7), 2029; https://doi.org/10.3390/pr13072029 - 26 Jun 2025
Viewed by 482
Abstract
This study proposes a data-driven optimization framework to enhance emission control performance in diesel engine selective catalytic reduction (SCR) systems under transient operating conditions. A one-dimensional SCR model was constructed in GT-Power, and simulation datasets were generated using experimentally measured inputs from the [...] Read more.
This study proposes a data-driven optimization framework to enhance emission control performance in diesel engine selective catalytic reduction (SCR) systems under transient operating conditions. A one-dimensional SCR model was constructed in GT-Power, and simulation datasets were generated using experimentally measured inputs from the World Harmonized Transient Cycle (WHTC), with representative emission responses obtained by varying fixed ammonia-to-NOx (A/N) ratios. Building on these datasets, a hybrid prediction model combining Long Short-Term Memory (LSTM) networks and multi-head attention mechanisms was developed to accurately forecast SCR outlet NH3 leakage and NOx emissions. The model exhibited high predictive accuracy, achieving R2 values exceeding 0.977 and low RMSE across training, validation, and test sets. Based on the model predictions, a constrained dynamic multi-objective optimization strategy was implemented to adaptively adjust ammonia dosing, aiming to simultaneously minimize NH3 leakage and NOx emissions. The optimized NH3 injection profiles were validated through reapplication in the GT-Power simulation environment. Compared to the baseline fixed-ratio control strategy, the proposed approach reduced NH3 leakage and NOx emissions by 34.40% and 11.15%, respectively, as determined for the transient segment of the WHTC cycle. These results demonstrate the effectiveness of integrating physics-based simulation, deep learning prediction, and dynamic optimization for improving aftertreatment adaptability and emission compliance in real-world diesel engine applications. All reported values are based on a single simulated WHTC cycle without statistical uncertainty analysis. Full article
(This article belongs to the Special Issue Clean Combustion and Emission in Vehicle Power System, 2nd Edition)
Show Figures

Figure 1

19 pages, 17113 KiB  
Article
Effectiveness of Nitrification Inhibitor in Reducing N2O Emissions Depends on Soil Acidification Mitigation in Acid Soils
by Jing Wang, Qiao Huang, Debang Yu, Yuxuan Zhang, Yves Uwiragiye, Nyumah Fallah, Meiqi Chen and Yi Cheng
Agronomy 2025, 15(7), 1536; https://doi.org/10.3390/agronomy15071536 - 25 Jun 2025
Viewed by 395
Abstract
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely [...] Read more.
The addition of alkaline amendments is considered an important strategy to alleviate soil acidification, with profound impacts on soil nitrogen (N) transformations such as nitrification as well as greenhouse gas (GHG) nitrous oxide (N2O) emissions. Nitrification inhibitors (NIs) have been widely recognized to effectively mitigate N2O emissions by depressing the nitrification process. However, the effectiveness of NIs on N2O emissions reduction under different alkaline amendments remains largely unknown, hindering our knowledge of the optimal soil acidification mitigation strategies. In this study, the effects of NIs in combination with different alkaline amendments on N2O emissions were assessed on typical acid soils collected from four sites during a 28-day aerobic incubation experiment. Treatments included four alkaline amendments (quicklime, chicken manure, cow dung, biochar) and no amendment control, designated as CaO, CM, CD, BC, and CK, combined with a typical NI (3,4 dimethylpyrazole phosphate, DMPP) applied at 2 mg soil kg−1 or non-NI applied, respectively. Both individual amendments and their combination with DMPP significantly elevated the soil pH by 4.9–64.2% compared with the CK treatment, with the effectiveness ranking as CaO > CM ≈ CD > BC. Cumulative N2O emissions were stimulated by the individual application of CaO, CM, and CD but were reduced by BC application compared with the CK treatment. Changes in N2O emissions were positively correlated with the responses of the net N mineralization and nitrification rates to individual amendments, which were regulated by changes in the soil pH. The suppressive effects of NI combined with individual amendments on N2O emissions were significant in the CaO treatment with a reduction ranging from 3.3% to 60.2%, which was attributed to decreased abundances of ammonia-oxidizing bacteria (AOB). Therefore, we concluded that the combined application of CaO and DMPP could be considered as a suitable mitigation strategy for addressing soil acidification through optimized N management. Additionally, BC can serve as a supplementary practice to simultaneously improve soil fertility. These insights are crucial for developing integrated fertilization management strategies to mitigate soil acidification with low N loss risks. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

