Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = aluminum ingot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17673 KiB  
Article
Investigation of the Hydrostatic Pressure Effect on the Formation of Hot Tearing in the AA6111 Alloy During Direct Chill Casting of Rectangular Ingots
by Hamid Khalilpoor, Daniel Larouche, X. Grant Chen, André Phillion and Josée Colbert
Appl. Mech. 2025, 6(3), 53; https://doi.org/10.3390/applmech6030053 - 19 Jul 2025
Viewed by 207
Abstract
The formation of hot tearing during direct chill casting of aluminum alloys, specifically AA6111, is a significant challenge in the production of ingots for industrial applications. This study investigates the role of hydrostatic pressure and tensile stress in the formation of hot tearing [...] Read more.
The formation of hot tearing during direct chill casting of aluminum alloys, specifically AA6111, is a significant challenge in the production of ingots for industrial applications. This study investigates the role of hydrostatic pressure and tensile stress in the formation of hot tearing during direct chill casting of rectangular ingots. Combining experimental results and finite element modeling with ABAQUS/CAE 2022, the mechanical behavior of the semi-solid AA6111 alloy was analyzed under different cooling conditions. “Hot” (low water flow) and “Cold” (high water flow) conditions were the two types of cooling conditions that produced cracked and sound ingots, respectively. The outcomes indicate that high tensile stress and localized negative hydrostatic pressure in the hot condition are the main factors promoting the initiation and propagation of cracks in the mushy zone, whereas the improvement of the cooling conditions reduces these defects. Full article
(This article belongs to the Special Issue Thermal Mechanisms in Solids and Interfaces)
Show Figures

Figure 1

20 pages, 29323 KiB  
Article
CALPHAD-Assisted Analysis of Fe-Rich Intermetallics and Their Effect on the Mechanical Properties of Al-Fe-Si Sheets via Continuous Casting and Direct Rolling
by Longfei Li, Xiaolong Li, Lei Shi, Shouzhi Huang, Cong Xu, Guangxi Lu and Shaokang Guan
Metals 2025, 15(6), 578; https://doi.org/10.3390/met15060578 - 23 May 2025
Viewed by 454
Abstract
As an eco-efficient short-process manufacturing technique for aluminum alloys, twin-belt continuous casting and direct rolling (TBCCR) demonstrates significant production advantages. In this study, an Al-Fe-Si alloy system with different Fe-rich intermetallics (α-AlFe(Mn)Si and β-AlFe(Mn)Si) via TBCCR was developed for new energy vehicle batteries, [...] Read more.
As an eco-efficient short-process manufacturing technique for aluminum alloys, twin-belt continuous casting and direct rolling (TBCCR) demonstrates significant production advantages. In this study, an Al-Fe-Si alloy system with different Fe-rich intermetallics (α-AlFe(Mn)Si and β-AlFe(Mn)Si) via TBCCR was developed for new energy vehicle batteries, utilizing the Computer Coupling of Phase Diagrams and Thermochemistry (CALPHAD) technique. Comprehensive microstructure and surface segregation analyses of continuous casted ingots and direct-rolled sheets revealed that the Al-Fe-Si alloy with a combined Fe + Si content of 0.7% and an optimal Fe/Si atomic ratio of 3:1 (FS31) presents optimized mechanical properties: ultimate tensile strength of 145.8 MPa, elongation to failure of 5.7%, accompanied by a cupping value of 6.64 mm. Notably, Mn addition further refined the grain structure of casting ingots and enhanced the strength of both ingots and rolled sheets. Among the experimental alloys, FS14 (optimal Fe/Si atomic ratio of 1:4) sheets displayed the least surface segregation upon Mn incorporation. Through systematic optimization, an Al-Fe-Si-Mn alloy composition (Fe + Si = 0.7%, Fe/Si = 1:4 atomic ratio, 0.8 wt.% Mn) was engineered for TBCCR processing, achieving enhanced comprehensive performance: ultimate tensile strength of 189.4 MPa, elongation to failure of 7.32%, and cupping value of 7.71 mm. This composition achieves an optimal balance between grain refinement, mechanical properties (strength–plasticity synergy), formability (cupping value), and corrosion resistance (corrosion current density). The performance optimization strategy integrates synergistic improvements in strength, ductility, and corrosion resistance, providing valuable guidance for developing high-performance aluminum alloys suitable for the TBCCR process. Full article
(This article belongs to the Special Issue Thermodynamics and Kinetics Analysis of Metallic Material)
Show Figures

Figure 1

19 pages, 18266 KiB  
Article
Advancing Sustainability in Alloy Production: The Role of Recycled Materials and Barbotage in Enhancing EN AC-46000 Castings
by Patryk Korban, Anna Wąsik and Beata Leszczyńska-Madej
Sustainability 2025, 17(11), 4755; https://doi.org/10.3390/su17114755 - 22 May 2025
Viewed by 536
Abstract
Aluminum recycling is a key pillar of sustainable metallurgy, protecting natural resources, reducing energy consumption by up to 15 times compared with primary aluminum production and significantly lowering the demand for raw materials. This article presents a comprehensive study on the impact of [...] Read more.
Aluminum recycling is a key pillar of sustainable metallurgy, protecting natural resources, reducing energy consumption by up to 15 times compared with primary aluminum production and significantly lowering the demand for raw materials. This article presents a comprehensive study on the impact of barbotage refining time and recycled scrap content on EN AC-46000 (AlSi9Cu3) alloy, covering the entire process from the initial ingot to the final casting, contributing to a circular economy. The input material consisted of varying proportions of pure ingots and scrap, with scrap content set at 80%, 70%, and 60%, respectively. Each material batch underwent different refining times: 0, 7, 9, and 15 min. Microstructural studies were conducted using light and scanning electron microscopy techniques. Additionally, pore distribution and their proportions within the material volume were analyzed using X-ray computed tomography. This study also examined hardness and gas content relative to the refining time. It was demonstrated that the refining process promoted microstructural homogenization and reduced porosity throughout the production process. Furthermore, extending the refining time positively impacted the reduction of porosity in thin-walled castings and lowered the gas emission level from the alloy, resulting in improved final product quality. Full article
Show Figures

Figure 1

15 pages, 4447 KiB  
Article
Numerical Assessment on the DC Casting 7050 Aluminum Alloy Under Melt Shearing and Magnetic Fields
by Jinchuan Wang, Yubo Zuo, Qingfeng Zhu, Rui Wang and Xianliang Guo
Metals 2025, 15(4), 360; https://doi.org/10.3390/met15040360 - 25 Mar 2025
Viewed by 561
Abstract
The direct-chill (DC) casting of diameter of 300 mm 7050 aluminum alloy ingots under the impact of intense melt shearing and electromagnetic fields (combined fields) was simulated using the COMSOL software 6.2 to determine the temperature distribution and melt flow. The results indicated [...] Read more.
The direct-chill (DC) casting of diameter of 300 mm 7050 aluminum alloy ingots under the impact of intense melt shearing and electromagnetic fields (combined fields) was simulated using the COMSOL software 6.2 to determine the temperature distribution and melt flow. The results indicated that the use of electromagnetic fields, intense melt shearing, and combined fields can all improve melt flow velocity, heat transfer efficiency, temperature field uniformity, and reduce sump depth when compared to conventional DC casting. However, the use of combined fields creates the shallowest sump and the most uniform temperature field. With the application of electromagnetic field, intensive melt shearing, and combined fields, the sump depth was decreased from 121 mm of DC casting to 118 mm, 112 mm, and 110 mm, respectively. Under the impact of the combined fields, the increase in the rotor rotation speed leads to the enhancement of overall flow velocity, the improvement of temperature distribution uniformity, and the reduction of melt temperature in the sump. The temperatures at reference points A and B dropped from 631.80 °C and 645.26 °C to 630.20 °C and 630.75 °C, respectively, as the rotor rotation speed increased from 1500 rpm to 6000 rpm. Additionally, the application of the combined fields resulted in a uniform microstructure distribution and notable grain refinement. Full article
Show Figures