13 pages, 1716 KiB  
Article
Suppressing Calcium Deactivation in Selective Catalytic Reduction of NOx from Diesel Engines Using Antimony
by Ibrahim Aslan Resitoglu, Ali Keskin, Bugra Karaman and Himmet Ozarslan
Processes 2025, 13(6), 1914; https://doi.org/10.3390/pr13061914 - 17 Jun 2025
Cited by 1 | Viewed by 383
Abstract
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, [...] Read more.
The selective catalytic reduction (SCR) of NOx emissions by hydrocarbons (HCs) using a silver (Ag)-based catalyst offers significant advantages over conventional SCR systems that rely on ammonia reductants and vanadium-based catalysts. However, the conversion rate of SCR is influenced by several factors, among which catalyst poisoning is a major concern. Toxic metals such as sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) can degrade catalyst activity and lead to deactivation. Poisoned catalysts suffer from reduced conversion rates and premature deactivation before reaching their intended operational lifespan. In particular, calcium poisoning results in the formation of CaO (calcium oxide), which reacts to produce a CaWO4 compound that severely impairs SCR performance. This study investigates the role of antimony (Sb) in mitigating Ca-induced deactivation in HC-SCR of NOx. Five catalysts with varying Sb loadings were prepared and tested to evaluate Sb’s effect on NOx conversion rate at a space velocity of 30,000 h−1. The results demonstrate that Sb effectively suppresses Ca deactivation, enhancing the conversion rate across all engine test conditions. The highest NOx conversion rate (95.88%) was achieved using a catalyst with 3% Sb. Full article
(This article belongs to the Special Issue Combustion Characteristics and Emission Control of Blended Fuels)
Show Figures

Figure 1

26 pages, 4070 KiB  
Review
Transitioning Ammonia Production: Green Hydrogen-Based Haber–Bosch and Emerging Nitrogen Reduction Technologies
by Cátia Ribeiro and Diogo M. F. Santos
Clean Technol. 2025, 7(2), 49; https://doi.org/10.3390/cleantechnol7020049 - 16 Jun 2025
Viewed by 2034
Abstract
Ammonia production is a cornerstone of the modern chemical industry, essential for fertilizer manufacturing and increasingly relevant in the energy sector. However, the conventional Haber–Bosch (HB) process is highly energy- and carbon-intensive, contributing significantly to global greenhouse gas emissions, releasing approximately 1.6 tonnes [...] Read more.
Ammonia production is a cornerstone of the modern chemical industry, essential for fertilizer manufacturing and increasingly relevant in the energy sector. However, the conventional Haber–Bosch (HB) process is highly energy- and carbon-intensive, contributing significantly to global greenhouse gas emissions, releasing approximately 1.6 tonnes of carbon dioxide for every tonne of ammonia produced. In the context of the ongoing climate crisis, exploring sustainable alternatives that can reduce or even eradicate these emissions is imperative. This review examines the potential of ammonia as a future energy carrier and evaluates the transition to green hydrogen-based HB production. Key technologies for green hydrogen generation are reviewed in conjunction with environmental, energy, and economic considerations. The transition to a green hydrogen-based HB process has been demonstrated to offer significant environmental advantages, potentially reducing carbon emissions by up to eight times compared to the conventional method. Furthermore, the economic viability of this process is particularly pronounced under conditions of low-cost renewable electricity, whether utilizing solid oxide electrolysis cells or proton-exchange membrane electrolyzers. Additionally, two emerging zero-emission, electrochemical routes for ammonia synthesis are analyzed in terms of their methodologies, efficiencies, and economic viability. Promising progress has been made in both direct and indirect nitrogen reduction approaches to ammonia. The indirect lithium-mediated pathway demonstrates the greatest potential, significantly reducing ammonia production costs. Despite existing challenges, particularly related to efficiency, these emerging technologies offer decentralized, electrified pathways for sustainable ammonia production in the future. This study highlights the near-term feasibility of decarbonizing ammonia production through green hydrogen in the HB process, while outlining the long-term potential of electrochemical nitrogen reduction as a sustainable alternative once the technology matures. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Graphical abstract