Figure 1

23 pages, 19764 KiB  
Article
Eliminating Anisotropy of 7085 Alloy Forgings via Temperature Combination Control During Two-Stage Multi-Directional Forging
by Xiao Yin, Wensheng Liu, Xin Tan, Mingdong Wu, Shuo Yuan, Daihong Xiao and Lanping Huang
Materials 2025, 18(2), 391; https://doi.org/10.3390/ma18020391 - 16 Jan 2025
Viewed by 721
Abstract
Due to its high mechanical properties and low quench sensitivity, 7085 aluminum alloy is suitable for the aircraft industry. However, large cross-section forgings of 7085 alloy usually have over 40% anisotropy in mechanical behaviors, especially in the vertical direction. In this study, two-stage [...] Read more.
Due to its high mechanical properties and low quench sensitivity, 7085 aluminum alloy is suitable for the aircraft industry. However, large cross-section forgings of 7085 alloy usually have over 40% anisotropy in mechanical behaviors, especially in the vertical direction. In this study, two-stage multi-directional forgings (MDFs) with different temperature combinations, isothermal medium-temperature composite MDF (MC-MDF) and isothermal hot MDF (H-MDF), were applied to 7085 aluminum alloy ingots. The results indicate that MC-MDF achieved anisotropy below 10% without losing ultimate tensile strength (UTS). Three-dimensional (3D) microstructure analysis suggested that the MC-MDF samples accumulated higher dislocation density and exhibited an enhanced recrystallization structure. The elongation of the vertical direction increased significantly, which lowered the directionality of MC-MDF and increased the effective utilization rate of forgings. Also, MC-MDF obtained a lower yield strength (YS) due to the forging temperature in exchange for higher work hardening and a ductility increase. The average 3D UTS, YS, and EL values of MC-MDF are 554 MPa, 472 MPa, and 13.4%, and the index value reflecting the anisotropy of EL decreased from 14.0% to 8.6% for H-MDF. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 2877 KiB  
Article
Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios
by Christoph Walkner, Gulnaz Mukhametzianova, Stefan Wagner, Jörg C. Korp, Andreas Graf, Johanna Irrgeher, Thomas C. Meisel and Thomas Prohaska
Metals 2025, 15(1), 67; https://doi.org/10.3390/met15010067 - 14 Jan 2025
Viewed by 972
Abstract
Non-metallic inclusions (NMIs) in steel have a detrimental effect on the processing, mechanical properties, and corrosion resistance of the finished product. This is particularly evident in the case of macroscopic inclusions (>100 µm), which are rarely observed in steel castings produced using state-of-the-art [...] Read more.
Non-metallic inclusions (NMIs) in steel have a detrimental effect on the processing, mechanical properties, and corrosion resistance of the finished product. This is particularly evident in the case of macroscopic inclusions (>100 µm), which are rarely observed in steel castings produced using state-of-the-art technologies, whereby casting parameters are optimized towards steel cleanliness, and post-treatment steps such as vacuum arc remelting (VAR) are used, but frequently result in the rejection of the affected product. To improve production processes and develop effective countermeasures, it is essential to gain a deeper understanding of the origin and formation of NMIs. In this study, the potential of elemental and isotopic fingerprinting to trace the sources of macroscopic oxide NMIs found in VAR-treated steel ingots using SEM-EDX, inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS (LA-ICP-MS), and laser ablation multicollector ICP-MS (LA-MC-ICP-MS) were exploited. Following this approach, main and trace element content and 87Sr/86Sr isotope ratios were determined in two specimens of macroscopic NMIs, as well as in samples of potential source materials. The combination of the data allowed the drawing of conclusions about the processes leading to the formation of these inclusions. For both specimens, very similar results were obtained, indicating a common mechanism of formation. The inclusions were likely exogenous in origin and were primarily composed of calcium–aluminum oxides. They appeared to have undergone chemical modification during the casting and remelting process. The results indicate that particles from the refractory lining of the casting system most likely formed the macroscopic inclusions, possibly in conjunction with a second, calcium-rich material. Full article
Show Figures

Figure 1

17 pages, 7556 KiB  
Article
Optimization Method for Stiffened-Plate Layout in Box Structures Based on Load Paths
by Huilong Zhang, Hui Lian, Chaoshi Wang, Fenghe Wu and Zhaohua Wang
Appl. Sci. 2024, 14(19), 8842; https://doi.org/10.3390/app14198842 - 1 Oct 2024
Viewed by 1360
Abstract
Gantries and beams, as the main load-bearing structures of heavy equipment, usually belong to the box structure consisting of outer walls and inner stiffened plates. The structure of the stiffener layout is bulky due to empirical design, leading to higher material consumption and [...] Read more.
Gantries and beams, as the main load-bearing structures of heavy equipment, usually belong to the box structure consisting of outer walls and inner stiffened plates. The structure of the stiffener layout is bulky due to empirical design, leading to higher material consumption and impacting mechanical performance. There are challenges in effectively identifying load-transferred paths within 3D box structures through direct topological optimization. A method for optimizing the layout of internal stiffened plates of large box structures based on load paths is proposed in this paper. Initially, based on the load conditions acting on the structure, the 3D box structure is decomposed into 2D functional sections. Subsequently, the load paths on the functional cross-section are visualized according to the load path method. Finally, the stiffener layout of the ultimate optimized structure is designed according to the effective load path distribution. Taking the gantry of a heavy-duty aluminum ingot composite processing unit as an example, the optimization results indicate that the maximum stress of the structure decreased by 14.9%, the maximum deformation reduced by 32.95%, and the overall weight decreased by 14.4%. This demonstrates that the approach proposed in this paper is practical and effective for optimizing stiffener layouts in large-box structures. Full article
Show Figures

Figure 1

16 pages, 9088 KiB  
Article
The Analysis of the Compositional Uniformity of a Ti-Al Alloy during Electron Beam Cold Hearth Melting: A Numerical Study
by Yunpeng Wang, Yuchen Xin, Lei Gao, Wei Cao, Chong Ma, Shenghui Guo and Guo Chen
Metals 2024, 14(8), 884; https://doi.org/10.3390/met14080884 - 31 Jul 2024
Cited by 1 | Viewed by 1445
Abstract
The electron beam cold hearth melting (EBCHM) process is one of the key processes for titanium alloy production. However, EBCHM is prone to cause elemental volatilization and segregation during the melting of aluminum-containing titanium alloys such as Ti-6wt%Al-4wt%V. To gain deeper insights into [...] Read more.
The electron beam cold hearth melting (EBCHM) process is one of the key processes for titanium alloy production. However, EBCHM is prone to cause elemental volatilization and segregation during the melting of aluminum-containing titanium alloys such as Ti-6wt%Al-4wt%V. To gain deeper insights into the physical and chemical phenomena occurring during the EBCHM process, this paper establishes melting process models for the Ti-6wt%Al-4wt%V titanium alloy in a crystallizer with multiple overflow inlets. It examines the evolution of melt pool morphology, flow dynamics, heat transfer, and mass transfer during the casting process. The results indicate that the design of multi-overflow inlets can effectively suppress the longitudinal development of impact pits within the melt pool, thereby preventing the formation of solidification defects such as leaks in the melt. Concurrently, the diversion effect of multi-overflow inlets significantly enhances the elemental homogeneity within the melt pool. At a casting speed of 20 mm/min and a casting temperature of 2273 K, compared to a single overflow inlet, the design with three overflow inlets can reduce the depth of thermal impact pits within the crystallizer by 132 mm and decrease the maximum concentration difference in the Al element within the crystallizer by 0.933 wt.%. The aforementioned simulation results provide a theoretical basis for the control of metallurgical and solidification defects in large-scale titanium alloy ingots. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys)
Show Figures