22 pages, 12462 KiB  
Article
Impact of Post-Injection Strategies on Combustion and Emissions in a CTL–Ammonia Dual-Fuel Engine
by Siran Tian, Lina Zhang, Yi Wang and Haozhong Huang
Energies 2025, 18(12), 3077; https://doi.org/10.3390/en18123077 - 11 Jun 2025
Viewed by 469
Abstract
Ammonia is a carbon-free fuel with strong potential for emission reduction. However, its high auto-ignition temperature and low reactivity lead to poor ignitability and unstable combustion. In contrast, coal-to-liquid (CTL) fuel offers high cetane number, low sulfur content, and low aromaticity, making it [...] Read more.
Ammonia is a carbon-free fuel with strong potential for emission reduction. However, its high auto-ignition temperature and low reactivity lead to poor ignitability and unstable combustion. In contrast, coal-to-liquid (CTL) fuel offers high cetane number, low sulfur content, and low aromaticity, making it a clean fuel with excellent ignition performance. Blending CTL with ammonia can effectively compensate for ammonia’s combustion limitations, offering a promising pathway toward low-carbon clean combustion. This study explores the effects of post-injection strategies on combustion and emission characteristics of a CTL–ammonia dual-fuel engine under different levels of ammonia energy fractions (AEFs). Results show that post-injection significantly improves combustion and emission performance by expanding ammonia’s the favorable reactivity range of ammonia and enhancing NH3 oxidation, particularly under moderate AEF conditions (5–10%) where ammonia and CTL demonstrate strong synergy. For emissions, moderate post-injection notably reduces CO at low AEFs, while NOX emissions consistently decrease with increasing post-injection quantity, with greater suppression observed at higher AEFs. Soot emissions are also effectively reduced under post-injection conditions. Although total hydrocarbon (THC) emissions increase due to ammonia’s low reactivity, post-injection mitigates this accumulation trend to some extent, demonstrating overall co-benefits for emission control. Comprehensive evaluation indicates that the combination of 5–10% AEF, 8–12 mg post-injection quantity, and post-injection timing of 10–15 °CA achieves the most favorable balance of combustion efficiency, emissions reduction, and reaction stability, confirming the potential of the CTL–ammonia dual-fuel system for clean and efficient combustion. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

23 pages, 2069 KiB  
Article
Evaluating the Odor Mitigation Effects of Biochar-Enhanced Bedding Materials in a Simulated Bedded Pack Dairy Barn Environment: A Laboratory-Scale Study
by Jinho Shin, Daehun Kim, Yangjoon Lee, Seunghun Lee, Riuh Wardhani and Heekwon Ahn
Appl. Sci. 2025, 15(11), 6361; https://doi.org/10.3390/app15116361 - 5 Jun 2025
Viewed by 645
Abstract
This study evaluated the odor mitigation potential of rice husk biochar in a simulated dairy bedded pack over 21 days. Biochar was incorporated into a dairy manure–sawdust mixture at 5% and 10% dry weight. Emissions of key odorous compounds—ammonia (NH3), sulfur [...] Read more.
This study evaluated the odor mitigation potential of rice husk biochar in a simulated dairy bedded pack over 21 days. Biochar was incorporated into a dairy manure–sawdust mixture at 5% and 10% dry weight. Emissions of key odorous compounds—ammonia (NH3), sulfur compounds, volatile fatty acids, phenol, p-cresol, and indole—were evaluated. Odor units were assessed to determine perceived odor reduction. Biochar significantly reduced NH3 and dimethyl sulfide (DMS) emissions: NH3 by 27% and 43%, and DMS by 53% and 75%, at 5% and 10% application, respectively. The NH3 reduction was attributed to ammoniacal nitrogen adsorption, while the DMS reduction likely resulted from enhanced air permeability suppressing anaerobic bacterial activity. The 5% biochar treatment, achieving 63% and 70% of the NH3 and DMS reductions attained by the 10% treatment, respectively, offers a more practical and cost-effective option. Other odorous compounds were not significantly affected. A temporary reduction in odor units was observed on day 7. Rice husk biochar contains 14.5% atomic Si, primarily as silica, which supports structural stability but hinders pore development, reducing adsorption efficiency. These findings demonstrate the importance of biochar’s physicochemical properties in odor mitigation. Future research should evaluate long-term field performance, microbial interactions, and silica modification strategies. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Graphical abstract