Figure 1

16 pages, 10969 KiB  
Article
Effect of Continuous Casting and Heat Treatment Parameters on the Microstructure and Mechanical Properties of Recycled EN AW-2007 Alloy
by Grażyna Mrówka-Nowotnik, Grzegorz Boczkal and Andrzej Nowotnik
Materials 2024, 17(14), 3447; https://doi.org/10.3390/ma17143447 - 12 Jul 2024
Viewed by 1282
Abstract
The growing use of aluminum and its compounds has increased the volume of aluminum waste. To mitigate environmental impacts and cut down on manufacturing expenses, extensive investigations have recently been undertaken to recycle aluminum compounds. This paper outlines the outcomes of a study [...] Read more.
The growing use of aluminum and its compounds has increased the volume of aluminum waste. To mitigate environmental impacts and cut down on manufacturing expenses, extensive investigations have recently been undertaken to recycle aluminum compounds. This paper outlines the outcomes of a study on fabricating standard EN AW-2007 alloy using industrial and secondary scrap through continuous casting. The resultant recycled bars were analyzed for their chemical makeup and examined for microstructural features in both the cast and T4 states, undergoing mechanical property evaluations. The study identified several phases in the cast form through LM, SEM + EDS, and XRD techniques: Al7Cu2Fe, θ-Al2Cu, β-Mg2Si, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3 (SiCu)2, along with Pb particles. Most primary intermetallic precipitates such as θ-Al2Cu, β-Mg2Si, and Q-Al4Cu2Mg8Si7 dissolved into the α-Al solid solution during the solution heat treatment. In the subsequent natural aging process, the θ-Al2Cu phase predominantly emerged as a finely dispersed hardening phase. The peak hardness achieved in the EN AW-2007 alloy was 124.8 HB, following a solution heat treatment at 500 °C and aging at 25 °C for 80 h. The static tensile test assessed the mechanical and ductility properties of the EN AW-2007 alloy in both the cast and T4 heat-treated states. Superior strength parameters were achieved after solution heat treatment at 500 °C for 6 h, followed by water quenching and natural aging at 25 °C/9 h, with a tensile strength of 435.0 MPa, a yield strength of 240.5 MPa, and an appreciable elongation of 18.1% at break. The findings demonstrate the feasibility of producing defect-free EN AW-2007 alloy ingots with excellent mechanical properties from recycled scrap using the continuous casting technique. Full article
(This article belongs to the Special Issue Research on Enhancing Properties of Aluminum-Based Materials)
Show Figures

Figure 1

28 pages, 8727 KiB  
Article
Microstructural and Electrochemical Study: Pitting Corrosion Mechanism on A390 Al–Si Alloy and Ce–Mo Treatment as a Better Corrosion Protection
by Héctor Herrera Hernández, Araceli Mandujano Ruiz, Carlos Omar González Morán, José Guadalupe Miranda Hernández, José de Jesús Agustín Flores Cuautle, Jorge Morales Hernández and Irma Hernández Casco
Materials 2024, 17(12), 3044; https://doi.org/10.3390/ma17123044 - 20 Jun 2024
Cited by 4 | Viewed by 1721
Abstract
Sulfuric acid anodizing assisted by a hydrothermal sealing with inhibitors [Ce3+-Mo6+] was used to prevent pitting corrosion on spray-deposited hypereutectic Al–Si alloy (A390). An investigation concerning the evaluation of pitting corrosion resistance on the anodic oxide thin film with [...] Read more.
Sulfuric acid anodizing assisted by a hydrothermal sealing with inhibitors [Ce3+-Mo6+] was used to prevent pitting corrosion on spray-deposited hypereutectic Al–Si alloy (A390). An investigation concerning the evaluation of pitting corrosion resistance on the anodic oxide thin film with ions incorporated was carried out in NaCl solution using electrochemical measurements (i.e., potentiodynamic polarization and electrochemical impedance spectroscopy, EIS). The influence of Si phase morphology and size on the growth mechanism of an anodic oxide film was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results were then compared with those for its equivalent IM390 alloy (Al-17Si-4.5Cu-0.6Mg) produced through a conventional process ingot metallurgy, IM. The electrochemical findings indicate that sulfuric acid anodizing followed by a simple hot water sealing treatment was ineffective. In this manner, an intense attack was localized by pitting corrosion that occurred on the anodic oxide film in less than three days, as denoted by characteristic changes in the EIS spectra at the lowest frequencies. Improved results were achieved for Ce–Mo surface modification, which can provide better corrosion resistance on the aluminum alloys because no signs of pits were observed during the corrosion testing. Full article
Show Figures

Figure 1

22 pages, 9811 KiB  
Article
Effect of Electromagnetic Power on the Microstructure and Properties of 2219 Aluminum Alloy in Electromagnetic Continuous Casting Technology
by Mingxi Jiang, Dazhao Xu, Bin Ya, Linggang Meng, Mengqi Zhu, Changzhi Shan and Xingguo Zhang
Metals 2024, 14(4), 393; https://doi.org/10.3390/met14040393 - 27 Mar 2024
Cited by 2 | Viewed by 1914
Abstract
Electromagnetic continuous casting technology serves as a significant means for enhancing the casting performance of 2219 aluminum alloy. Investigating the influence of electromagnetic field variations on the solidification process is crucial for studying the microstructure and mechanical properties of electromagnetic cast billets. Through [...] Read more.
Electromagnetic continuous casting technology serves as a significant means for enhancing the casting performance of 2219 aluminum alloy. Investigating the influence of electromagnetic field variations on the solidification process is crucial for studying the microstructure and mechanical properties of electromagnetic cast billets. Through experimental research, variations in the microstructure and mechanical properties were examined for ordinary direct chill casting, as well as three different electromagnetic power casting ingots. The COMSOL software (COMSOL Multiphysics 6.0) was utilized to simulate the temperature and flow field, enabling an explanation of the resulting performance changes. The results showed the effect on electromagnetic continuous casting technology by the electromagnetic field generated by the Lorentz force and melt stirring, improving the melt flow and temperature distribution so that the melt center and the edge of the melt forcible convection were enhanced, thus realizing the tissue refinement, mechanical properties, and Cu element segregation of the improvement. With an increase in electromagnetic power, the distribution of the temperature field was more homogeneous, the segregation phenomenon was more alleviated, and the improvement in mechanical properties was more significant. The optimal microstructure and mechanical properties were achieved at a power of 20.0 kW, with a 74.7% improvement in grain refinement in the center and a tensile strength increase of 30.8%. Additionally, significant improvements were observed in segregation phenomena. Full article
Show Figures