43 pages, 15235 KiB  
Review
The Present and Future of Production of Green Hydrogen, Green Ammonia, and Green E-Fuels for the Decarbonization of the Planet from the Magallanes Region, Chile
by Carlos Cacciuttolo, Ariana Huertas, Bryan Montoya and Deyvis Cano
Appl. Sci. 2025, 15(11), 6228; https://doi.org/10.3390/app15116228 - 1 Jun 2025
Viewed by 1325
Abstract
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these [...] Read more.
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these energy vectors in the context of global decarbonization, highlighting the key role of the Magallanes region in the energy transition. Green hydrogen production, through wind-powered electrolysis, takes advantage of the region’s constant, high-speed winds, enabling competitive, low-emission generation. In turn, green ammonia, derived from GH2, emerges as a sustainable alternative for the agricultural industry and maritime transport, while synthetic fuels (e-fuels) offer a solution for sectors that are difficult to electrify, such as aviation. The sustainability approach addresses not only emissions reduction but also the responsible use of water resources, the protection of biodiversity, and integration with local communities. The article presents the following structure: (i) introduction, (ii) wind resource potential, (iii) water resource potential, (iv) different forms of hydrogen and its derivatives production (green hydrogen, green ammonia, and synthetic fuels), (v) pilot-scale demonstration plant for Haru Oni GH2 production, (vi) future industrial-scale GH2 production projects, (vii) discussion, and (viii) conclusions. In addition, the article discusses public policies, economic incentives, and international collaborations that promote these projects, positioning Magallanes as a clean energy export hub. Finally, the article concludes that the region can lead the production of green fuels, contributing to global energy security and the fulfillment of the Sustainable Development Goals (SDGs). However, advances in infrastructure, regulation, and social acceptance are required to guarantee a balanced development between technological innovation and environmental conservation. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

23 pages, 3044 KiB  
Review
The Sustainable Management of Nitrogen Fertilizers for Environmental Impact Mitigation by Biochar Applications to Soils: A Review from the Past Decade
by Yudai Kohira, Desalew Fentie, Mekuanint Lewoyehu, Tassapak Wutisirirattanachai, Ashenafei Gezahegn, Milkiyas Ahmed, Shinichi Akizuki, Solomon Addisu and Shinjiro Sato
Environments 2025, 12(6), 182; https://doi.org/10.3390/environments12060182 - 30 May 2025
Cited by 1 | Viewed by 669
Abstract
This review assesses biochar’s potential to mitigate nitrogen (N) losses when co-applied with N fertilizers, emphasizing mechanisms linked to its measurable physicochemical properties. The mitigation of ammonia (NH3) volatilization shows variable effects from its cation exchange capacity (−21.7% to 20.4%) and [...] Read more.
This review assesses biochar’s potential to mitigate nitrogen (N) losses when co-applied with N fertilizers, emphasizing mechanisms linked to its measurable physicochemical properties. The mitigation of ammonia (NH3) volatilization shows variable effects from its cation exchange capacity (−21.7% to 20.4%) and specific surface area (SSA; −23.8% to 39.1%). However, the biochar pH (influencing mitigation from −45.0% to −9.0%) and application rate are key factors, with clayey soils exhibiting the greatest mitigation (−52.2%), potentially due to their high bulk density. High SSA biochar, often from high pyrolysis temperatures, reduces nitrate-N (NO3-N) leaching (up to −26.6%) by improving the soil’s water-holding capacity. A co-application with organic fertilizers shows a pronounced mitigation (up to −39.0%) due to a slower N release coupled with biochar adsorption. A high SSA also plays an important role in mitigating nitrous oxide (N2O) emissions (up to −25.9%). A higher biochar C/N ratio promotes microbial N immobilization, contributing to N2O reductions (+1.5% to −34.2%). Mitigation is greater in sandy/loamy soils (−18.7% to −7.9%) than in clayey soils, where emissions might increase (+18.0%). Overall, biochar applications demonstrate significant potential to mitigate N losses and improve N use efficiency, thereby supporting sustainable agriculture; however, its effectiveness is optimized when biochar properties (e.g., high SSA and appropriate C/N ratio) and application strategies are tailored to specific soil types and N sources. Full article
Show Figures

Graphical abstract

Back to TopTop