Figure 1

23 pages, 30993 KiB  
Article
Numerical Simulation and Machine Learning Prediction of the Direct Chill Casting Process of Large-Scale Aluminum Ingots
by Guanhua Guo, Ting Yao, Wensheng Liu, Sai Tang, Daihong Xiao, Lanping Huang, Lei Wu, Zhaohui Feng and Xiaobing Gao
Materials 2024, 17(6), 1409; https://doi.org/10.3390/ma17061409 - 19 Mar 2024
Cited by 2 | Viewed by 3068
Abstract
The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the [...] Read more.
The large-scale ingot of the 7xxx-series aluminum alloys fabricated by direct chill (DC) casting often suffers from foundry defects such as cracks and cold shut due to the formidable challenges in the precise controlling of casting parameters. In this manuscript, by using the integrated computational method combining numerical simulations with machine learning, we systematically estimated the evolution of multi-physical fields and grain structures during the solidification processes. The numerical simulation results quantified the influences of key casting parameters including pouring temperature, casting speed, primary cooling intensity, and secondary cooling water flow rate on the shape of the mushy zone, heat transport, residual stress, and grain structure of DC casting ingots. Then, based on the data of numerical simulations, we established a novel model for the relationship between casting parameters and solidification characteristics through machine learning. By comparing it with experimental measurements, the model showed reasonable accuracy in predicting the sump profile, microstructure evolution, and solidification kinetics under the complicated influences of casting parameters. The integrated computational method and predicting model could be used to efficiently and accurately determine the DC casting parameters to decrease the casting defects. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 4859 KiB  
Article
Modeling the Evolution of Casting Defect Closure in Ingots through Radial Shear Rolling Processing
by Alexandr Arbuz, Alexandr Panichkin, Fedor Popov, Anna Kawalek, Kirill Ozhmegov and Nikita Lutchenko
Metals 2024, 14(1), 53; https://doi.org/10.3390/met14010053 - 30 Dec 2023
Cited by 1 | Viewed by 2001
Abstract
This paper investigates the behavior of transverse defects under significant total strain in conditions of complex vortex metal flow implemented through the radial shear rolling (RSR) method. The aim of this study is to assess the applicability of RSR processing for the in-depth [...] Read more.
This paper investigates the behavior of transverse defects under significant total strain in conditions of complex vortex metal flow implemented through the radial shear rolling (RSR) method. The aim of this study is to assess the applicability of RSR processing for the in-depth transformation of small ingots of special steel into bars, particularly for the manufacturing of structural elements in specialized construction projects such as nuclear power plants. Although a substantial total strain is anticipated to enhance the steel structure and contribute to defect closure, the question of the development or closure of potential casting defects remains unclear. To address this issue, model tests were conducted to simulate the implementation of RSR processing. Defect behavior data under very complex vortex metal flow and high strain conditions were obtained for the first time and have scientific merit. A small steel ingot with a 32 mm diameter, containing a simulated artificial defect in the form of a transverse through-hole with a 5 mm diameter, was employed. During rolling, the workpiece diameter was progressively reduced by 2 mm with each subsequent pass, reaching a final diameter of 20 mm. Additionally, to provide a more detailed visualization of the defect evolution process, the same defect was modeled in an aluminum bar over six passes, and changes in defect volume and shape were analyzed after each pass. A highly detailed 3D visualization of the actual defect evolution was achieved based on cross-sections from experimental workpieces. These data corresponded to the total strain levels obtained by finite element method (FEM) simulation. Notably, a consistent similarity was observed between the test results for both metals, revealing a reduction in defect volume of up to 67.7%. The deformational welding of defects in the outer sections, encompassing one-third of the rod’s radius, occurred in the initial passes. However, defects in the axial zone of the rods remained unclosed, lengthening and gradually decreasing proportionally to the elongation of the rod, akin to conventional rolling. Consequently, the radial shear rolling (RSR) method is unsuitable for ingots with substantial discontinuities in the axial zone post-casting. Nevertheless, the method ensures the total welding of defects located in the outer zones of the ingots, even with minor applied deformations and a slight decrease in the diameter of the deformed ingot. Such data were obtained for the first time and should contribute to future investigations in this field. Full article
Show Figures

Figure 1

22 pages, 5447 KiB  
Article
Effects of Fe, Si, Cu, and TiB2 Grain Refiner Amounts on the Hot Tearing Susceptibility of 5083, 6061, and 7075 Aluminum Ingots
by Kai-Yu Liang, Hao-Chuan Huang, Ching-Yao Tseng, Mien-Chung Chen, Sheng-Long Lee, Chi-Cheng Lin and Te-Cheng Su
Metals 2024, 14(1), 15; https://doi.org/10.3390/met14010015 - 21 Dec 2023
Cited by 4 | Viewed by 3090
Abstract
Aluminum alloys 5083, 6061, and 7075 are prone to hot tearing under direct-chill casting conditions; the defects that form during solidification of those alloys are highly sensitive to variation in the alloying elements, with these elements commonly being Si, Fe, Cu, and Ti. [...] Read more.
Aluminum alloys 5083, 6061, and 7075 are prone to hot tearing under direct-chill casting conditions; the defects that form during solidification of those alloys are highly sensitive to variation in the alloying elements, with these elements commonly being Si, Fe, Cu, and Ti. This study investigates the influence of the morphology, content, and size of intermetallic compounds on the hot tearing behavior of the 5083, 6061, and 7075 aluminum alloys by combining a constrained rod casting technique, phase diagram calculation, and multiscale microstructural characterizations. The fishbone-shaped α-Al15(Fe,Mn)3Si2 in 5083 can serve as a path for crack nucleation and growth, and an increase in Si content results in Mg2Si assuming fishbone morphology, thereby increasing hot tearing susceptibility. The amount of plate-like β-Al5FeSi is the primary factor controlling the hot tearing susceptibility of 6061. For 7075, increasing the Cu content can greatly enhance the remaining liquid fraction, feeding, and hot tearing susceptibility. For all three alloys, TiB2 grain refiner minimizes hot tearing. This study elucidates the influences of the amounts of Fe, Si, Cu, and TiB2 grain refiner on hot tearing susceptibility. The findings can help establish compositional control standards for the 5083, 6061, and 7075 aluminum alloy series, particularly when the recycling rate must be increased. Full article
Show Figures

Figure 1

13 pages, 2999 KiB  
Article
Control of the Composition and Morphology of Non-Metallic Inclusions in Superduplex Stainless Steel
by Andrey Zhitenev, Vladimir Karasev, Aleksandr Fedorov, Sergey Ryaboshuk and Alexey Alkhimenko
Materials 2023, 16(23), 7337; https://doi.org/10.3390/ma16237337 - 25 Nov 2023
Cited by 2 | Viewed by 1433
Abstract
Duplex stainless steel is a unique material for cast products, the use of which is possible in various fields. With the same chemical composition, melting, casting and heat treatment technology, pitting and crevice corrosion were observed at the interphase boundaries of non-metallic inclusions [...] Read more.
Duplex stainless steel is a unique material for cast products, the use of which is possible in various fields. With the same chemical composition, melting, casting and heat treatment technology, pitting and crevice corrosion were observed at the interphase boundaries of non-metallic inclusions and the steel matrix. To increase the cleanliness of steel, it is necessary to carefully select the technology for deoxidizing with titanium or aluminum, as the most common deoxidizers, and the technology for modifying with rare earth metals. In this work, a comprehensive analysis of the thermodynamic data in the literature on the behavior of oxides and sulfides in this highly alloyed system under consideration was performed. Based on this analysis, a thermodynamic model was developed to describe their behavior in liquid and solidified duplex stainless steels. The critical concentrations at which the existence of certain phases is possible during the deoxidation of DSS with titanium, aluminum and modification by rare earth metals, including the simultaneous contribution of lanthanum and cerium, was determined. Experimental ingots were produced, the cleanliness of experimental steels was assessed, and the key metric parameters of non-metallic inclusions were described. In steels deoxidized using titanium, clusters of inclusions with a diameter of 84 microns with a volume fraction of 0.066% were formed, the volume fraction of which was decreased to 0.01% with the subsequent addition of aluminum. The clusters completely disappeared when REMs were added. The reason for this behavior of inclusions was interpreted using thermodynamic modeling and explained by the difference in temperature at which specific types of NMIs begin to form. A comparison of experimental and calculated results showed that the proposed model adequately describes the process of formation of non-metallic inclusions in the steel under consideration and can be used for the development of industrial technology. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop